Error analysis and compensation for the
更新时间:2023-06-04 11:24:01 阅读量: 实用文档 文档下载
- error推荐度:
- 相关推荐
IntJAdvManufTechnol(2004)23:495–500DOI10.1007/s00170-003-1662-6
ORIGINALARTICLE
S.-H.YangÆK.-H.KimÆY.K.ParkÆS.-G.Lee
Erroranalysisandcompensationforthevolumetricerrorsofaverticalmachiningcentreusingahemisphericalhelixballbartest
Received:24July2002/Accepted:29January2003/Publishedonline:14February2004ÓSpringer-VerlagLondonLimited2004
AbstractMachiningaccuracyisdirectlyin uencedbythequasi-staticerrorsofamachinetool.Sincemachineer-rorshaveadirecte ectuponboththesurface nishandgeometricshapeofthe nishedworkpiece,itisimpera-tivetomeasurethemachineerrorsandtocompensateforthem.Alasermeasurementsystemtoidentifygeometricerrorsofamachinetoolhasdisadvantages,suchasahighcost,alongcalibrationtimeandtheusageofavolumetricerrorsynthesismodel.Inthisstudy,wepro-posedanovelanalysisofthegeometricerrorsofamachinetoolusingaballbartestwithoutusingacom-plicatederrorsynthesismodel.Also,astatisticalanalysismethodwasemployedtoderivegeometricerrorsusingahemisphericalhelixballbartest.Accordingtotheexperimentalresult,weobservedthatgeometricerrorsoftheverticalmachiningcentrewerecompensatedby88%.KeywordsMachinetoolerrorsÆVolumetricerrorsynthesismodelÆErrorcompensationÆHemisphericalhelixballbartestÆRegressionanalysis
1Introduction
Asthegeometryandfunctionsofaproductbecomecomplicatedanddiverse,theaccuracyofamachinetoolandthee ciencyofamachiningprocesshavebecomecrucialfactors.Accuracyisthemostsigni cantelementinevaluatingthecapabilityofamachinetool.FortheimprovedcapabilityofaCNCmachinetool,therefore,
S.-H.Yang(&)ÆK.-H.KimSchoolofMechanicalEng.,
KyungpookNationalUniversityE-mail:syang@knu.ac.kr
Y.K.Park
SchoolofMechanicalandAutomotiveEng.,CatholicUniversityofDaegu
S.-G.Lee
CollegeofMechanicalandIndustrialSystemEngineering,KyungHeeUniversity
anerrorcompensationtechniqueisaverye ectivemethod.Thus,thedevelopmentofanaccurateandeconomicerrormeasurementsystemisessential.
Quasi-staticerrors,a ectingthedimensionalaccu-racyorthetoleranceofamachinedproduct,occupy40–70%ofmachinetoolerrors.[1]Quasi-staticerrorsarede nedastherelativepositionerrorsbetweentheworkpieceandthetool.Geometricerrorsandthermalerrorsofamachinetoolbelongtoquasi-staticerrorswhichareassociatedwiththestructureofthemachinetoolitself.Thegeometricerrorsofamachinetoolareduetotheshapeerrorofmechanicalelementswhicharekinematicallylinked,andthemisalignmentofmechan-icalelements.Intheend,theerrorisexpressedasavolumetricerror;thediscrepancyofthetoolandtheworkpiece,atthetipofatool.
Geometricerrorsofamachinetoolcanbemeasuredbyalasersystem.Itsprimaryforteistheaccuracyoferrormeasurement.However,thelasersystemrequiresalargecapitalinvestmentduetoitshighcost,andtheinstallationiscomplicated.Also,di cultiesinmea-surementandthusaconsiderableamountoftimeforeachmeasurementareunavoidable.Finally,anexperi-encedandskilfuloperatorisabsolutelyrequired.In1982,toovercometheseproblemsassociatedwiththelasersystem,Bryan[2,3,4]proposedthetelescopingballbarsystemfortheaccuracyevaluationofamachinetool.Since1982,theballbarsystemhasbeenfrequentlyadoptedinmanyresearches[5,6,7,8,9,10,11,12,13].Theballbarsystemhasalsobeenwidelyappliedinindustrywheretheaccuracyofamachinetoolshouldbecheckedregularlyandfrequently.
Amathematicalmethodexpressingthevolumetricerrorofa3-axismachinetoolinavector,aderivationofamodelusing21geometricerrorcomponentsandamethodofmeasuringthe21errorcomponentswithalaserinterferometersystemanderrorcompensationhavebeenproposedbymanyresearchers.Also,thee ective-nessofthemethodshasbeenproved[9,10,15,16,17].However,theaforementionedmethodsevaluatetheaccuracyofamachinetoolestimateandcompensatefor
496
thevolumetricerrorsofamachinetoolusinganerrorsynthesismodelaftermeasuringtheerrorcomponentsofeachaxis.Therefore,insteadofdirectlyusingmeasureddataascompensatingvalues,theycouldcompensatethevolumetricerrorsonlyafterconstructingacomplexerrorsynthesismodel.Inaddition,alloftheerrorestimationmethodsusingaballbarhavefocusedoneacherrorcomponentusingmeasureddata[11,12,13,14].
Barakatcompensatedfortheerrorsofa3-dimen-sionalcoordinatemeasuringmachine(CMM)usingasimpli ingastandardstatisticaltechnique,Yangetal.[17]showedthatonlylineardis-placementerrorsandsquarenesserrorsamong21errorcomponentshavemajore ectsonthevolumetricerrors.Also,theyproposedagenuine3-dimensionalballbarmeasurementinplaceofconventionalplanemeasurements,andthustheyreducedmeasurementtimeandsetuperrors.Inthisresearchwork,aballbartestwithahelicalpathonahemisphereisemployedtoeasilyestimatethevolumetricerrors.Thus,thegeo-metricerrorsofaverticalmachiningcentrecanbeobtainedwitheaseinindustry.Multipleregressionanalysiswasemployedandtheerrorateachpointwascompensatedaccordingtopositioncompensation.Asaresult,about88%compensationwasachieved.
2Thevolumetricerrorsynthesismodelofaverticalmachiningcentre
2.1Thederivationofavolumetricerrorsynthesismodel
Thechieferrorsamongtheerrorsofamachinetoolarequasi-staticerrors(geometricandthermalerrors).Thegeometricerrorsofamachinetoolarefroma awofthemachinetoolitselfinmanufacturing,amisalignmentofmechanicalelements,staticdeformationand/orwear.Thermalerrorsarefromthermaldistortionsofmachinecomponentsassociatedwithheatsources,suchasmo-tors,hydraulicsystems,bearingsandambienttempera-ture.Theseerrors,eitheraloneortogether,a ectthe nalmachinetoolerrors.
Theoretically,a3-axismachinetoolcontains21geometricerrorcomponents:3translationerrorsand3rotationerrorsof3axes,and3squarenesserrorsintotalbetweenthreesetsofpairaxes.Thevolumetricerrorsynthesismodelcompoundingallerrorcomponentsofaverticalmachinetoolisderivedasthefollowingformula,andwasillustratedindetailbyYangetal.[15].Dx¼DxtþDxg¼DSxÀDyxxþDyzx
ÀdxxþezxÀÀdxyþdxzÀeysLþezzOyzyÀOyxyþTyÀyÁTyþeyzðTzÀLÞ
þezyÀOyzyþTyÀyÁþeyxðOyxzÀOyzzÀTzþLÀzÞþeyyðLÀOyzzÀTzÀzÞÀSzxz
Dy¼DytþDyg¼DSyÀDyxyþDyzyÀdyxÀdyy
þdyzþexsLþezyðÀOyzxÀTxÞþezzTxþexzðLÀTzÞþezxðOyxxÀOyzxÀTxþxÞþexyðOyzzþTzÀLþzÞþexxðOyzzÀOyxzþTzÀLþzÞþSxyxÀSyzzDz¼DztþDzg¼DSzÀDyxzþDyzzÀdzxÀdzyþdzz
ÀeyzTxþeyyðOyzxþTxÞþexzTy
þeyxðOyzxÀOyxxþTxÀxÞþexyÀÀOyzyÀTyþy
Á
þexxÀOyxyÀOyzyÀTyþy
Áð1Þ
where:Dx,Dy,Dz:
thecoordinatesofworkpieceintheX-axisslidesystemC
Dxg,Dyg,Dzg:thegeometricerrorsofama-chinetoolineachdirectiondxx,dyy,dzz:thelineardisplacementerrors
alongtheX-,Y-,andZ-axes
dyx,dzx,dxy,dzy,dxy,dyz:thestraightnesserrorsOyxx,Oyxy,Oyxz:thedistancesofX-axisoriginOx
relativetoY-axisoriginOyinthreedirections
Oyzx,Oyzy,Oyzz:thedistancesoftheZ-axisorigin
OzrelativetoY-axisoriginOyinthreedirections
exx,eyy,ezz:therollerrorsalongX-,Y-,and
Z-axes
eyx,ezx,exy,ezy,exz,eyz,:theangularerrorsSxy,Syz,Sxz:thesquarenesserrorsbetween
thepairaxes(oraxispairs)
Dxt,Dyt,Dzt:thethermalerrorsofamachine
toolineachdirection
DSx,DSy,DSz:thespindledriftsatstandard-lengthtooltipalongX-,Y-,and
Z-axes
exs,eys:thespindletiltsalongXandY
axes
Dyxx,Dyxy,Dyxz:thethermaldriftsoforiginOx
relativetoOyinX,YandZdirections
Dyzx,Dyzy,Dyzz:thethermaldriftsoforiginOz
relativetoOyinX,YandZdirections
Tx,Ty,Tz:thecoordinatesofstandard-lengthtooltipinspindlecarrier
coordinatesystemD
L:thetooloffsetdistancewhena
toollengthischanged
x,y,z:eachtraveldistancesofslidein
X-,Y-andZ-axescoordinatesystem
497
2.2Thederivationofa3-dimensionalballbarequation
A3-dimensionalballbarmeasurementofahemispher-icalhelixincludingallthemotionsofx,y,z-axes(di erentfromconventionalballbartestsmeasuringonly2-dimensionalplanes)wereperformed.Consideringthe3-dimensionalpositionofaballbar,akinematicequationincludinggeometricerrorofeachpointwasderived(Figs.1,2).Although(x,y,z)isthepositionoftheballbarsystemwith(x0,y0,z0)astheoriginandra-diusR,therealÀpositionÁoftheballbarsystembecomes000
(x¢,y¢,z¢)withx0;y0;z0astheoriginbecausethegeo-metricerrorisinvolved.
Theradiuserror,DRmeasuredbythelinearvariabledi erentialtransformer(LVDT)becomes
qÀÁ2ÀÁ2ÀÁ2 0000000DR¼RÀR¼xÀx0þyÀy0þzÀz0ÀR
ð2Þ
and
SquaringbothsidesofEq.3andneglectingthesec-ondandhigher-ordertermsproduces:RDR¼ðxÀx0ÞðDxÀDx0ÞþðyÀy0ÞðDyÀDy0Þ
þðzÀz0ÞðDzÀDz0Þ2.3Statisticalanalysis
Thevolumetricerrorcanbeexpressedasafunctionofthesliderpositiononlyineachaxis.Therefore,multipleregressionanalysisisusedtoexpressEq.1asaregres-sionmodel.
Dx¼a1Xþa2Zþa3
Dy¼b1Xþb2Yþb3Zþb4Dz¼c1Zþc2
SubstitutingEq.5intoEq.4andexpressingitasamatrix,wecanobtainalinearequationinEq.6:b¼Ax
ð6Þð5Þð4Þ
qRþDR¼ðxÀx0þDxÀDx0Þ2þðyÀy0þDyÀDy0Þ2þðzÀz0þDzÀDz0Þ2
where:bT¼½RDRi
ð3
Þ
Fig.1Amachinecoordinate
system
3
ðxiÀx0Þ2
6ðxiÀx0ÞðziÀz0Þ7
76
76yðÀyÞðxÀxÞi0i07AT¼676ðyiÀy0Þ2
76
4ðyÀyÞðzÀzÞ5
i0i0
2
ðziÀz0Þ23a16a27676b17
7x¼66b27674b35a1
2b:A:x:i:
Ann-dimensionalradiuserrorvectoroftheballbarmeasurement
Ann·6matrixdenotingthepositionofmeasure-ment
coef cientvectorofamodel
1,2,....,npositionsofmeasurementsupton
Usingtheleastsquaremethod,themodelcoe cientvectorxcanbeestimatedinEq.7:
ÀÁÀ1^x¼ATAATbð7Þ
Fig.2Aschematicdiagramfortheballbartest
InEq.7,constants(a3,b4,c2)cannotbeobtainedbe-causetheballbariseliminated,beingexpressedasa
498
combinationofrelativepositionerrors.However,sincethereisnoerrorattheoriginofamachinetool,itdoesnotloseanygenerality.
3Theexperimentsandcompensation3.1Theexperimentalmethods
Experimentsusingtheballbarsystemproceededasfollows.
1.SetpointÀ,X=300mmandY=300mm,onthebedastheoriginforballbarmeasurement(Fig.3).2.Withtheradiusof250mm,proceedwithahemi-sphericalhelixballbarmeasurement(Fig.4).
3.Measureerrorvaluesat32pointsalongthehelicaltoolpathonthehemisphere.
4.Repeatsteps1.through3.aswechangetheoriginfromÀto`and´.(Fig.3)PointsÀand`areforerrorestimation,andpoint´istoverifyexperi-mentalresultsandtocompensatetheerrorsbasedontheestimatederrorsbyÀand`.
5.CalculatexinEq.7usingDRofthemeasuredpoints.Averticalmachiningcentre(KIAKV60)wasused.Also,theexperimentswereperformedunderthecoolconditiontoguaranteethatonlygeometricerrorsshouldbemeasuredwithoutanythermalerrors.
Fig.3Thesetupoftheoriginpointintheballbartest
Fig.4Ameasurementpointalongthehemispherical
helix
Table1Resultsofthegeometricerroranalysis
Thevalueofthemodelparameter
aa1Àb2À1.3844EÀ05b1À3.98543EÀ041.81592E2.17282EÀÀ0405b22.73096EÀ04c31
À7.60534EÀ
05
3.2Theexperimentalresults
Equation7wassolvedusingDRobtainedineachballbartest,andparametersoftheregressionmodela1,a2,b1,b2,b3andc1were nallyobtained.Table1showstheaveragevaluesfromthetwoexperimentswiththeoriginÀand`,respectively.
ToevaluatethevalidityofthevaluesinTable1,wecanmeasurethegeometricerrorsusingalasermeasurementsystemandcomparethemwiththevaluesinTable1.AnalternativeisthatafterwepredictarbitraryerrorsinanimaginaryballbartestusingthevaluesinTable1andtheregressionmodel,wecancomparetheerrorswithrealerrorsbytheactualballbarmeasurement.Asanexample,thevolumetricerrorsofaballbartestwithanoriginof(850,300)werepredictedusingTable1andtheregressionmodel.Thesepredictederrorswerecomparedwiththemeasuredvaluesfromarealballbartest,andtheresultisshowninFig.5andTable2.Theaveragediscrepancyislessthan10lmasinTable2,anditshowsthatthevaluesfromthesimpli edmodelarevalid.3.3Compensationandanalysis
ThevolumetricerrorwasobtainedusingtheparametersinTable1andEq.5.Basedonthis,Dx0,Dy0,Dz0at
the
Fig.5MeasuredvaluesfromarealballbartestTable2Asummaryofthepredictionresults
Absoluteresidualoftwovalues
Maximumerror(mm)0.0187Meanerror(mm)
0.0085
Table3Neworiginpointsaftercompensation
OriginpointbeforeNeworiginpointcompensation
aftercompensationXposition(mm)850.000849.983Yposition(mm)300.000300.039Zposition(mm)
12.748
12.749
Fig.6Compensationvaluesofeach
axis
Fig.7Theresultusingthepositioncompensationmethod
originandDx,DyDzathemisphericalhelixballbarmeasurementscanbeestimated.Also,bysubtractingtheseerrorsfromtheorigin(850,300),wecan ndaneworigin,i.e.,thepositioncompensatedorigin(Table3).AlsoasinFig.6,newmeasurementpointswereob-tainedbycalculatingtheX,YandZ-axiscompensatedvaluesateachmeasurementpoint.Aftercompensatinginthisway,weperformedtheballbarmeasurementforthenewpoint(´).Figure7showstheresultofthepo-sitioncompensationmethod.
Theballbarmeasurementerrorsaftercompensationaregreatlyreducedcomparedwiththeerrorsbeforecompensation.Themaximumerrorof78.5°lmandtheaverageerrorof32.2°lmwerereducedtothemaximum
499
Table4Asummaryofthecompensationresults
Without
With
compensationcompensationMaximumerror(mm)—0.07850.0084(89.3%)absolutevaluesMeanerror(mm)—0.0322
0.0039
(87.9%)
absolutevalues
errorof8.4°lmandtheaverageerrorof4°lmwithcompensation.Inconclusion,weachieved88%oftheerrorreduction(Table4).
Tosummarisetheresults,wepredictedandmeasuredthegeometricerrorsofamachinetoolusingtheballbartest.Toovercometheshortcomingsofaconventionalballbartestfora2-dimensionalplanemeasurement,weusedtheballbartestofahemisphericalhelixandregressionanalysisfortheevaluationofgeometricer-rors.Asaresult,wecouldsuccessfullycompensatethemachinetoolerrors.
4Conclusions
Theobjectiveofthisresearchworkwastheerroranal-ysisofaverticalmachiningcentreusingthehemi-sphericalhelixballbartestandaregressionmodel.Basedontheresultsofexperiments,wesummarisetheconclusionsasfollows.
1.Avolumetricerrorsynthesismodelofa3-axisverti-calmachinetoolwasderivedusingahomogeneoustransformationmatrixandasimpli edregressionmodelwasproposed.
2.Insteadofahigh-pricedlasermeasurementsystem,asimplealgorithmtoestimatethegeometricerrorsofamachinetoolwasproposedusingtheconvenient3-dimensionalballbarmeasurementsystem.
3.Aregressionmodelcouldreplaceacompletevolu-metricerrorsynthesismodelforthegeometricerrorcompensationofamachinetool.Applyingtheregressionmodeltothehemisphericalhelixballbarmeasurement,wecouldalsodecreasethevolumetricerrorsofaverticalmachiningcentreby88%.
4.Withoutrelyingonacomplicatedvolumetricerrorsynthesismodel,wecandirectlyusetheballbarmeasurementvaluesascompensatedvalueswithasimpleregressionequation.
References
1.BryanJB(1990)Internationalstatusofthermalerrorresearch.AnnalsCIRP39:645–656
2.BryanJB(1982)Asimplemethodfortestingmeasuringma-chinetools.PrecisEngin4(2):61–69
3.BryanJB(1982)Methodfortestingmeasuringmachinesandmachinetools,part1:principlesandapplications.PrecisEngin4:61–69
500
4.BryanJB(1982)Methodfortestingmeasuringmachinesandmachinetools,part2:constructiondetails.PrecisEngin4:125–138
5.KnappW(1983)Circulartestforthree-coordinatemeasuringmachinesandmachinetools.PrecisEngin17:115–124
6.KnappW(1983)Testofthethree-dimensionaluncertaintyofmachinetoolsandmeasuringmachinesanditsrelationtothemachineerrors.AnnalCIRP32(1):459–464
7.KunzmannH,WaldeleF(1983)Ontestingcoordinatemea-suringmachines(CMM)withkinematicreferencestandards(KSR).AnnalCIRP32(1):465–468
8.KakinoY(1987)ThemeasurementofmotionerrorofNCmachinetoolsanddiagnosisoftheiroriginsbyusingtele-scopingmagneticballbarmethod.AnnalCIRP36(1):377–3809.ChenJS,YuanJX,NiJ,WuSM(1991)Realtimecompen-sationoftime-variantvolumetricerroronamachiningcenter.SensContQualIssManufactASME241–253
10.DonmezMA,LiuCR,RarashMM(1987)Ageneralized
mathematicalmodelformachinetoolerrors.PrecisEngin8:187-196
11.PahkHJ,KimYS(1997)Anewtechniqueforvolumetricerror
assessmentforCNCmachinetoolsincorporatingballbarmeasurementand3Dvolumetricerrormodels.IntJMachToolManufact37(11):1583–1596
12.KwonHD,BurdekinM(1998)Measurementanddiagnostics
ofmachinetoolerrorsduringcircularcontouringmotions.ProcInstnMechEngrs212(B):(B):343-356
13.LeeS,ParkJ,ChoS,KimM(1993)DevelopmentofanNC
machineperformancetestandcalibrationsystem.KoreanSocietyofMechanicalEngineers17(6):1431–1440(inKorean)14.HaiN,YuanJ,NiJ(1994)Reversekinematicanalysisof
machinetoolerrorusingtelescopingballbar.ASME68(1):277–286
15.YangS,YuanJ,NiJ(1996)Accuracyenhancementofahor-izontalmachiningcenterbyreal-timeerrorcompensation.JManufactSys15(2):113–118
16.YangS,YuanJ,NiJ(1996)Theimprovementthermalerror
modelingandcompensationonmachinetoolsbyCMACneuralnetworks.IntJMachToolManufact36(4):527–53717.YangS,KimK(2002)Areversekinematicapproachforerror
analysisofamachinetoolusingahemisphericalhelixballbartest.TransNAMRI/SME30:223–230
18.YuanJ,NiJ(1997)CNCmachineaccuracyenhancement
throughrealtimeerrorcompensation.JManufactSciEngin119:717–724
正在阅读:
Error analysis and compensation for the06-04
教科版三年级下册科学实验报告12-22
初任公务员培训心得体会总结最新3篇01-21
教师节散文:春情夏爱秋思冬忆03-30
公司法人授权委托书模板02-23
技术经济学复习总结题01-08
如何调动学生主动参与课堂教学的积极性12-22
入侵探测器常见问题05-11
计算机考试题库(安全、网络、病毒、系统)05-02
- 1Reduction and compensation of thermal errors in machine tools.
- 2Quartus常见错误分析 Error
- 3MySQL - Error - Code文档手册
- 4相位误差phase error question
- 5MySQL - Error - Code文档手册
- 6NonClinical Dose Formulation Analysis Method Validation and Sample Analysis
- 7Analysis of Major Characters
- 8An Analysis of Jane Eyre
- 9相位误差phase error question
- 10Financial Reporting and Analysis
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- compensation
- analysis
- Error
- 2014-2020年中国数字音乐市场前景研究与产业竞争格局报告
- 发票兑奖话费充值平台升级方案(v002)
- 理想国第一卷读后感
- C语言求最大公约数和最小公倍数
- 结构化面试试题2011年7月24日
- 七年级语文下一二单元测试卷及答案
- 重庆邮电大学简介
- 新型高强耐磨复杂黄铜及其生产技术
- 期末复习主题班会
- 1、模板制安施工规定及要求
- 员工廉洁从业承诺书
- 对于港口企业信息化规划的思考
- Generalized Schur methods to compute coprime factorizations of rational matrices
- 操作系统ch5.1IO硬件原理
- 中国2010年最新行政区划,省市县地名列表
- 2020年计算机等级考试MsOffice基础自测题及参考答案
- 食堂员工奖罚制度
- 表4.门式钢管脚手架检查评分表
- 为什么会发烧 婴幼儿容易发烧
- 节能评审和节能评估文件编制费用收费标准