杂化轨道理论

更新时间:2024-04-20 09:52:02 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

化学竞赛辅导讲义稿《共价键与分子结构》

共价键与分子结构

? 共价键理论 1、共价键的成键原理

价键的形成可以看作是原子轨道重叠或电子配对的结果。两个原子如果都有未成键的电子,并且自旋方向相反,就能配对,也就是原子轨道可重叠形成共价键。 重叠部分越大,所形成的共价键就越牢固。(键长越短,键能越大) 由一对电子形成的共价键叫做单键,如果原子各有二个或三个未成键的电子,构成的共价键则是双键或叁键。

这一理论最早是由路易斯(1916年,G.C.Lewis,美国化学家),所以我们通常所说电子式又称为路易斯结构式。

在路易斯结构式中,线段的意义,如前所述,代表共用电子对,仍称“单键”、“双键”和“叁键”(代表1,2,3对共用电子对)。成对的小黑点则代表未用来形成化学键的“价层电子对”,叫做“孤对电子对”(有时分子里有单个的非共用电子,如NO2)。

对于无机物,写路易所结构式就要困难得多。但大多数情况下,“八偶律”仍是起作用的。从上面已经写出的路易斯结构式里我们很容易发现这一点。但有时八偶律不起作用。主要有两种例外。

①缺电子结构——价电子,包括形成共价键的共用电子对之内,少于8电子的,称为缺电子结构。例如,第3主族的硼和铝,中性原子只有3个价电子,若一个硼原子和其它原予形成3个共用电子对,也只有6个电子,这就是缺电子结构。典型的例子有BCl3、AlCl3(这些化学式是分子式,即代表一个分子的结构)。缺电子结构的分子有接受其它原子的孤对电予形成配价键的能力。例如: BCl3+:NH3=Cl3B←NH3

②多电子结构例如,PCl5里的磷呈5价,氯呈1价。中性磷原予的价电子数为5。在PCl5磷原子的周围的电子数为10,超过8。这种例外只有第3周期或更高周期的元素的原子才有可能出现。

2、共价键的特性 ①饱和性。

当原子的未成键的一个电子与某原子的一个电子配对之后,就不能再和第三个电子配对了,这就是共价键的饱和性。 ②方向性。

成键时,两个电子的原子轨道发生重叠,重叠部分的大小决定共价键的牢固程度。p、d、f、有一定的方向性。 3、共价键的键型。

从电子云重叠的方式来看,共价键可分为σ键和π键。 ①σ键

当原子之间只有一对电子时,这对电子形成的化学键为单键。单键是σ键,σ键是成键的两个原子的轨道沿着两核连线方向“头碰头”进行重叠而形成的共价键。s与s轨道,s与p轨道,p与p轨道可以形成σ键。σ键的特点是重叠的电子一在两核连线上,受原子核束缚力较大,重叠程度也大,比较牢固。

②π键

π键是成健原子的p轨道电子云“肩并肩”进行重叠而形成的共价键。一般来说,π健不能独立存在,总是和σ键一起形成双键或叁键。π键的特点是重叠的电子云分布在两核连线的两方,受原子核束缚力小,电子云重叠程度要比σ键小得多,所以π键不如σ键牢固。但是π键电子云受原子束缚力小,电子的能量较高,易活动,其化学性质较σ键活泼。

电子配对法阐明了共价键的本质、特征和类型,但在解释多原子分子的几何形状(或空间构型)方面遇到了困难。例如C原子只有两个成单电子,但能形成稳定的CH4分子,所以电子配对法不能说明甲烷分子为什么是正四面体构型的分子。1931年鲍林提出杂化轨道理论,满意地解释了许多多原子分子的空间构型。 二、杂化轨道理论。

形成分子时,由于原子间的相互影响,使同一原子中能量相近的不同类型原子轨道,例如ns轨道与np轨道,发生混合,重新组合为一组新轨道.这些新轨道称为杂化轨道。杂化轨道的数目等于参与杂化的原子轨道数目。

杂化有多种方式,视参加杂化的原子以及形成的分子不同而不同。

①sp3杂化——这是原子最外层的1个s轨道和3个p轨道发生的杂化。杂化以后形成四个等价的sp3杂化轨道。碳原子在与氢原子形成甲烷分子时就发生了sp3杂化。发生杂化时,碳原子的2s轨道和3个2p轨道发生混杂,形成4个能量相等的杂化轨道,碳原子最外层的4个电子分别占据1个杂化轨道。

杂化轨道的形状也可以说介于s轨道和p轨道之间。

四个sp3杂化轨道在空间均匀对称地分布——以碳原子核为中心,伸向正四面体的四个顶点。这四个杂化轨道的未成对电子分别与氢原子的1s电子配对成键,这就形成了甲烷分子。

杂化轨道理论不仅说明了碳原子最外层虽然只有2个未成对电子却可以与4个氢原子形成共价键,而且很好地说明了甲烷分子的正四面体结构。 在形成H2O、NH3分子时,O、N原子实际上也发生了sp3杂化。与C原子杂化不同的是N、O原子最外层电子数分别为5个和6个,因而四个sp3杂化轨道里必然分别有1个和2个轨道排布了两个电子。这种已经自配对的电子被称为孤对电子。N和O的未成对电子分别与H原子的1s电子结合就形成了NH3分子和H2O分子。

孤对电子相对来说带有较多的负电荷。受孤对电子云的排斥,NH3分子中N-H键间的夹角被压缩为107o,H2O分子中O—H键间的夹角被压缩到104o401。

含有孤对电子的杂化被称为不等性杂化。NH3和H2O分子中N和O都发生了不等性sp3杂化。

②sp2杂化—BCl3

这是原子最外层的一个s轨道和两个p轨道发生的杂化。杂化后形成三个等价的sp2轨道。B原子最外层的3个电子分别占据1个杂化轨道。在空间以B原子为中心3个sp2轨道伸向平面三角形的三个顶点。所以sp2杂化轨道夹角为1200。 此外SO3中的硫原子也是sp2杂化。

③sp杂化——形成CO2分子时,碳原子1个2s轨道与1个2p轨道发生杂化,形成两个sp杂化轨道。两个sp杂化轨道在X轴方向上呈直线排列,未杂化的两个即轨道分别在Y轴方向和Z铀方向垂直于杂化轨道。两个氧原子各以一个2p轨道与碳原子的sp杂化轨道重叠形成σ键。而两个氧原子的另一个未配对的2p轨道分别在Y轴方向和Z轴方向与碳原子的未杂化的2p轨道“肩并肩”重叠形成π键。所以CO2分子中碳、氧之间以双键相结合。

碳原子在形成乙炔(C2H2)时也发生sp杂化,两个碳原子以sp杂化轨道与氢原子结合。两个碳原子的未杂化2p轨道分别在Y轴和Z轴方向重叠形成π键。所以乙炔分子中碳原子

间以叁键相结合。 所以sp杂化轨道夹角为1800

④sp3d杂化——磷原子在形成PCl5分子时,除最外层s、p轨道参与杂化外,其3d轨道也有1个参加了杂化,称为sp3d杂化。杂化后形成5个杂化轨道,其中各有1个未成对电子。5个杂化轨道指向三角双锥的5个顶点,并与氯原子配对成键。

可以看出,杂化方式与分子的空间结构形状有关。一般地说,发生sp3杂化时,形成的分子是正四面体,杂化原子处于中心;发生不等性sp3杂化时,如有一对孤对电子,则分子呈三角锥形,杂化原子处于锥顶。如果有2对孤对电子,则分子呈V型;发生sp2杂化时,分子呈平面三角型,杂化原子处于正三角形中心,未杂化的p电子通常形成π键(构成双键);发生sp杂化时,分子呈直线型,未杂化的p电子通常也参与形成π键(构成双键或叁键);发生sp3d杂化时,分子是三角双锥形。杂化原子处于双三角雄的中心。sp3d2正八面体。 练习:

1、氯化亚砜(SOCl2)是一种很重要的化学试剂,可以作为氯化剂和脱水剂。氯化亚砜分子的几何构型是 ;中心原子采取 杂化方式,是 (等性、不等性)杂化。 三角锥形 sp2 不等性

2、磷的氯化物有PCl3和PCl5,氮的氯化物只有NCl3,为什么没有NCl5? N原子最外层无d轨道,不能发生sp3d杂化,故无NCl5。 3、C2H4的杂化方式?共价键的键型有哪些?

4、冰晶石(Na3AlF6)AlF63-配离子中心离子的杂化轨道类型、配离子空间构型 三、价层电子对互斥理论(VSEPR)

现代化学的重要基础之一是分子(包括带电荷的离子)的立体结构。 例如,实验测出,SO3分子是呈平面结构的,O—S—O的夹角等于120o,而 SO32-离子却是呈三角锥体,硫是锥项,三个氧原子是三个锥角,象一架撑开的照相用的三角架。又例如SO2的三个原子不在一条直线上,而CO2却是直线分子等等。早在1940年,Sidgwick和Powell就在总结测定结果的基础上提出了一种简单的理论(更确切地说,是一种模型),用以预测简单分子或离子的立体结构。这种理论后经Giliespie和Nyholm在50年代加以发展,并称之为VSEPR(Valence Shell Electron Pair Repulsion),即价层电子对互斥理论。我们不难学会用这种理论来预测和理解分子或离子的立体结构,并用来进一步确定分子或离子的结构。当然我们不应忘记,这一理论绝不可能代替实验测定,也不可能没有例外。不过统计表明,对于我们经常遇到的分子或离子,用这一理论来预言其结构,很少发现例外。作为一种不需要任何计算的简单模型,它应当说是很有价值的。

? 价层电子对互斥理论的基本要点:

1、在AXm型分子中,中心原子了A的周围配置的原子或原子团的几何构型,主要决定与中心价电子层中电子对(包括成键电子对和未成键的孤对电子对)的互相排斥作用,分子的几何构型总是采取电子对相互排斥作用最小的那种结构。

2、在AXm型分子中,A与X之间通过两对或三对电子(即通过双键或叁键)结合而成,则价层电子对互斥理论把双键或叁键作为一个电子对。 3、价层电子对之间相互排斥作用大小的一般规律: 孤对-孤对>孤对-键对>键对-键对

(二)推断分子或离子的空间构型的具体步骤:

1、确定中心原子A价层电子对数目。中心原子A的价电子数与配位体X提供共用的电子数之和的一半,就是中心原子A价层电子对的数目。例如BF3分子,B原子有3个价电子,三个F原子各提供一个电子,共6个电子,所以B原子价层电子对数为3。计算时注意:(ⅰ)氧族元素(ⅥA族)原子作为配位原子时,可认为不提供电子(如氧原子有6个价电子,作为配位原子时,可认为它从中心原子接受一对电子达到8电子结构),但作为中心原子时,认为它提供所有的6个价电子。(ⅱ)如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。如PO43-离子中P原子的价层电子数应加上3,而NH4+离子中N原子的价层电子数则应减去1。(ⅲ)如果价层电子数出现奇数电子,可把这个单电子当作电子对看待。如NO2分子中N原子有 5个价电子,O原子不提供电子。因此中心原子N价层电子总数为5,

当作3对电子看待。 练习:

? CH4、NH3、H2O、SO3、NO的电子对数。

2、CO32-、SO3、CCl4、SO42-、PO43-、IO65-的电子对数。

2、确定价层电子对的空间构型。由于价层电子对之间的相互排斥作用,它们趋向于尽可能的相互远离。于是价层电子对的空间构型与价层电子对数目的关系如下表所示:

这样已知价层电子对的数目,就可及确定它们的空间构型。

3、分子空间构型的确定。价层电子对有成键电子对和孤电子对之分。中心原子周围配位原子(或原子团)数,就是健对数,价层电子对的总数减去键对数,得孤对数。根据键对数和孤对敌,可以确定相应的较稳定的分子几何构型,如下表所示: 电子对电子对的空成键电子孤电子 电子对的 分子的

实 例

数 目 间构型 对数 对数 排列方式 空间构型

BeCl2

2 2 0 直线 直线 CO2

BF3

3 0 三角形

SO3 3 三角形

SnBr2

2 1 V—形

PbCl2

4

0

4

四面体

3

1

2

2

5

0

4

5

三角

双锥

3

2

2

3

直线形

XeF2

1

变形 四面体

SF4

三角双锥

PCl5

V—形 三角锥 四面体

CH4 CCl4 NH3 PCl3

H2O

T—形 BrF3

6 0

八面体 SF6

6 八面体 5 1

四角锥 IF5

4 2

正方形 XeF4

利用上表判断分子几何构型时应注意,如果在价层电对中出现孤电子对时,价层电子对空间构型还与下列斥力顺序有关:孤对—孤对>孤对—键对>键对—键对 因此,价层电子对空间构型为正三角形和正四面体时,孤电子对的存在会改变键对电子的分布方向。所以SnBr2的键角应小于120o,NH3、H2O分子的键角应小于109o281。

对于分子中有双键、叁键等多重键时,使用价层电子对理论判断其分子构型时,双键的两对电子和叁键的三对电子只能作为一对电子来处理。或者说在确定中心原子的价电子层电子对总数时,不包括π键电子。

使用价层电子对互斥理论我们可以判断在杂化理论中提到的所有只含一个中心原子的分子的结构,当然用这一理论也可以判断我们常遇到的所有单中心分子或离子的结构。 练习:

? IO65-和IO4-的空间构型和中心原子的杂化类型分别为

2、利用杂化轨道理论、价层电子互斥理论和等电子体原理分析分子的空间结构。判断下列分子或离子的空间构型

PCl4+ AlF63- XeF6 NO3- NO2+ IO65-

3、高氙酸盐(XeO64-)Xe的杂化类型与XeO64-离子的空间构型 4、O3的空间构型。

(三)等电子原理及其运用

具有VSEPR理论的相同通式AXmEn(A表示中心原子,X表示配位原子,下标m表示配位原子的个数,E表示中心原子的孤对电子对,下标n表示电子对数),又具有相同的价电子数的分子或离子具有相同的结构,这个原理称为“等电子体原理”。 如:1、N2、CO、CN- 2、NO3-、CO32-、SO3 3、CCl4、SO42-、PO43-

练习:HN3称为叠氮酸,N3-是类卤离子。 1、N3-与 分子互为等电子体,写出N3-的空间构型和结构式 杂化方式和成键方式。

2.HN3与银盐作用,可得一种不溶于水的白色固体,写出化学方程式。 综合练习

【练习1】PCl5是一种白色固体,加热到160℃不经过液态阶段就变成蒸气,测得180℃下的蒸气密度(折合成标准状况)为9.3g/L,极性为零,P-Cl键长为204pm和211pm两种。继续加热到250℃时测得压力为计算值的两倍。PCl5在加压下于148℃液化,形成一种能导电的熔体,测得P-Cl的键长为198pm和206pm两种。(P、Cl相对原子质量为31.0、35.5)

回答如下问题:

①180℃下,PCl5蒸气中存在什么分子?为什么?写出分子式,画出立体结构。 ②在250℃下PCl5蒸气中存在什么分子?为什么?写出分子式,画出立体结构。 ③PCl5熔体为什么能导电?用最简洁的方式作出解释。

④PBr5气态分子结构与PCl5相似,它的熔体也能导电,但经测定其中只存在一种P-Br键长。PBr5熔体为什么导电?用最简洁的形式作出解释。 1.① 9.3×22.4=208.3g/mol PCl5相对分子质量31.0+35.5×5=208.5

蒸气组成为PCl5

呈三角双锥体(如图6-3所示)

三角双锥分子无极性,有两种键长。 ② PCl5 = PCl3 + Cl2

氯分子Cl-Cl;三氯化磷分子(如图6-4所示)

压力为计算值的两倍表明1mol PCl5完全分解成1mol PCl3和1mol Cl2, 共2mol。气体由等摩尔PCl3和Cl2组成。 ③ 2PCl5==PCl4+ + PCl6-

含PCl4+和PCl6-两种离子,前者为四面体,后者为八面体(如图6-5所示),因此前者只有一种键长,后者也只有一种键长,加起来有两种键长。 ④ PBr5==PBr4+ + Br-,PBr4+ 结构同PCl4+

[练习2]1.尽管锡能生成四氯化物——SnCl4,用价层电子对互斥理论(VSEPR)分析其立体结构。

2.用价层电子对互斥理论(VSEPR)预言SnCl5-最可能的是哪一种结构 SnCl4+Cl-→SnCl5- ; SnCl5-+Cl-→SnCl62-

3.用价层电子对互斥理论(VSEPR)预言SnCl62-最可能的是哪一种结构

本文来源:https://www.bwwdw.com/article/bctp.html

Top