Improving shear capacity of existing RC beams using external bonding of steel plates
更新时间:2023-05-14 13:12:01 阅读量: 实用文档 文档下载
- improving推荐度:
- 相关推荐
粘钢加固钢筋混凝土梁斜截面
EngineeringStructures27(2005)
781–791
/locate/engstruct
ImprovingshearcapacityofexistingRCbeamsusing
externalbondingofsteelplates
SinanAltin ,ÖzgürAnil,M.EminKara
DepartmentofCivilEng.,GaziUniversity,Maltepe,06570Ankara,Turkey
Received8October2003;receivedinrevisedform7December2004;accepted21December2004
Availableonline24February2005
Abstract
Variousmethodsaredevelopedforstrengtheningreinforcedconcretebeamsagainstshear.Strengtheningofreinforcedconcretebeamsusingexternalboundingofsteelplateswasoneofthepopularresearchareasofrecentyears.Thisstudypresentstestresultsonstrengtheningshearde cientreinforcedconcretebeamsbyexternalbondingofsteelplates.ElevenreinforcedconcretebeamswithaT-sectionweretestedundermonotonicloadingintheexperimentalprogram.Threemaintypesofsteelmemberswithdifferentarrangementswerebondedtothesideofthebeamwebsalongtheshearspanbyusingepoxy.Thepurposewastoobtainductilebehaviorforshearde cientreinforcedconcretebeams.Thetestresultcon rmedthatallsteelplatearrangementsimprovedthestrengthandstiffnessofthespecimenssigni cantly.Thetensionreinforcementofallstrengthenedreinforcedconcretespecimenswasyielded.Thefailuremodesandductilityofspecimenswereprovedtodifferaccordingtothetypeofthesteelmemberandarrangementalongthebeam.Beamsthatwerestrengthenedwithcontinuoussteelplatealongtheshearspanshowedductile exuralbehavior.©2005ElsevierLtd.Allrightsreserved.
Keywords:Reinforcedconcretebeam;Strengthening;Shear;Epoxy;Steelplate
1.Introduction
Ingeneral,reinforcedconcrete(RC)beamsfailintwomodes: exureandshear.ItiswellknownthattheshearfailureofaRCbeamissuddenandbrittleinnature.Soitislesspredictableandgivesnoadvancewarningpriortofailure.Shearfailureismoredangerousthan exuralfailure.ForthatreasonRCbeamsmustbedesignedtodeveloptheirfull exuralcapacityandassureaductile exuralfailuremodeunderextremeloading.However,manyRCstructuresencountershearproblemsforvariousreasons,suchasmistakesindesigncalculations,improperdetailingoftheshearreinforcement,constructionerrorsorpoorconstructionpractices,changingthefunctionofastructurefromalowerserviceloadtoahigherserviceload,andreductionofthe
Correspondingauthor.Tel.:+903122317400/2248;fax:+90312231
9223.
E-mailaddress:saltin@gazi.edu.tr(S.Altin).
0141-0296/$-seefrontmatter©2005ElsevierLtd.Allrightsreserved.doi:10.1016/j.engstruct.2004.12.012
shearreinforcementsteelareaduetocorrosioninserviceenvironments.
Theknownstrengtheningtechniquesofshearde cientbeamsareasfollows:CFRP,strengtheningwithexternallyappliedclamps,jacketingwithconcretelayersandexternalbondingofsteelplateswithepoxy.Forstrengtheningshearde cientbeams,althoughnumeroustestshavebeencarriedout,andshownthatcompositematerialsareanexcellentoptionforuseasexternalreinforcing,thesteelplatebondingtechniqueisbecomingpreferableforstrengtheningduetoseveraladvantagessuchaseasyconstructionwork,minimumchangeintheoverallsizeofthestructureafterplatebondingandbeinganeconomicaltechnique.Themajorityofresearchtodateonplatebondinghavefocusedon exuralstrengtheningofRCbeamsbybondingsteelplatestobeamsof ts.Previously,veryfewstudieshavebeencarriedoutontheshearstrengtheningofRCbeamsusingwebbondedsteelplates[1–8].TheultimateloadofthestrengthenedRCbeamdependsprincipallyonthecompressivestrengthoftheconcrete,theyield
粘钢加固钢筋混凝土梁斜截面
782S.Altinetal./EngineeringStructures27(2005)
781–791
Fig.1.Reinforcementdetailsofspecimens.
strengthoftheshearandlongitudinalreinforcement,thetensilereinforcementratio,theshearspantodepthratio,thestrengthandratioofstrengtheningmaterialssuchascompositeorsteelplate.AdditionalresearchonsuchstrengtheningtechniqueswasconductedtodeterminetheperformanceofstrengthenedRCbeamsunderdifferentconditions,andtodeterminetheeffectofsteelplatetypesandarrangementsonaRCbeam’sbehaviorandfailuremode.
Thispaperpresentsresultsofanexperimentalstudyconductedonthestrengtheningofshearde cientbeamsbyusingexternalwebbondedsteelplates.Elevenspecimens,oneofwhichwasacontrolspecimenandtheremainingtenofwhichhadde cientshearreinforcement,weretestedinanexperimentalprogram[9–11].RCbeamswithde cientshearreinforcementswerestrengthenedwithdifferentarrangementsofbondedsteelelements.Theaimwastoobtainductile exuralfailureforallstrengthenedspecimens.Theresultsofthetestsonthesebeamswerecomparedwiththatforthecontrolbeam.Theeffectsofthetypeandarrangementofthesteelplatesthatwereusedforstrengtheningonthebehavior,strength,stiffness,failuremodeandductilityofthespecimenswereinvestigated.Theexperimentalresultsarecomparedwithanalyticalpredictions.
2.Experimentalprogram
2.1.Specimensandmaterialproperties
AtotalofelevenT-sectionRCbeamsweretestedintheexperimentalprogram.DimensionsandreinforcementdetailsareshowninFig.1.Thedistancebetweenthesupportswas3800mmandthesameforallspecimens,aswerethecrosssectionalgeometriesandlongitudinalreinforcements.Thelongitudinalreinforcementconsistsofthree20mmdiametersteeldeformedbarsatthebottomandtwo8mmdiameterbarsatthetopofthebeam.Theshearreinforcementconsistedof6mmdiameterclosedstirrups,spacedat300mmcentertocenterthroughoutthebeamexceptforBeam-1.TheclosedstirrupspacingforBeam-1was75mm.Theyieldstrengthsofthelongitudinalsteelbarsatthebottom,topandstirrupswerefsy=414MPa,fsy=304.2MPaandfsy=275MPa,respectively.Table1summarizesthespecimens’properties.Averagecompressivestrengthsofconcreteweredeterminedfromstandardtestsofcylindersthatwerecastfromthesameconcreteaswasusedforthebeams.AscanbeseenfromTable1,theaveragecompressivestrengthsoftheconcretewerethegreaterthan25MPa.Table2showsthemechanicalpropertiesofthereinforcingbarsandsteelplatesusedinthebeams.
Beam-1wasthecontrolspecimenthatwasdesignedsuchthatithadgreatershearstrengththan exuralstrength.Thus,ductile exuralfailurewasthedominantmodeoffailure.TheotherRCbeamsweredesignedtobede cientinshearcapacity;thus,shearfailurewastheirdominantmodeoffailure.Theratiooftheshearde cientbeams’stirrupreinforcementratiotothecontrolmember’sstirrupreinforcementratiowas0.25.Shearde cientbeamswerestrengthenedbybondingsteelstrapsandplatestobothsidesofthebeamwebalongthelengthoftheshearspan.Steelstrapsorplatesweredesignedsuchthattheycouldincreasetheshearforceuptothebeams’ultimate exuralcapacitieswithoutyielding.Thesteelstrapandplate
粘钢加固钢筋混凝土梁斜截面
S.Altinetal./EngineeringStructures27(2005)781–791
Table1
SpecimenpropertiesSpecimen#(1)Beam-1Beam-2Beam-3Beam-4Beam-5Beam-6Beam-7Beam-8Beam-9Beam-10Beam-11
(Control)(Strengthening)(Strengthening)(Strengthening)(Strengthening)(Strengthening)(Strengthening)(Strengthening)(Strengthening)(Strengthening)
fc(MPa)(2)25.827.027.627.326.526.525.825.626.726.026.4
Stirrupsρw(3)0.002240.000560.000560.000560.000560.000560.000560.000560.000560.000560.00056
RatioρW
WBeam1(4)1.000.250.250.250.250.250.250.250.250.250.25
ρ
783
SteelmemberusedforstrengtheningDimensionsType(5)(6)–
–
40×285×4040×405×4040×285×40150×285×40150×405×40150×285×401550×285×40310×285×401550×285×40
––
Narrowsteelstrap
NarrowLshapesteelstrapNarrowsteelstrapWidesteelstrap
WideLshapesteelstrapWidesteelstrapSteelplate
Widesteelstrap
Steelplatewithopening
Spacing(mm)(7)––80804015015075–––
Table2
MaterialpropertiesofreinforcementsandsteelmembersReinforcements(1)
6mmbar8mmbar
20mmdeformedbar4mmsteelplate
Yieldstrength(MPa)(2)275.0304.2414.0261.0
Ultimatestrength(MPa)(3)417.0443.1687.9402.8
Elasticmodulus×103(MPa)(4)192198205188
geometricdimensionsareshowninFig.2.Thethicknessofallsteelplateswas4mm.AscanbeseenfromFig.2:(a)Twotypesofnarrowsteelstrapswithdimensions40×
285×4mmand40×405×4mmweremanufactured.The40×405×4mmsteelstrapswerebentintoan“L”shape.Thelengthsofthearmsofthe“L”were120and285mm,respectively.
(b)Threetypesofwidesteelstrapswithdimensions150×
285×4mm,150×405×4mmand310×285×4mmweremanufactured.The150×405×4mmsteelstrapswerebentintoan“L”shape.Thelengthsofthearmsofthe“L”were120and285mm,respectively.
(c)Twotypesofsteelplateswithdimensions1550×285×
4mmandthesamedimensionalplateswithopeningsweremanufactured.Thesteelplateswithopeningsweremanufacturedfrom1550×285×4mmplatesbycuttingthreesymmetricalopeningswithdimensions317×125mm.SteelstrapandplatearrangementsofstrengthenedspecimensaregiveninFig.3.2.2.Bondingprocedure
Thesameapplicationstepswereusedforstrengtheningallspecimens.Beforebondingthesteelmemberstotheconcretesurface,specialconsiderationwasgiventopreparationofthebeam’swebsurface.Bothsidesofthebeamwebwereroughenedbyamechanicalgrindingmachineuntiltheaggregatewasexposed,brushedandthenthesurfacesvacuumcleanedtoremovelooseparticlesanddust.Thebondingfacesofthesteelplateswerealsoroughenedbyamechanicalgrindingmachineandcleanedthoroughlywithacetone.Thenepoxyresinwasmixedinaccordancewiththemanufacturer’sinstruction.Mixingwascarriedoutinametalcontainerandwascontinueduntilthemixturewasauniformcolor.Theepoxy(Sikadur32)wasspreadalloverthewebofthebeamsandthesteelplatestoathicknessof1.5mm.Theenvironmentalconditionofthesiteatwhichepoxywasappliedwascrucial.Conditionstobeobservedbeforeandduringinstallationincludethesurfacetemperatureoftheconcrete,airtemperature,relativehumidityandcorrespondingdewpoint.Thetemperatureduringapplicationwas20±2 Cinallcases.Thehumidityofthesurfacesatwhichtheepoxywasappliedandthecalculateddewpointsaccordingtothehumiditiesofthesurfacesmustbe ttedtotheregulations.DewpointcalculationsweremadeaccordingtohumiditymeasurementsandISO8502-4regulations[12].Theageoftheconcreteatthetimeofbondingoftheplateswasbetween80and90days.Thesuccessoftheepoxywascloselyrelatedtothestrengthoftheconcrete.Duetothefactthatthestrengthoftheconcretewascloselyrelatedtoitsage,aftercompletingallofthespecimens,epoxywasappliedtoallofthemtogether.Afterbondingoperationswascompleted,specimenswerecuredfor15daysunderlaboratoryconditionsbeforetesting.
粘钢加固钢筋混凝土梁斜截面
784S.Altinetal./EngineeringStructures27(2005)
781–791
Fig.2.Steelstrapsandplatesusedfor
strengthening.
Fig.3.Steelstrapandplatearrangementsofstrengthenedspecimens.
粘钢加固钢筋混凝土梁斜截面
S.Altinetal./EngineeringStructures27(2005)781–791
785
Fig.3.(continued).
2.3.Experimentalset-up
Aschematicviewoftheexperimentalset-upandthearrangementofthemeasurementdevicesisshowninFig.4.Beamsweretestedunderfour-pointloading.Theloadappliedtothemid-pointofthereactionbeamwasdividedsymmetricallyintotwoconcentratedloadsandappliedtothespecimens.Theratiooftheshearspanlength,1450mm,totheeffectiveheightofthebeam,335mm,was4.3andwasthesameforallspecimens.Specimensweretestedundermonotonicloadingtofailure.Loadwasappliedwitha600kNcapacityhydraulicjackandwascontrolledwitha300kNcapacityloadcell.Themid-pointde ectionandshearcracksofthespecimensweremeasured.ShearcrackwidthsweremeasuredelectronicallybyattachingeightLVDTsdiagonallytorectangularregionswithdimensionsof300×210mmatequalintervalsforshearspans.Shearcrackmeasurementsofthespecimensforwhichalltheshearspanwascoveredwithsteelplatesweretakenbydrillingholestothemeasurementpoints.Themeasurementdevicesweremountedsothattheydidnottouchthewebsofthebeamsorthesteelmembers.
3.Experimentalresultsandevaluation3.1.Observedbehaviorandfailuremodes
TestresultsaresummarizedinTable3.Fig.5showscrackingpatternsandfailuremodesofspecimens.Inallspecimens,the rstcrackalwaysappearedasa exuralcrackinthemaximumbendingmomentregionofthebeam.Ingeneral rst exuralcracksdevelopedat17%oftheultimatestrengthsofthespecimens.Shearcracksdevelopedatloadlevelsbetween40%and50%oftheultimateloadalongtheshearspanofallspecimensexceptBeam-2.ThreetypicalexamplesthatshowthediagonalcrackpropagationthatoccurredbytheseventhLVDTmeasurementrangearepresentedinFig.6.ControlspecimenBeam-1showedductile exuralbehaviorasaresultoflongitudinaltensionreinforcementyielding.Afteryielding,Beam-1developedlargemid-spandisplacements,andreachedanultimateloadvaluethatwas11%greaterthantheyieldload.Beam-1failedbecauseofcrushingoftheconcreteintheextremecompression ber.Beam-2withde cientshearreinforcementcollapsedwithabrittleshearfailureand
粘钢加固钢筋混凝土梁斜截面
786S.Altinetal./EngineeringStructures27(2005)
781–791
Fig.4.Testset-upandinstrumentation.
Table3TestresultsSpecimen#(1)Beam-1Beam-2Beam-3Beam-4Beam-5Beam-6Beam-7Beam-8Beam-9Beam-10Beam-11
(Control)(Strengthening)(Strengthening)(Strengthening)(Strengthening)(Strengthening)(Strengthening)(Strengthening)(Strengthening)(Strengthening)
Crackingload(kN)FlexureShear(2)(3)13.412.614.014.112.913.613.712.412.812.213.5
36.034.536.337.540.635.734.334.338.238.037.8
Yieldload(kN)(4)81.0–79.281.280.079.080.180.681.381.081.0
Ultimateload(kN)(5)90.455.381.079.783.679.980.280.188.687.584.7
Yielddisp.(mm)(6)23.5–25.224.924.822.822.225.122.020.723.5
Ultimatedisp.(mm)(7)84.920.550.433.076.040.733.546.093.788.067.9
Stiffnessatyield(kN/mm)(8)3.45–3.143.263.233.473.603.213.693.913.44
Ductilityratio(9)3.61–2.001.333.061.791.511.834.264.252.89
Failuremodeatultimate(10)FlexureShearShearShearFlexureShearShearShearFlexureFlexureShear
withoutreachingits exuralcapacity.Twoshearcracksdevelopedintheleftshearspan.Beam-2carried39%lessultimateloadthanBeam-1.
Flexuralcracksofspecimensstrengthenedwithsteelstrapspropagatedasobliquecracksbetweenthesteelstrapsalongtheshearspanwithincreasingload.Shearcracksreachedtothesteelstrapsataloadlevelof55%oftheultimatestrengthofthespecimens.Attheseloadslevelspropagationoftheshearcrackswasrestrictedbythesteelstrapsandcracksdidnotpassunderthesteelstraps.Someshearcracksfollowedtheedgeofthesteelstrapsandpropagatedtothebeam’stop.Thelongitudinaltensionreinforcementofallspecimensyielded.Noneofthesteelmembersseparatedfromthewebsidesofthespecimensbeforetheyieldloadwasreached.Afteryielding,thearrangementofthesteelmembersdeterminedthebehaviorofthespecimens.Theendsofthesteelstrapsseparatedfromthesidesofthespecimensatdifferentductilityratiosafteryielding.Atthesametime,shearcracksstartedtopropagatequicklyandpassedunderthesteelstraps.Atthispoint exuralbehaviorsofthespecimenceased,andthespecimencollapsedinshearbecausecriticalshearcrackspropagatedalongoneoftheshearspans.NoneofthesteelstrapsofBeam-5thatwasstrengthenedwith40mmspacedsteelstrapsseparatedfromthebeamsurface,andthespecimenshowedfullyductile exuralbehavior.Beam-5failedbecauseofcrushingoftheconcreteinthecompressionregion.Beam-4andBeam-7whichwerestrengthenedwith“L”shapedsteelstrapsshowedthelowestductility.Bothspecimenscollapsedinshearduetosuddenseparationofthelegsofthe“L”shapedsteelstrapsthatwerebondedtotheundersidesofthe angesofthebeams.
Beam-9strengthenedbybondingasteelplatealongthewholeshearspanandBeam-10strengthenedbybondingadjacentsteelplatesshowedductile exuralbehavior.Bothofthespecimensfailedduetocrushingoftheconcreteinthecompressionregionatmid-span(Figs.7and8).Shearcrackmeasurementsthatweretakenfrombothofthespecimensshowedthatwidthsoftheirshearcrackswereapproximately50%lessthanthewidthofthecontrolmember’sshearcracks.ShearcracksofBeam-11,strengthenedwithonesteelplatewithopenings,propagatedtothebeam’stop ange,andthespecimencollapsedinshear.Thesteelplatebondedtotherightshearspanbuckledonbothsidesof
粘钢加固钢筋混凝土梁斜截面
S.Altinetal./EngineeringStructures27(2005)781–791
787
Fig.5.Failuremodesofspecimens.
thebeam.Ingeneral,therewerefewershearcracksforstrengthenedspecimensthanforthecontrolspecimen,andthestrengthenedspecimenscollapsedduetopropagationofonemainshearcrack.
3.2.Load–displacementbehavior
Load–displacementrelationshipsforthespecimensareshowninFigs.9–11.Allspecimensshowedthesamestiffnessatyielding.Thesecantstiffnessesofthespecimenswerecalculatedbyusingtheslopeofthelinesthatconnectedtheload–displacementcurveoriginandtheyieldpoint.Strengthenedspecimensallshowedapproximatelythesamedisplacementandloadvaluesatyield.AscanbeseenfromTable3,thecalculatedsecantstiffnesseswerecloseto
each
Fig.6.Typicalexamplesofcrackwidthmeasurements.
otherforallspecimens.Theaveragesecantstiffnessofthespecimenswas3.44kN/mmatyield.
AscanbeseenfromFig.9,thespacingofthesteelstrapswasasigni cantparameteraffectingtheultimateloadcarryingcapacity,displacementcapacityandfailuremodeofthespecimen.Beam-3andBeam-4carried11%lessloadthanthecontrolmemberultimately.Thespecimenshad41%and61%lessdisplacementcapacitythanthecontrolspecimen,respectively.Ofthespecimensstrengthenedwithnarrowsteelstraps,onlyBeam-5showedductile exuralbehavior.Beam-5behavedsimilarlytothecontrolmember,
粘钢加固钢筋混凝土梁斜截面
788S.Altinetal./EngineeringStructures27(2005)
781–791
Fig.7.Beam-9after
failure.
Fig.8.Beam-10after
failure.
Fig.9.Load–displacementcurvesofspecimensstrengthenedwithnarrowsteelstraps.
whentheultimateloadcarryingcapacity,failuremodeanddisplacementcapacityaretakenintoaccount.AscanbeseenfromFig.10,theultimateloadanddisplacementcapacitiesforBeam-6,Beam-7andBeam-8thatwerestrengthenedwithwidesteelstrapsweresigni cantlylowerthanthecorrespondingquantitiesforthecontrolmember.Afteryielding,Beam-4andBeam-7thatwere
strengthened
Fig.10.Load–displacementcurvesofspecimensstrengthenedwithwidesteel
straps.
Fig.11.Load–displacementcurvesofspecimensstrengthenedwithsteelplates.
with“L”shapedsteelstrapslostloadsuddenly,whentheshortlegsof“L”separatedfromtheconcretesurface.Attheultimateloadbothspecimensreachedapproximately60%lessdisplacementthanthecontrolspecimen.AscanbeseenfromFig.11,specimensthatwerestrengthenedwithsteelplatesalongthewholeshearspanshowedverysimilarload–displacementbehaviortothecontrolspecimen.Beam-9andBeam-10hadslightlymoreductilitythanthecontrolspecimen.Beam-11hadtheleastultimateductilityofallspecimensstrengthenedwithsteelplatesalongthewholeshearspan.Beam-11had20%lessultimatedisplacementthanthecontrolspecimen.3.3.Ductility
DisplacementductilityratiosofthespecimensarepresentedinTable3.Thatratiowascalculatedasthedisplacementatthemaximumloaddividedbythatattheyieldload.Beam-9andBeam-10thatwerestrengthenedwithsteelplatesalongthewholeshearspanhadmore
粘钢加固钢筋混凝土梁斜截面
S.Altinetal./EngineeringStructures27(2005)781–791
Table4
ComparisonoftestandcalculatedresultsSpecimen#(1)Beam-1Beam-2Beam-3Beam-4Beam-5Beam-6Beam-7Beam-8Beam-9Beam-10Beam-11
(Control)(Strengthening)(Strengthening)(Strengthening)(Strengthening)(Strengthening)(Strengthening)(Strengthening)(Strengthening)(Strengthening)
ExperimentalstrengthsMU(kNm)(2)130.581.5117.2113.1122.2115.7113.4118.8129.9127.9124.6
VU(kN)(3)90.455.381.079.783.679.980.280.188.687.584.7
VU(Beam1)
VU
VU(Beam2)
VU
789
CalculatedstrengthsMU(kNm)(6)121.9122.6122.8122.4122.5122.5121.9122.0122.4122.4122.3
VU(kN)(7)104.653.586.185.9101.7101.7101.2117.0118.1117.6117.9
(4)1.000.610.900.880.930.880.890.890.980.970.94
(5)1.631.001.461.441.511.441.451.451.601.581.53
Experimental/calculatedMexp./Mcal.(8)1.070.660.950.921.000.940.930.971.061.051.02
Vexp./Vcal.(9)0.861.040.940.930.820.790.790.680.750.740.72
ductilitythanBeam-1.TheductilityratioofBeam-11was32%lessthanBeam-9’sductilityratio.Beam-4andBeam-7thatwerestrengthenedwith“L”shapedsteelstrapshadthelowestdisplacementductilityratiosamongthestrengthenedspecimens.
Beam-3andBeam-5thatwerestrengthenedwithnarrowsteelstrapsshowed44%and15%lessductilitythanBeam-1,respectively.Beam-6andBeam-8thatwerestrengthenedwithwidesteelstrapshadapproximately50%lessductilitythanBeam-1.Thebehaviorofthespecimensthatwerestrengthenedwithsteelstrapsshowedthatthespacingofthesteelstrapswascloselyrelatedtotheductilityratio.3.4.Strength
Effectsofthestrengtheningtechniqueonthespecimens’ultimatestrengthsaresummarizedinTable4.Ratiosoftheultimatestrengthofstrengthenedspecimenstothecontrolmember’sultimatestrengthwerebetween0.88and0.98.TheultimatestrengthsofBeam-4andBeam-7thatwerestrengthenedwith“L”shapedsteelstrapswereobtainedas12%lessthantheultimatestrengthofthecontrolmember.Thelargestultimatestrengthswereforthespecimensstrengthenedwithsteelplatesalongthewholeshearspan.TheratiosoftheultimatestrengthsofBeam-9,Beam-10andBeam-11totheultimatestrengthofthecontrolspecimenwere0.98,0.97and0.94,respectively.ThelargestincreaseinstrengthattheultimatestagewasforBeam-5forthespecimensstrengthenedwithsteelstraps.TheratiooftheultimatestrengthofBeam-5tothecontrolmember’sultimatestrengthwas0.93.
parisonofexperimentalandanalyticalresultsComparisonsofcalculatedandexperimentalstrengthsarepresentedinTable4.Forcalculationsofthemomentcapacitiesofthespecimens,themaximumconcretestrainwastakenas0.003.Calculated exuralcapacitiesagreed
wellwiththeexperimentalresultsforallspecimensexceptforBeam-2thatfailedinshear.
Thestrengthenedspecimens’shearforcecapacities(VU)werecalculatedbysummingtheshearforcecarriedbyconcrete(VC),theshearforcecarriedbytheshearreinforcements(VS)andtheshearforcecarriedbythebondedsteelmembers(VP)(Eq.(1)):VU=VC+VS+VPwhere:VU:VC:VS:VP:
Shearcapacity
Shearforcecarriedbyconcrete
ShearforcecarriedbyshearreinforcementsShearforcecarriedbysteelplatesorstraps.
(1)
Eqs.(2)and(3)wereusedforcalculatingtheshearloadcarriedbythesteelstrapsandplates,respectively[8].TheshearforcecarriedbytheconcretewascalculatedaccordingtoACIregulations[13]:
tShS
2τave2d
(2)VP=
SPwhere:VP:Sp:ts:hs:d:τave:
ShearforcecarriedbysteelstrapsSpacingofsteelstrapsWidthofsteelstrapsHeightofsteelstraps
EffectiveheightofcrosssectionAverageshearstressofepoxy.
(3)
dhW
VP=2τave
2where:VP:hW:d:τave:
ShearforcecarriedbysteelplatesHeightofsteelplates
EffectiveheightofcrosssectionAverageshearstressofepoxy.
粘钢加固钢筋混凝土梁斜截面
790S.Altinetal./EngineeringStructures27(2005)781–791
Whilecalculatingtheshearloadcarryingcapacityofsteelplates,thefailureoftheconnectionbetweenconcreteandsteelplateswasassumedtobestartedbyexceedingtheshearstrengthoftheepoxy.Asaresult,thesesteelplatespeeledfromtheconcretesurfaces.Theconcretestrengthofthespecimenswaschosensuchthatthefailureoftheconcretewasprevented,andthecrosssectionofthesteelplateswaschosensuchthattheyieldingofthesteelwasprevented.Asaresultofthesechoices,thefailureofthespecimenoccurreduponexceedingtheshearstrengthoftheepoxy.Theshearforcecarriedbythesteelmemberswasassumedtodependonthestrengthofpeelingoftheepoxyfromtheconcretesurface.VPwascalculatedbyassumingthatthepeelingofthesteelstrapsoccurredwhenthemaximumshearstressτmaxattheendsofthestrapsreachedtheinterfaceshearresistanceτult.Themanufacturer’sguaranteedultimateshearstressfortheepoxywas3.0MPa.Thesheardistributionoftheepoxyundersteelplateswassimilartothebondingstressofthereinforcementanchorageintheconcrete.Thisstresswasdeterminedbyaveragingalongthesteelplates.Asaresult,theaverageshearstresswastakenasτ=0.8MPaforspecimensthatwereavestrengthened=1.2MPaandτavewithsteelstrapsandspecimensthatwerestrengthenedwithsteelplates,respectively[8].
Thecalculatedshearstrengthswerelargerthanthemeasuredshearstrengthsforallspecimens.TheratiosofthemeasuredshearstrengthtothecalculatedshearstrengthforBeam-3,Beam-4andBeam-5thatwerestrengthenedwithsteelstrapsrangedbetween0.82and0.94.Thecalculatedshearcapacitieswere25%largerthanthemeasuredvaluesonaverageforBeam-6,Beam-7andBeam-8thatwerestrengthenedwithwidesteelstraps.Thecalculatedshearcapacitieswere26%largerthanthemeasuredvaluesonaverageforBeam-9,Beam-10andBeam-11thatwerestrengthenedwithsteelplates.
Calculatedshearstrengthslargerthanthemeasuredonesweretobeexpectedbecausewhencalculatingtheshearforcescarriedbythesteelmembers,allthebondingsurfacesweretakenasfullyeffective.But,intherealcase,eventhoughallprecautionsweretakenandbestpracticewasfollowed,uniformbondingwasnotobtainedforthesteelandtheconcreteoverthefullbondingsurface.Soallbondedinterfacesdidnotcarrytheshearforceeffectively.
4.Conclusion
Inthisstudy,strengtheningofRCbeamsagainstshearbyusingepoxybondedsteelplateswithdifferentarrangementswasinvestigated.Thesuccessofthestrengtheningtechniquewascloselyrelatedtothequalityoftheconstruction.Rougheningoftheconcreteandsteelsurfaces,cleaningofthesesurfacesandcomplyingcompletelywiththespeci edepoxyapplicationprocedureswascrucialforsuccessfulbonding.Generalresultsobtainedfromtheexperimentalresearchareasfollows:
Allsteelmembertypesbondedexternallyhadimprovedbeamstrength,stiffnessandductility.
Strengthenedspecimensshowedsimilarbehaviortoacontrolspecimenupto exuralyield.Specimensreachedthe exuralyieldstrengthwiththesamestiffnessfornearlythesameloadanddisplacement.
Thetypeofsteelmemberanditsarrangementonthebeamwereamongtheeffectiveparametersdirectingtheductilitybehavioranddeterminingthefailuremode.Thedisplacementductilityratiowasincreasedwhenthespacingofthesteelstrapswasdecreased.Increaseinthebondingareaontheshearspanreducedthepropagationofshearcrackssigni cantly.Specimensthatwerestrengthenedwith“L”typesteelstrapshadthelowestductilityratioamongthespecimens.
Specimensthatwerestrengthenedwithsteelplatesshowedstrengthandductilityclosetothoseofthecontrolmember.Steelplatespreventedpropagationofshearcracks,clearly.Insteadofusingonelargesteelplatealongthewholeoftheshearspan,segmentingthesteelplatesandthenbondingthemadjacenttoeachothertothebeam’sshearspanshowedsuccessfulresults.
Thefollowingcanbesuggestedforfutureworkonthissubject:thestrengtheningtechniqueshouldbeinvestigatedundercyclicreversalloads;thebehaviorsofthespecimensshouldberesearchedunderlongtermloads;andanalyticalmethodsforcalculatingshearcapacitiesofstrengthenedbeamsshouldbeimproved.
Conversionfactors1mm=0.039in.1mm2=0.00152in.21kN=0.2248kips1MPa=145psi
Symbolsa:Shearspan
d:Effectiveheightofthecrosssectionfc:Compressionstrengthofconcretefsy:Yieldstrengthofreinforcement
fspy:YieldstrengthofsteelstrapsandplateshS,hW:Steelstrapheight,steelplateheightL:Restraintspanofbeam
Mcal.:CalculatedmomentcapacitiesofspecimensMexp.:ExperimentalmomentcapacitiesofspecimensMU:SpecimenmomentcapacitiesVC:ShearforcecarriedbyconcreteVU:Shearcapacitiesofspecimens
VS:ShearforcecarriedbyshearreinforcementsVP:ShearforcecarriedbysteelstrapsorplatesSp:
Steelstrapspacing
粘钢加固钢筋混凝土梁斜截面
S.Altinetal./EngineeringStructures27(2005)781–791791
ts:
SteelstrapwidthδDisplacements
ε1,...,δ11:CU:Maximumstrainofconcreteφρ:Diameterofreinforcementsw:
Ratioofshearreinforcements
References
[1]SubediNK,BaglinPS.Externalplatereinforcementforconcrete
beams.JournalofStructuralEngineering1998;124(12):1490–5.
[2]ZirabaYN,BaluchMH,BasunbulIA,SharifAM,AzadAK,
AlSulaimaniGJ.Guidelinestowardthedesignofreinforcedconcretebeamswithexternalplates.ACIStructuralJournal1994;91(6):639–46.
[3]SubediNK,BaglinPS.Platereinforcedconcretebeams:Experimental
work.EngineeringStructures1999;21:232–54.
[4]BaluchMH,ZirabaYN,AzadAK,SharifAM,AlsulaimaniGJ,
BasunbulIA.ShearstrengthofplatedRCbeams.MagazineofConcreteResearch1995;47(173):369–74.
[5]SwamyRN,JonesR,CharifA.Theeffectofexternalplate
reinforcementonthestrengtheningofstructurallydamagedRCbeams.TheStructuralEngineer1989;67(3):45–56.
[6]OehlersDJ,MohamedAliMS,LuoW.Upgradingcontinuous
reinforcedconcretebeamsbygluingsteelplatestotheirtensionfaces.JournalofStructuralEngineering1998;124(3):224–32.
[7]AdhikaryBB,MutsuyoshiH,SanoM.Shearstrengtheningreinforced
concretebeamsusingsteelplatesbondedonbeamweb:Experimentsandanalysis.ConstructionandBuildingMaterials2000;14:237–44.[8]SharifA,AlsulaimaniGJ,BasunbulIA,BaluchMH,HusainM.
Strengtheningofshear-damagedRCbeamsbyexternalbondingofsteelplates.MagazineofConcreteResearch1994;47(173):329–34.[9]Ye¸silyurtMA.Shearstrengtheningofreinforcedconcretebeamsby
usingexternallybondedLshapedsteelplates.MasterofScienceDissertation,GaziUniversity;September2001.p.82[InTurkish].[10]DuyanU.StrengtheningofRCbeamsforshearbythemethodof
bondingsteelplates.MasterofScienceDissertation,GaziUniversity;March2002.p.74[InTurkish].
[11]ErsoyE.ArrangementsofsteelplatesbondedexternallytoRCbeams
forstrengtheningagainstshear.MasterofScienceDissertation,GaziUniversity;June2002.p.80[InTurkish].
[12]ISO8502-4,InternationalStandardOf ce.Preparationofsteel
substratesbeforeapplicationofpaintandrelatedproducts—testfortheassessmentofsurfacecleanliness—Part4:Guidanceontheestimationoftheprobabilityofcondensationpriortopaintapplication.1993.
[13]ACI,AmericanConcreteInstitute,Committee318.Buildingcode
requirementsforstructuralconcrete(ACI318-95)andCommentary(ACI318-R-95).Michigan;1995.
- 1Governance reform, external support, and environmental regulation enforcement in rural China
- 2Capacity gain of an uplink-synchronous WCDMA system under ch
- 3RC电路充放电研究
- 4Modeling and finite element analysis of rod and wire steel r
- 5RC500-RC522-直接匹配电路及线圈天线的设计
- 6Analysis of Las Vegas Strip casino hotel capacity--- an inve
- 7BGA、TAB、零件、封装及Bonding制程
- 8RC500-RC522-直接匹配电路及线圈天线的设计
- 9advantage and disadvantage to using science techonology for
- 10Using Prosody in Automatic Segmentation of Speech
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Improving
- capacity
- existing
- external
- bonding
- plates
- shear
- beams
- using
- steel
- RC
- 外语教学法主要流派及其特点
- 农药敌敌畏对铜绿微囊藻生长的影响
- 万科景观标准图谱(铺装类)
- 基于曲柄压力机中曲柄滑块机构的运动分析及其研究
- 北师大版小学五年级数学上册期末复习资料大全
- 吉林省长白山高中数学 第一章同步检测112 新人教A版必修5
- 不锈钢钝化工艺的选择
- 2013年秋季设备大检查自查总结
- 制度竞争路径依靠与财务报告架构的演化.doc
- 07第八章有色金属及其合金
- 内蒙古锡林郭勒盟2019_2020学年高一生物上学期第一次月考试题
- 杭州事业编考试:2016浙江科技信息研究院、科技发展战略研究院招聘5人公告
- 常见保温材料导热蓄热系数
- 大力发展碳汇林业 打造生态平桥
- 艺术概论 王建宏版(总结)
- Fhaufi农学专业认识实习大纲
- 嘉兴市单季晚粳稻主栽品种的性状变化分析
- 中建协将召开上海世博会工程建筑节能与技术创新经验交流暨中国建筑业协会专家会议
- 中国石油市场现状分析与盈利战略研究报告(2015-2019)
- 精选工会积极分子申请材料(最新)