数学高考知识点总结整理(详细篇)

更新时间:2023-04-13 20:03:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

数学高考知识点总结整理(详细篇)

高中数学第一章-集合

考试内容:

集合、子集、补集、交集、并集.

逻辑联结词.四种命题.充分条件和必要条件.

考试要求:

(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.

(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.

§01. 集合与简易逻辑 知识要点

一、知识结构:

本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:

二、知识回顾:

(一) 集合

1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.

2. 集合的表示法:列举法、描述法、图形表示法.

集合元素的特征:确定性、互异性、无序性.

集合的性质:

①任何一个集合是它本身的子集,记为A A ?;

②空集是任何集合的子集,记为A ?φ;

③空集是任何非空集合的真子集;

如果B A ?,同时A B ?,那么A = B.

如果C A C B B A ???,那么,.

[注]:①Z = {整数}(√) Z ={全体整数} (3)

②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(3)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.

④若集合A =集合B ,则C B A = ?, C A B = ? C S (C A B )= D ( 注 :C A B = ?).

3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集.

②{(x ,y )|xy <0,x ∈R ,y ∈R }二、四象限的点集.

③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集.

[注]:①对方程组解的集合应是点集.

例: ?

??=-=+1323y x y x 解的集合{(2,1)}. ②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =?)

4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.

5. ?①一个命题的否命题为真,它的逆命题一定为真. 否命题?逆命题.

②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题.

例:①若325≠≠≠+b a b a 或,则应是真命题.

解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真.

,且21≠≠y x 3≠+y x .

解:逆否:x + y =3

x = 1或y = 2. 21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.

?小范围推出大范围;大范围推不出小范围.

3. 例:若255 x x x 或,?.

4. 集合运算:交、并、补.

{|,}

{|}{,}

A B x x A x B A B x x A x B A x U x A ?∈∈?∈∈?∈? U 交:且并:或补:且C

5. 主要性质和运算律

(1) 包含关系:,,,,

,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ?Φ??????????? C

(2) 等价关系:U A B A B A A B B A B U ??=?=?= C

(3) 集合的运算律:

交换律:.;A B B A A B B A ==

结合律:)()();()(C B A C B A C B A C B A ==

分配律:.)()()();()()(C A B A C B A C A B A C B A ==

0-1律:,,,A A A U A A U A U Φ=ΦΦ===

等幂律:.,A A A A A A ==

求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U

反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )

6. 有限集的元素个数

定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.

基本公式:

(1)()()()()

(2)()()()()()()()

()

card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+ (3) card ( U A )= card(U)- card(A)

(二)含绝对值不等式、一元二次不等式的解法及延伸

1.整式不等式的解法

根轴法(零点分段法)

①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便) ②求根,并在数轴上表示出来;

③由右上方穿线,经过数轴上表示各根的点(为什么?);

④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.

x

(自右向左正负相间)

则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定. 特例① 一元一次不等式ax>b 解的讨论;

2

原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互否互

2.分式不等式的解法

(1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)

()(x g x f ≤0)的形式, (2)转化为整式不等式(组)???≠≥?≥>?>0)(0)()(0)

()(;0)()(0)()(x g x g x f x g x f x g x f x g x f 3.含绝对值不等式的解法 (1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.

(2)定义法:用“零点分区间法”分类讨论.

(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.

4.一元二次方程根的分布

一元二次方程ax 2+bx+c=0(a ≠0)

(1)根的“零分布”:根据判别式和韦达定理分析列式解之.

(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.

(三)简易逻辑

1、命题的定义:可以判断真假的语句叫做命题。

2、逻辑联结词、简单命题与复合命题:

“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。

构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。

3、“或”、 “且”、 “非”的真值判断 (1)“非p ”形式复合命题的真假与F 的真假相反; (2)“p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假; (3)“p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真.

4、四种命题的形式:

原命题:若P 则q ; 逆命题:若q 则p ;

否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。

(1)交换原命题的条件和结论,所得的命题是逆命题;

(2)同时否定原命题的条件和结论,所得的命题是否命题;

(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.

5、四种命题之间的相互关系:

一个命题的真假与其他三个命题的真假有如下三条关系:(原命题?逆否命题)

①、原命题为真,它的逆命题不一定为真。

②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。

6、如果已知p ?q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。

若p ?q 且q ?p,则称p 是q 的充要条件,记为p ?q.

7、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法。

高中数学第二章-函数

考试内容:

映射、函数、函数的单调性、奇偶性.

反函数.互为反函数的函数图像间的关系.

指数概念的扩充.有理指数幂的运算性质.指数函数.

对数.对数的运算性质.对数函数.

函数的应用.

考试要求:

(1)了解映射的概念,理解函数的概念.

(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.

(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.

(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像 和性质.

(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.

(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.

§02. 函数 知识要点

一、本章知识网络结构:

F:A →B

对数函数指数函数

二次函数

二、知识回顾:

(一) 映射与函数

1. 映射与一一映射

2.函数

函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.

3.反函数

反函数的定义

设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到

x=?(y). 若对于y 在C 中的任何一个值,通过x=?(y),x 在A 中都有唯一的值和它对应,那么,x=?(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=?(y) (y ∈C)叫做函数

))((A x x f y ∈=的反函数,记作)(1y f x

-=,习惯上改写成)(1x f y -=

(二)函数的性质

⒈函数的单调性

定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2,

?若当x 1

?若当x 1f(x 2),则说f(x) 在这个区间上是减函数.

若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.

2.函数的奇偶性

正确理解奇、偶函数的定义。必须把握好两个问题:

(1)定义域在数轴上关于原点对称是函数)(x f 为奇

函数或偶函数的必要不充分条件;(2))()(x f x f =-或

)()(x f x f -=-是定义域上的恒等式。

2.奇函数的图象关于原点成中心对称图形,偶函数

的图象关于y 轴成轴对称图形。反之亦真,因此,也

可以利用函数图象的对称性去判断函数的奇偶性。

3.奇函数在对称区间同增同减;偶函数在对称区间增

减性相反.

4.如果)(x f 是偶函数,则|)(|)(x f x f =,反之亦成立。

若奇函数在0=x 时有意义,则0)0(=f 。

7. 奇函数,偶函数:

?偶函数:)()(x f x f =-

设(b a ,)为偶函数上一点,则(b a ,-)也是图象上一点.

偶函数的判定:两个条件同时满足

①定义域一定要关于y 轴对称,例如:12+=x y 在)1,1[-上不是偶函数.

②满足)()(x f x f =-,或0)()(=--x f x f ,若0)(≠x f 时,1)

()

(=-x f x f . ?奇函数:)()(x f x f -=-

设(b a ,)为奇函数上一点,则(b a --,)也是图象上一点. 奇函数的判定:两个条件同时满足

①定义域一定要关于原点对称,例如:3x y =在)1,1[-上不是奇函数. ②满足)()(x f x f -=-,或0)()(=+-x f x f ,若0)(≠x f 时,

1)

()

(-=-x f x f . 8. 对称变换:①y = f (x ))

(轴对称

x f y y -=???→? ②y =f (x ))

(轴对称

x f y x -=???→? ③y =f (x ))

(原点对称x f y --=???→? 9. 判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如:

在进行讨论.

10. 外层函数的定义域是内层函数的值域. 例如:已知函数f (x )= 1+

x

x

-1的定义域为A ,函数f [f (x )]的定义域是B ,则集合A 与集合B 之间的关系是 .

解:)(x f 的值域是))((x f f 的定义域B ,)(x f 的值域R ∈,故R B ∈,而A {}1|≠=x x ,故A B ?.

11. 常用变换:

①)

()

()()()()(y f x f y x f y f x f y x f =-?=+. 证:)()(])[()()

()

()(y f y x f y y x f x f x f y f y x f -=+-=?=

- ②)()()()()()(y f x f y x f y f x f y

x f +=??-= 证:)()()()(y f y

x f y y x f x f +=?= 12. ?熟悉常用函数图象:

例:|

|2x y =→||x 关于y 轴对称. |

2|21+?

?

?

??=x y →||21x y ??? ??=→|

2|21+?

?

? ??=x y

|122|2

-+=x x y →||y 关于x 轴对称.

2

21222121222

22121)()()(b x b x x x x x b x b x x f x f x ++++-=+-+=-)

(A B ?

?熟悉分式图象:

例:3

7

2312-+

=-+=x x x y ?定义域},3|{R x x x ∈≠, 值域},2|{R y y y ∈≠→值域≠x 前的系数之比. (三)指数函数与对数函数

指数函数)10(≠>=a a a y x 且的图象和性质

对数函数y =log a x 的图象和性质: 对数运算:

()n a n a a a c b a b b a N a n a

a n a a a a a a a a a a a a c

b a

N N N

a M n M M n M N M N

M N M N M n a 1121log log ...log log 1log log log log log log log 1log log log log log log log log )(log 32log )12)

1(=????=??===±=-=+=?-推论:换底公式: (以上10且...a a ,a 1,c 0,c 1,b 0,b 1,a 0,a

0,N 0,M n 21≠≠≠≠ )

注?:当0, b a 时,)log()log()log(b a b a -+-=?. ?:当0 M 时,取“+”,当n 是偶数时且0 M 时,0 n M ,而0 M ,故取“—”.

例如:x x x a a a log 2(log 2log 2 ≠中x >0而2log x a 中x ∈R ).

?x a y =(1,0≠a a )与x y a log =互为反函数.

当1 a 时,x y a log =的a 值越大,越靠近x 轴;当10 a 时,则相反.

(四)方法总结

?.相同函数的判定方法:定义域相同且对应法则相同.

?对数运算:

()n

a n a a a c

b a b b a N a n a a n a a a a a a a a a a a a

c b a N

N N

a M n

M M n M N M N

M N M N M n a 1121log log ...log log 1

log log log log log log log 1log log log log log log log log )(log 32log )12)

1(=????=??=

==±=-=+=?-推论:换底公式: (以上10且...a a ,a 1,c 0,c 1,b 0,b 1,a 0,a 0,N 0,M n 21≠≠≠≠ )

注?:当0, b a 时,)log()log()log(b a b a -+-=?.

?:当0 M 时,取“+”,当n 是偶数时且0 M 时,0 n M ,而0 M ,故取“—”.

例如:x x x a a a log 2(log 2log 2 ≠中x >0而2log x a 中x ∈R ).

?x a y =(1,0≠a a )与x y a log =互为反函数.

当1 a 时,x y a log =的a 值越大,越靠近x 轴;当10 a 时,则相反.

?.函数表达式的求法:①定义法;②换元法;③待定系数法.

?.反函数的求法:先解x,互换x 、y ,注明反函数的定义域(即原函数的值域).

?.函数的定义域的求法:布列使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义等.

?.函数值域的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.

?.单调性的判定法:①设x 1,x 2是所研究区间内任两个自变量,且x 1<x 2;②判定f(x 1)与f(x 2)的大小;③作差比较或作商比较.

?.奇偶性的判定法:首先考察定义域是否关于原点对称,再计算f(-x)与f(x)之间的关系:①f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数;②f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇;③f(-x)/f(x)=1是偶;f(x)÷f(-x)=-1为奇函数.

?.图象的作法与平移:①据函数表达式,列表、描点、连光滑曲线;②利用熟知函数的图象的平移、翻转、伸缩变换;③利用反函数的图象与对称性描绘函数图象.

高中数学 第三章 数列

考试内容:

数列.

等差数列及其通项公式.等差数列前n 项和公式.

等比数列及其通项公式.等比数列前n 项和公式.

考试要求:

(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

(2)理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题.

(3)理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,井能解决简单的实际问题. §03. 数 列 知识要点

差、等比

数列:

?看数列是不是等差数列有以下三种方法:

①),2(1为常数d n d a a n n ≥=--

②211-++=n n n a a a (2≥n )

③b kn a n +=(k n ,为常数).

?看数列是不是等比数列有以下四种方法:

①)0,,2(1≠≥=-且为常数q n q a a n n

②112-+?=n n n a a a (2≥n ,011≠-+n n n a a a )① 注①:i. ac b =,是a 、b 、c 成等比的双非条件,即ac

b =、b 、

c 等比数列.

ii. ac b =(ac >0)→为a 、b 、c 等比数列的充分不必要.

iii. ac b ±=→为a 、b 、c 等比数列的必要不充分.

iv. ac b ±=且0 ac →为a 、b 、c 等比数列的充要. 注意:任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中项一定有两个. ③n n cq a =(q c ,为非零常数).

④正数列{n a }成等比的充要条件是数列{n x a log }(1 x )成等比数列.

?数列{n a }的前n 项和n S 与通项n a 的关系:?

??≥-===-)2()1(111n s s n a s a n n n [注]: ①()()d a nd d n a a n -+=-+=111(d 可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若d 不为0,则是等差数列充分条件).

②等差{n a }前n 项和n d a n d Bn An S n ??? ??-+??? ??=+=22122 →2

d 可以为零也可不为零→为等差的充要条件→若d 为零,则是等差数列的充分条件;若d 不为零,则是等差数列的充分条件.

③非零..

常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列) 2. ①等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --; ②若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =-1+=n n a a S S 偶奇

③若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1-=n n S S 偶奇

得到所求项数到代入12-?n n .

3. 常用公式:①1+2+3 …+n =

()21+n n ②()()61213212222++=+++n n n n

③()2

213213333??????+=++n n n [注]:熟悉常用通项:9,99,999,…110-=?n n a ; 5,55,555,…()

11095-=?n n a . 4. 等比数列的前n 项和公式的常见应用题:

?生产部门中有增长率的总产量问题. 例如,第一年产量为a ,年增长率为r ,则每年的产量成等比数列,公比为r +1. 其中第n 年产量为1)1(-+n r a ,且过n 年后总产量为:

.)

1(1])1([)1(...)1()1(12r r a a r a r a r a a n n +-+-=+++++++- ?银行部门中按复利计算问题. 例如:一年中每月初到银行存a 元,利息为r ,每月利息按复利计算,则每月的a 元过n 个月后便成为n r a )1(+元. 因此,第二年年初可存款:

)1(...)1()1()1(101112r a r a r a r a ++++++++=)

1(1])1(1)[1(12r r r a +-+-+. ?分期付款应用题:a 为分期付款方式贷款为a 元;m 为m 个月将款全部付清;r 为年利率. ()()()()()()()()1

111111......11121-++=?-+=+?++++++=+--m m

m m m m m r r ar x r r x r a x r x r x r x r a 5. 数列常见的几种形式:

?n n n qa pa a +=++12(p 、q 为二阶常数)→用特证根方法求解.

具体步骤:①写出特征方程q Px x +=2(2x 对应2+n a ,x 对应1+n a ),并设二根21,x x ②若21x x ≠可设

n n n x c x c a 2211.+=,若21x x =可设n n x n c c a 121)(+=;③由初始值21,a a 确定21,c c .

?r Pa a n n +=-1(P 、r 为常数)→用①转化等差,等比数列;②逐项选代;③消去常数n 转化为n n n qa Pa a +=++12的形式,再用特征根方法求n a ;④121-+=n n P c c a (公式法),21,c c 由21,a a 确定. ①转化等差,等比:1)(11-=

?-+=?+=+++P r x x Px Pa a x a P x a n n n n . ②选代法:=++=+=--r r Pa P r Pa a n n n )(21x P x a P r P P r a a n n n -+=---+

=?--1111)(1

)1( r r P a P n n +++?+=--Pr 211 . ③用特征方程求解:??

??+=+=-+相减,r Pa a r Pa a n n n n 111+n a 1111-+--+=?-=-n n n n n n Pa a P a Pa Pa a )(. ④由选代法推导结果:P

r P P r a c P c a P r a c P r c n n n -+-+=+=-+=-=--111111112121)(,,. 6. 几种常见的数列的思想方法:

?等差数列的前n 项和为n S ,在0 d 时,有最大值. 如何确定使n S 取最大值时的n 值,有两种方法:

一是求使0,01 +≥n n a a ,成立的n 值;二是由n d a n d S n )2

(212-+=利用二次函数的性质求n 的值. ?如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前n 项和可依照等比数列前

n 项和的推倒导方法:错位相减求和. 例如:, (2)

1)12,...(413,211n n -? ?两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差21d d ,的最小公倍数.

2. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n ≥2的任意自然数,验证)(1

1---n n n n a a a a 为同一常数。(2)通项公式法。(3)中项公式法:验证212-++=n n n a a a N n a a a n n n ∈=++)(221都成立。

3. 在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足???≤≥+0

01m m a a 的项数m 使得m s 取最

大值. (2)当1a <0,d>0时,满足???≥≤+001

m m a a 的项数m 使得m s 取最小值。在解含绝对值的数列最值问题时,注意转化思想的应用。

(三)、数列求和的常用方法

1. 公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。

2.裂项相消法:适用于?????

?+1n n a a c 其中{ n a }是各项不为0的等差数列,c 为常数;部分无理数列、含阶乘的数列等。

3.错位相减法:适用于{}n n b a 其中{ n a }是等差数列,{}n b 是各项不为0的等比数列。

4.倒序相加法: 类似于等差数列前n 项和公式的推导方法.

5.常用结论

1): 1+2+3+...+n = 2

)1(+n n 2) 1+3+5+...+(2n-1) =2n

3)2333)1(2121??

????+=+++n n n 4) )12)(1(6

13212222++=++++n n n n 5) 111)1(1+-=+n n n n )211(21)2(1+-=+n n n n

6) )()11(11q p q

p p q pq <--= 高中数学第四章-三角函数

考试内容:

角的概念的推广.弧度制.

任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式. 两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.

正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.

正弦定理.余弦定理.斜三角形解法.

考试要求:

(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.

(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.

(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.

(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.

(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.

(6)会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx 表示.

(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.

(8)“同角三角函数基本关系式:sin2α+cos2α=1,sin α/cos α=tan α,tan α?cos α=1”.

§04. 三角函数 知识要点

1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}

Z k k ∈+?=,360|αββ

②终边在x 轴上的角的集合: {}Z k k ∈?=,180| ββ

③终边在y 轴上的角的集合:{}Z k k ∈+?=,90180| ββ

④终边在坐标轴上的角的集合:{}Z k k ∈?=,90| ββ

⑤终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ

⑥终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360

⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k

⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180

SIN \COS 三角函数值大小关系图

1、2、3、4表示第一、二、三、

四象限一半所在区域

⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk

2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′

注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.

、弧度与角度互换公式: 1rad =π180°≈57.30°=57°18ˊ. 1°=180

π≈0.01745(rad )

3、弧长公式:r l ?=||α. 扇形面积公式:21

1||22

s lr r α==?扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P x

y =αtan ; (x,y )P 与原点的距离为r ,则 r y =αsin ;

αcos y x =αcot ;

x r =αsec ;. y r =αcsc .

5、三角函数在各象限的符号:(一全二正弦,三切四余弦)

正切、余切

余弦、正割

正弦、余割

6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT.

7. 三角函数的定义域: 8、同角三角函数的基本关系式:αααtan cos sin = α

αα

cot sin cos =

1cot tan =?αα 1sin csc =α?α 1cos sec =α?α

1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα

9、诱导公式: (3) 若 o

16. 几个重要结论:

2

k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限”

三角函数的公式:(一)基本关系

公式组二 公式组三 x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=- 公式组四 公式组五 公式组六

x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ x

x x

x x x x

x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ (二)角与角之间的互换

公式组一 公式组二

βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =

βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=

βαβαβαsin cos cos sin )sin(-=- 2

cos 12sin αα

-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2

cos 12cos αα+±= βαβαβαtan tan 1tan tan )tan(+-=

- 公式组三 公式组四 公式组五 2tan 12tan 2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan 2tan 2ααα-= 公式组一sin x 2csc x =1tan x =x x cos sin sin 2x +cos 2x =1cos x 2sec x x =x x sin cos 1+tan 2x =sec 2x tan x 2cot x =1 1+cot 2x =csc

2x =1()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+2sin 2cos 2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-

4

2675cos 15sin -=

= ,4

2615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== .

若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增).

②x y sin =与x y cos =的周期是π.

③)sin(

?ω+=x y 或)cos(?ω+=x y (0≠ω)的周期ω

π

2=T .

2tan x

y =的周期为2π(πω

π2=?=T T ,如图,翻折无效).

④)sin(

?ω+=x y 的对称轴方程是2

ππ+=k x (Z k ∈),对称中心(0,πk );)cos(?ω+=x y 的对称轴方程

是πk x =(Z k ∈),对称中心(0,2

1ππ+k );)tan(

?ω+=x y 的对称中心(0,2

π

k ). x x y x y 2cos )2cos(2cos -=--=???→?=原点对称

⑤当αtan 2,1tan =β)(2

Z k k ∈+

=+ππβα;αtan 2,1tan -=β)(2

Z k k ∈+

=-ππβα.

⑥x y cos =与??

? ??++=ππk x y 22sin 是同一函数,而)(?ω+=x y 是偶函数,则 )cos()2

1sin()(x k x x y ωππω?ω±=++=+=.

⑦函数x y tan =在R 上为增函数.(3) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].

⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)

奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)3

1tan(π+=x y 是非奇非偶.(定义域不关于原点对称)

奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ?0的定义域,则无此性质) ⑨x y sin =不是周期函数;x y sin =为周期函数(π=T

x y cos =是周期函数(如图);x y cos =为周期函数(=T 212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如:

R k k x f x f y ∈+===),(5)(.

⑩a

b b a b a y =

+++=+=??αβαcos )sin(sin cos 22 有y b a ≥+22. 11、三角函数图象的作法:

1)、几何法: 2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线). 3)、利用图象变换作三角函数图象.

三角函数的图象变换有振幅变换、周期变换和相位变换等.

函数y =Asin (ωx +φ)的振幅|A|,周期2||T πω=,频率1||2f T ωπ

==,相位;x ω?+初相?(即当x =

0时的相位).(当A >0,ω>0 时以上公式可去绝对值符号),

由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.(用y/A 替换y )

由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的1||ω

倍,得到y =sin ω x 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.(用ωx 替换x) 由y =sinx 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y =sin (x +φ)的图象,叫做相位变换或叫做沿x 轴方向的平移.(用x +φ替换x)

由y =sinx 的图象上所有的点向上(当b >0)或向下(当b <0)平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.(用y+(-b)替换y )

由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象,要特y=|cos2x +1/2|图象

别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别。

4、反三角函数:

函数y =sin x ,???? ??

??????-∈22ππ,x 的反函数叫做反正弦函数,记作y =arcsin x ,它的定义域是[-1,1],值域是??????22ππ,-.

函数y =cos x ,(x ∈[0,π])的反应函数叫做反余弦函数,记作y =arccos x ,它的定义域是[-1,1],值域是[0,π].

函数y =tan x ,???? ??

??? ??-∈22ππ,x 的反函数叫做反正切函数,记作y =arctan x ,它的定义域是(-∞,+∞),值域是??? ??-22ππ,. 函数y =ctg x ,[x ∈(0,π)]的反函数叫做反余切函数,记作y =arcctg x ,它的定义域是(-∞,+∞),值域是(0,π).

II. 竞赛知识要点

一、反三角函数.

1. 反三角函数:?反正弦函数x y arcsin =是奇函数,故x x arcsin )arcsin(-=-,[]1,1-∈x (一定要注明定义域,若()+∞∞-∈,x ,没有x 与y 一一对应,故x y sin =无反函数)

注:x x =)sin(arcsin ,[]1,1-∈x ,??

????-∈2,2arcsin ππx . ?反余弦函数x y arccos =非奇非偶,但有ππk x x 2)arccos()arccos(+=+-,[]1,1-∈x . 注:①x x =)cos(arccos ,[]1,1-∈x ,[]π,0arccos ∈x .

②x y cos =是偶函数,x y arccos =非奇非偶,而x y sin =和x y arcsin =为奇函数.

?反正切函数:x y arctan =,定义域),(+∞-∞,值域(2

,2ππ-

),x y arctan =是奇函数, x x arctan )arctan(-=-,∈x ),(+∞-∞. 注:x x =)tan(arctan ,∈x ),(+∞-∞.

?反余切函数:x arc y cot =,定义域),(+∞-∞,值域(2

,2ππ-),x arc y cot =是非奇非偶. ππk x arc x arc 2)cot()cot(+=+-,∈x ),(+∞-∞.

注:①x x arc =)cot cot(,∈x ),(+∞-∞.

②x y arcsin =与)1arcsin(

x y -=互为奇函数,x y arctan =同理为奇而x y arccos =与x arc y cot =非奇非偶但满足]1,1[,2)cot(cot ]1,1[,2arccos )arccos(-∈+=-+-∈+=+-x k x arc x arc x k x x ππππ.

? 正弦、余弦、正切、余切函数的解集:

a 的取值范围 解集 a 的取值范围 解集

①a x =sin 的解集 ②a x =cos 的解集

a >1 ? a >1 ?

本文来源:https://www.bwwdw.com/article/bbul.html

Top