一个基于matlab的建模与仿真软件包的电动和混合动力电动汽车的设计
更新时间:2023-05-13 07:42:01 阅读量: 实用文档 文档下载
1770IEEETRANSACTIONSONVEHICULARTECHNOLOGY,VOL.48,NO.6,NOVEMBER1999
AMatlab-BasedModelingandSimulationPackageforElectricandHybridElectricVehicleDesign
KarenL.Butler,Member,IEEE,MehrdadEhsani,Fellow,IEEE,PreyasKamath,Member,IEEE
Abstract—ThispaperdiscussesasimulationandmodelingpackagedevelopedatTexasA&MUniversity,V-Elph2.01.V-Elphfacilitatesin-depthstudiesofelectricvehicle(EV)andhybridEV(HEV)con gurationsorenergymanagementstrate-giesthroughvisualprogrammingbycreatingcomponentsashierarchicalsubsystemsthatcanbeusedinterchangeablyasembeddedsystems.V-Elphiscomposedofdetailedmodelsoffourmajortypesofcomponents:electricmotors,internalcombustionengines,batteries,andsupportcomponentsthatcanbeintegratedtomodelandsimulatedrivetrainshavingallelectric,serieshybrid,andparallelhybridcon gurations.V-ElphwaswrittenintheMatlab/Simulinkgraphicalsimulationlanguageandisportabletomostcomputerplatforms.
ThispaperalsodiscussesthemethodologyfordesigningvehicledrivetrainsusingtheV-Elphpackage.AnEV,aseriesHEV,aparallelHEV,andaconventionalinternalcombustionengine(ICE)drivendrivetrainhavebeendesignedusingthesimulationpackage.Simulationresultssuchasfuelconsumption,vehicleemissions,andcomplexityarecomparedanddiscussedforeachvehicle.
IndexTerms—Electricvehicle,hybridelectricvehicle,model-ing,simulation.
I.INTRODUCTION
RESENTLY,onlyelectricandlow-emissionshybridve-hiclescanmeetthecriteriaoutlinedintheCaliforniaAirRegulatoryBoard(CARB)regulationswhichrequireapro-gressivelyincreasingpercentageofautomobilestobeultraloworzeroemissionsbeginningintheyear1998[1].Thoughpurelyelectricvehicles(EV’s)areapromisingtechnologyforthelong-rangegoalofenergyef ciencyandreducedatmosphericpollution,theirlimitedrangeandlackofsup-portinginfrastructuremayhindertheirpublicacceptance[2].Hybridvehiclesofferthepromiseofhigherenergyef ciencyandreducedemissionswhencomparedwithconventionalautomobiles,buttheycanalsobedesignedtoovercometherangelimitationsinherentinapurelyelectricautomobilebyutilizingtwodistinctenergysourcesforpropulsion.Withhybridvehicles,energyisstoredasapetroleumfuelandinanelectricalstoragedevice,suchasabatterypack,andiscon-vertedtomechanicalenergybyaninternalcombustionengine(ICE)andelectricmotor,respectively.Theelectricmotoris
ThisworkwassupportedbytheTexasHigherEducationCoordinatingBoardAdvancedTechnologyProgram(ATP),TexasA&MUniversityOf ceoftheVicePresidentforResearch,andAssociateProvostforGraduateStudiesthroughtheCenterforEnergyandMineralResourcesandtheTexasTransportationInstitute.
K.L.ButlerandM.EhsaniarewiththeDepartmentofElectricalEngineer-ing,TexasA&MUniversity,CollegeStation,TX77843-3128USA.P.KamathiswiththeMotorola,Inc.,Schaumburg,ILUSA.PublisherItemIdenti erS0018-9545(99)09279-8.
P
usedtoimproveenergyef ciencyandvehicleemissionswhiletheICEprovidesextendedrangecapability.Thoughmanydifferentarrangementsofpowersourcesandconvertersarepossibleinahybridpowerplant,thetwogenerallyacceptedclassi cationsareseriesandparallel[3].
Computermodelingandsimulationcanbeusedtoreducetheexpenseandlengthofthedesigncycleofhybridvehiclesbytestingcon gurationsandenergymanagementstrategiesbeforeprototypeconstructionbegins.Interestinhybridvehiclesimulationgrewinthe1970’swiththedevelopmentofseveralprototypesthatwereusedtocollectaconsiderableamountoftestdataontheperformanceofhybriddrivetrains[4].Studieswerealsoconductedtoanalyzehybridelectricvehicle(HEV)concepts[5]–[11].Severalcomputerprogramshavesincebeendevelopedtodescribetheoperationofhybridelectricpowertrains,including:simpleEVsimulation(SIMPLEV)fromtheDOE’sIdahoNationalLaboratory[12],MARVELfromArgonneNationalLaboratory[13],CarSimfromAeroViron-mentInc.,JANUSfromDurhamUniversity[14],ADVISORfromtheDOE’sNationalRenewableEnergyLaboratory[15],VehicleMissionSimulator[16],andothers[17],[18].Aprevioussimulationmodel(ELPH)developedatTexasA&MUniversitywasusedtostudytheviabilityofanelectricallypeakingcontrolschemeandtodeterminetheapplicabilityofcomputermodelingtohybridvehicledesign[19],butwasessentiallylimitedtoasinglevehiclearchitecture.OtherworkconductedbythehybridvehicledesignteamatTexasA&MUniversityisreportedinpapersbyEhsanietal.[20]–[24].V-Elph[25],[26]isasystem-levelmodeling,simulation,andanalysispackagedevelopedatTexasA&MUniversityusingMatlab/Simulink[27]tostudyissuesrelatedtoEVandHEVdesignsuchasenergyef ciency,fueleconomy,andvehicleemissions.V-Elphfacilitatesin-depthstudiesofpowerplantcon gurations,componentsizing,energymanagementstrategies,andtheoptimizationofimportantcomponentpa-rametersforseveraltypesofhybridorelectriccon gurationorenergymanagementstrategy.Itusesvisualprogrammingtechniques,allowingtheusertoquicklychangearchitectures,parameters,andtoviewoutputdatagraphically.Italsoin-cludesdetailedmodelsthatweredevelopedatTexasA&MUniversityofelectricmotors,internalcombustionengines,andbatteries.
Thispaperdiscussesthemethodologyfordesigningsystem-levelvehiclesusingtheV-Elphpackage.AnEV,aseriesHEV,aparallelEV,andaconventionalICEdrivendrivetrainhavebeendesignedusingthesimulationpackage.Thesimulationresultsarecomparedanddiscussedforeachvehicle.
0018–9545/99$10.00©1999IEEE
BUTLERetal.:MATLAB-BASEDMODELINGANDSIMULATIONPACKAGE
Fig.1.System-levelrepresentationofageneralvehicledrivetraininV-Elph.
II.DRIVETRAINDESIGNMETHODOLOGY
SeverallevelsofdepthareavailableinV-Elphtoallowuserstotakeadvantageofthefeaturesthatinterestthem.Atthemostbasiclevel,ausercanrunsimulationstudiesbyselectinganEV,series,orparallelhybridvehicle,orconventionalvehicledrivetrainmodelprovidedanddisplaytheresultsusingthegraphicalplottingtools.Inadditiontobeingabletochangethedrivecycleandtheconditionsunderwhichthevehicleoperates,theusercanswitchcomponentsinandoutofavehiclemodeltotrydifferenttypesofengines,motors,andbatterymodels.Theusercanalsochangevehiclecharacteristicssuchassizeandweight,gearratios,andthesizeofthecomponentsthatmakeupthedrivetrain.
Anintermediateusercancreatehis/herownvehiclecon g-urationsusingablankvehicledrivetraintemplateasshowninFig.1.Thisdrivetrainwasconstructedgraphicallybyconnectingthemaincomponentblocks(drivecycle,controller,powerplant,andvehicledynamics)ponentscanbeisolatedtorunparametersweepsthatcreateperformancemapswhichassistincomponentsizingandselection.Acontrollerblockisdesignedwithlogicstatementswhichcreatethesignalsrequiredtocontroltheindividualsystem-levelcomponents.Avehicledynamicsblockisdesignedwithinputparameterssuchasroadangle,mass,anddragcoef cientnecessarytocomputevehicleoutputdynamicparameterssuchasenginespeedandroadspeed.Thedrivecycleblockisdesignedbyselectingadrivecyclefromthosesuppliedbythepackageorcreatinganewdrivecycle.
Finally,advanceduserscanpursuesophisticateddesignobjectivessuchasthecreationofentirelynewcomponentmodelsandtheoptimizationofapowerplantbycreatingadd-onfeaturesthatarecompatiblewiththemodelingsysteminterface.V-Elphallowstheinterconnectionofmanytypesofelectricalormechanicalcomponentutilizedinavehicledrivetrain,ponentmodelscanbecreatedfromlookuptables,empir-icalequations,andbothsteady-stateanddynamicequations.EachcomponentmodeliscreatedusingthegeneralmodelandinterfaceshowninFig.2.Thecomponentmodelsarestoredinalibrary,calledthelibraryofcomponentsasshowninFig.3.Thespeedatwhichthesimulationexecutesis
highly
1771
ponentinput/output
interface.
Fig.3.Libraryofcomponents.
dependentonthecomplexityofthecomponentmodelsusedinavehicledesign.VariousdetailedcomponentmodelsarecurrentlyutilizedintheV-Elphpackage.TheyweredevelopedbymembersoftheELPHresearchteamatTexasA&MUniversityanddesignedbasedonsteady-stateanddynamicequations.
III.DESIGN
OF
VEHICLEDRIVETRAINS
Inthissection,thedesignandanalysisofanEVdrivetrain,twoparallelHEVdrivetrainswithdifferentcontrolstrategies,aseriesHEVdrivetrain,andaconventionalICE-drivenvehicledrivetrainusingtheV-Elphpackagearediscussed.Adescriptionisgivenoftheperformancespeci cationsandthecontrolstrategyandpowerplantdevelopedforeachvehicledesign.Atypicalmid-sizedfamilysedanwasusedasthebasisforeachvehicle.Thevehicles’componentsweresizedtoprovideenoughpowertomaintainacruisingspeedof120km/honalevelroadandanaccelerationperformanceof0–100km/hin16sforshorttimeintervals.Thevehicleswerealsodesignedtomaintainhighwayspeedsforseveralhundredseconds.TheICE,motor,battery,andvehicledynamicsmodelswereappropriatelycustomizedtomeetthespeci cvehicleperformancerequirementsforeachvehicledesign.
1772IEEETRANSACTIONSONVEHICULARTECHNOLOGY,VOL.48,NO.6,NOVEMBER
1999
Fig.4.Powerplantrepresentationofconventionalvehicledrivetrainde-signedusingV-Elph.
TABLEI
SPECIFICATIONSOFICEDRIVET
RAIN
Simulationstudieswereperformedforeachvehicleusingasimpleaccelerationanddecelerationdrivecycle,anFTP-75ur-bandrivecycle,afederalhighwaydrivecycle,andacommuterdrivecycle.Variousperformanceparametersgeneratedduringthesimulationstudiesaregraphicallypresentedinthepaper.Atableisincludedwhichcomparesperformanceparameterssuchasfuelconsumptionandemissionsforeachsimulationstudy.
A.ICEConventionalDriveTrainDesign
TheconventionalICE-drivendrivetrainwasdesignedbasedonthespeci cationsofaBuickLeSabre(1991model)[28].Thevehiclesfour-speedautomatictransmissionwasmodeledasamanualtransmissionwithaclutch,retainingthesameoverallgearratios.Itisafour-doorsedansix-passengervehiclewithadesired0–60mphinthe10-srangecharacteristicandacurbweightof3483lbs(1580kgs).ThepowerplantisshowninFig.4.TableIshowstheengineandvehiclespeci cationsutilizedtodesigntheconventionaldrivetrain.B.ParallelHybridElectricDriveTrainDesign
Inatypicalparalleldesign,consistingofanICEandanelectricmotorinatorque-combiningcon guration,eithertheICEortheelectricmotorcanbeconsideredtheprimaryenergysourcedependingonthevehicledesignandenergymanagementstrategy.ThedrivetraincanalsobedesignedsothattheICEandelectricmotorarebothresponsibleforpropulsionoreachistheprimemoveratacertaintimeinthedrivecycle.Acomponent’sfunctionalrolecouldchangewithinthecourseofadrivecycleduetobatterydepletionorothervehiclerequirements.Vehiclearchitecturedecisions,controlstrategies,componentselectionandsizing,gearing,
and
Fig.5.ParallelHEVdrivetraincon guration.
otherdesignparametersbecomeconsiderablymorecomplexinaparallelhybridduetothesheernumberofchoicesandtheireffectonavehiclesperformancegivenaparticularmission.Thevehicledrivetraincon gurationinFig.5wasdesignedinV-ElphforaparallelHEV.Itisbasedonatypicalmid-sizedfamilysedanwithagrossmassof1838Kgthatincludestheadditionalbatteriesusedinthehybridpowerplant.ThedrivetrainincludesacontrollerwhichmanipulatesthetorquecontributionsoftheelectricmotorandICE.Thebatteryprovidespowerfortheinductionmotor.TheICEmodelwassizedtoprovideenoughpowertomaintainacruisingspeedof120km/honalevelroadandtheelectricmachinewassizedtoprovideacceptableaccelerationperformanceof0–100km/hin16sforshorttimeintervals.
TheICEmodelwasdesignedbasedonPowellsengineanalysis[29].Theinductionmachinemodel[20]performstwofunctionsinthedrivetrain:asamotoritprovidestorqueatthewheelstoacceleratethevehicle,andasageneratoritrechargesthebatteryduringdeceleration(regenerativebraking)orwhen-everthetorqueproducedbythepowerplantexceedsthedemandfromthedriver.Vectorcontrolwasutilizedtoextendtheconstantpowerregionofthemotor,makingitpossibletorunthemotoroverawidespeedrange.Themotorcanprovidetherequestedtorqueuptotheconstantpowerthresholdatspeedsabovethebasespeedofthemotor;operationbeyondthispointisrestrictedtoavoidexceedingthemotor’spowerrating.TheHEVdesignutilizesthewidespeedrangeofthevector-controlledinductionmotortoimprovetheoverallsystemef ciency.
Thebatterymodel[23]usesthecurrentloadandbatterystateofchargetodeterminedcbusvoltage.Voltagetendstodropasthestateofchargedecreasesandastheamountofcurrentdrawnfromthebatteryincreases.Atlowcurrents,thebatteryef ciencyisreasonablyhighregardlessofthestateofcharge.
TwoparallelHEVdrivetrainsweredesignedusingdifferentcontrolstrategies,referredtoascontrolstrategy1andcontrolstrategy2.Controlstrategy1operatessuchthattheICErunsataconstantfuelthrottleangleandtheelectricmachinemakesupthedifferencebetweenthetorquerequestedbythedriverandthetorqueproducedbytheICE.Thisschemeaims
BUTLERetal.:MATLAB-BASEDMODELINGANDSIMULATIONPACKAGETABLEII
COMPONENTSOF
PARALLELHYBRIDDRIVET
RAIN
Fig.6.Drivetrainforserieshybridvehicle.
tominimizetheamountoftimethattheICEisinusebymaximizingthespeedatwhichtheICEisengagedtothewheelswhilemaintainingthebatterystateofchargeoverthedrivecycle.Controlstrategy2operatessuchthattheICErunsoveritsentirespeedrangeandmakestheICEthrottleangleafunctionofspeedtomeetthesteady-stateroadload.Thegeneralprinciplebehindeachstrategyisthattheelectricmotorprovidespowerforpropulsionduringthetransients,accelerationtodeceleration,andtheICEprovidespropulsionduringcruising.
ThesizesofthecomponentsfortheparallelhybriddrivetrainarestatedinTableII.
C.SeriesHybridElectricDriveTrainDesign
InaserieshybridEV,onlyoneenergyconverterprovidestorquetothewheelswhiletheothersareusedtorechargeanenergyaccumulator,usuallyabatterypack.Inatypicalserieshybriddesign,anICE/generatorpairchargesthebatteriesandonlythemotoractuallyprovidespropulsion.TheserieshybriddrivetrainshowninFig.6includesacontrollerandpowerplantandwasdesignedbasedonHochgraf’swork[30].Avector-controlledinductionmotorpoweredbyadcbatterypackof156Vsuppliesthepoweratthedrivewheels.Inaddition,thereisanauxiliarypowerunit(APU)comprisingofanICEdrivinganinductiongenerator.TheAPUsuppliespowertothebatterywhenthedemandedcurrentbytheinductionmotorexceedsathresholdvalueof75A.Thelocalcontrollerisresponsibleforthefollowingtasks:
demandingatorque(positiveornegative)fromthein-ductionmotordependingondrivecyclerequirements; forswitchingon/offtheAPU.
Thetorquedemandedfromtheinductionmotorispositiveduringaccelerationandcruisephasesofthedrivecycle(motoringmode)andisnegativeduringthedecelerationphaseofthedrivecycle(generatormode).Duringthemotoring
1773
TABLEIII
COMPONENTS
OF
SERIESHYBRIDDRIVET
RAIN
Fig.7.EVdrivetrain.
mode,currentisdrawnfromthebattery(discharging)andduringgenerationmodecurrentissuppliedtothebattery(charging).
WhentheAPUison,theICEisrunningatitsoptimumspeedandtheinductiongeneratorchargesthebattery;inthe“off”mode,theICEidles.Thus,theAPUisresponsiblefordecreasingthedrainonthebatterypack,especiallyduringtheaccelerationphasesofthedrivecycle.TheICEcontrolisbasedona“constantthrottlestrategy”whichwasfoundtobeoptimum[30].
Thesystemcontrolstrategyforaserieshybridisnotrequiredtobeascomplexasthecontrollerforaparallelhybridsincethereisonlyonetorqueprovider.Fortheseriesdesigndiscussedinthepaper,theclassicproportional,integral,andderivative(PID)controller[31]isutilized.
ThesizesofthecomponentsfortheserieshybriddrivetrainarestatedinTableIII.D.ElectricDriveTrainDesign
InEV’s,alloftheonboardsystemsarepoweredbybatteriesandelectricmotors.TheelectricdrivetraindesignedusingV-ElphisshowninFig.7.
IntheEV,allthetorquedemandedatthedrivewheelsissolelymetbyavector-controlledinductionmotorpoweredbyadcbatterypackof240V.Thecontrollerdemandsatorque(positiveornegative)fromtheinductionmotor,dependinguponthetorquedemandedbythevehicletomeetthedrivecyclespeed.Theinductionmotortriestomeetthisdemandedtorque.Positivepowerisdemandedfromtheinductionmotor(operatinginmotoringmode)duringaccelerationandcruisephasesofthedrivecycleandnegativepowerisdemandedduringthedecelerationphaseofthedrivecycle(operatingingeneratormode).Duringthemotoringphasetheinductionmotordrawscurrentfromthebatterypack(discharging)andduringthegeneratormodetheinductionmotorsuppliescurrent
1774IEEETRANSACTIONSONVEHICULARTECHNOLOGY,VOL.48,NO.6,NOVEMBER1999
TABLEIV
COMPONENTSOF
ELECTRICVEHICLEDRIVET
RAIN
Fig.8.Drivecycleoneconsistingofacceleration,cruise,anddeceleration.
toit(recharging).Theinductionmotorandbatterypackaresizedtosatisfythepeakpowerrequirementsofthedrivecycle.ThesizesofthecomponentsfortheEVdrivetrainarestatedinTableIV.
IV.SIMULATIONSTUDIES
ToillustratetheperformancepotentialofnewtechnologyvehiclessuchaselectricandhybridEV’s,anelectric,parallelHEV,andseriesHEVweredesignedusingtheV-ELPHpackage.Sincetheenginemodelandmotormodelwerenot ne-tunedtoasetofphysicalcomponents,thesimulationre-sultshavesomeinaccuracies.Theauthors,therefore,designedaconventionalICE-drivenvehicletoserveasthebaselinevehicle.Theninsteadofattachingsigni cancetotheexactsimulationresults,theperformanceofthenewtechnologyvehiclesisinterpretedincomparisontothebaselinevehicle.Fourdrivecycleswereappliedtothevariousvehicledrivetraindesigns.Drivecycleoneconsistedofagradualaccelerationto120km/h,cruise,andthenadecelerationbacktostopasshowninFig.8.DrivecyclestwoandthreewerecomposedoftheFTP-75urbandrivecycleandthefederalhighwaydrivecycle[32]asshowninFigs.9and10,respectively.DrivecyclefourwasacommuterdrivecycleasshowninFig.11whichwasdevelopedbycombiningthreeFTP-75urbandrivecycleswithtwofederalhighwaydrivecycles.Thetwohighwaycyclesareinterspacedbetweeneachoftheurbancycles.
TheV-Elphpackageincludesplottingtoolsthatprovidegraphicaldisplaysofoutputvariablesgeneratedduringsimu-lationstudies.Also,V-ElphprovidesamechanismtofacilitatethestudyofvariousaspectsrelatedtoelectricandhybridEVdrivetraindesignsuchascontrolstrategiesandvehiclecon gurations(e.g.,EVandHEV).Thefollowing guresillustratetheresultsofvarioussimulationstudiesconductedusingthefourdrivecycleswiththe vevehiclecon gurations.Fig.12showsaplotofelectricmotor(EM)torqueandICEtorqueversustimeforthedrivecycleoneappliedto
the
Fig.9.FTP-75urbandrivecycle—drivecycle
two.
Fig.10.Federalhighwaydrivecycle—drivecycle
three.
muterdrivecycle—drivecyclefour.
parallelvehicleusingcontrolstrategy1.Itillustrateshowtheelectricmotortorqueincreaseswiththeincreaseinvehiclespeed.Whenthevehiclereachescruisingspeed,theelectricmotortorquereducestoaslightlynegativeconstantvaluewhiletheICEtorquemaintainsaconstantvalue.Thenduringthedecelerationphaseofthedrivecycle,theICEtorqueisatitsidlingtorquewhiletheelectricmotortorqueisprovidinganegativetorque,operatingingeneratingmode.
BUTLERetal.:MATLAB-BASEDMODELINGANDSIMULATIONPACKAGE
Fig.12.EMtorqueandICEtorquefordrivecycleoneappliedtotheparallelvehiclewithcontrolstrategy
1.
(a)
(b)
Fig.13.(a)EMtorqueforfederalurbandrivecycleappliedtoparallelvehiclewithcontrolstrategy1.(b)ICEtorqueforfederalurbandrivecycleappliedtoparallelvehiclewithcontrolstrategy1.
Fig.13and14showthesplitoftheICEandelectricmotortorqueforcontrolstrategies1and2.
Fig.15and16showtheEMtorqueforthefederalurbandrivecycleappliedtotheserieshybridEVandEVwhicharesimilarbecauseforbothvehiclestheelectricmachineisthesolesourceofpropulsion.InFigs.17and18,thedifferencesinthebatterycurrentforthetwotestcasesareillustrated;thebatterycurrentislargerfortheEVthantheseriesHEV.TableVshowsasummaryofresultsgeneratedbytheV-Elphpackageduringtheapplicationofthefourdrivecyclestothe vevehicledrivetrains.Theweightandcontrolcomplexityisincludedinthetableforeachvehicledrivetrain.Thecontrolcomplexitywasdeterminedbyassessingthecomplexityofthesystemcontrollerusedtomanipulatethecomponentsprovidingpropulsiontothewheels,e.g.,thecontrollerfortheparallelHEVcontrolstheICEandelectricmachine.Foreachdrivecyclethefollowingparametersweretabulated:plex
equations
1775
(a)
(b)
Fig.14.(a)EMtorqueforfederalurbandrivecycleappliedtoparallelvehiclewithcontrolstrategy2.(b)ICEtorqueforfederalurbandrivecycleappliedtoparallelvehiclewithcontrolstrategy
2.
Fig.15.EMtorqueforfederalurbandrivecycleappliedtoseries
HEV.
Fig.16.EMtorqueforfederalurbandrivecycleappliedtoEV.
developedbyRamachandrain1975[33]areimplementedintheV-Elphpackagetocomputetheemissions.Thefuelconsumptioniscomputedasthetotaldistancetraveleddividedbythetotalfuelconsumedduringthedrivecycle.AfuelrateiscomputedbasedonworkbyPowell[29]andthenintegratedoverthetimeofthedrivecycletoyieldthefuelconsumed.Generalobservationsofthecomparisonoftheconventionalvehicletothenewtechnologyvehiclesshowthat:thefuelconsumptionimprovedforeachoftheHEV’swhichyieldeda
1776IEEETRANSACTIONSONVEHICULARTECHNOLOGY,VOL.48,NO.6,NOVEMBER1999
COMPARISONSBETWEEN
TABLEV
VARIOUSVEHICLEDRIVETRAINC
ONFIGURATIONS
reductioninemissions.IngenerallycomparingtheEVtotheHEV’s,thebatteryusagewasless.
Theresultsfortheurbandrivecycle,whichiscomposedofmanyquickaccelerationanddecelerationinstances,showanimprovementinthefuelconsumptionfortheparallelHEVandseriesHEVcomparedtotheconventionalvehicle.Alsotheengineemissionsweregreatlyreduced.FromFigs.15and16,itwasnotedearlierthattheEMtorqueareverysimilarforthefederalurbandrivecycleappliedtotheseriesHEVandEV.However,thedifferenceintheirchangeinthebatteryusageareduetotheinclusionoftheICEintheseriesHEVwhichusesthisfuelsourcetoprovidepowertorechargethebatteries.
ThestrategyofthecontrollerfortheparallelHEVusingcontrolstrategy1wastominimizetheuseoftheICE.Fig.13(a)and(b)showsthedivisionoftheICEandEMtorquefortheurbandrivecycleappliedtotheparallelvehicledrivetrainusingcontrolstrategy1.TheICEtorqueisonlygeneratedwhenthedemandedvehiclespeedisgreaterthan60km/h.Hence,themotorprovidesmostofthepowertothewheelsduringthedrivecycle.ThisbehaviorcanbeseenbycomparingtheenergyusagefortheseriesHEVof2.82MJ
BUTLERetal.:MATLAB-BASEDMODELINGANDSIMULATIONPACKAGE
Fig.17.
Batterycurrentforfederalurbandrivecycleappliedtoseries
HEV.
Fig.18.BatterycurrentforfederalurbandrivecycleappliedtoEV.
andfortheparallelHEVusingcontrolstrategy1of2.67MJwhichshowsthatthemotorintheparallelHEVisusedalmostasmuchasthemotorintheseriesHEV.Thus,thefuelconsumption(km/l)fortheparallelHEVusingcontrolstrategy1isextremelylargeduetotheminimalusageoftheICE.MinimizationoftheICEthrottleisthecontrolstrategyfortheparallelHEVusingcontrolstrategy2.TheICEthrottlepositionisdeterminedusingthesteady-stateload(aerodynamicdragandfriction)requiredataparticularvehiclespeed.Incomparingtheperformanceofthisdrivetrainusingtheurbanandhighwaydrivecycles,thefuelconsumption,thekilometerstraveledperliter,fortheurbancycleisgreaterbecausethemotorisusedmoreduringtheurbancyclethanthehighwaycycle.
Furthermore,thedifferencesintheperformanceofthetwocontrolstrategiesforaparallelHEVarealsoillustratedbycomparingthefuelconsumptionandenergyusageoftheparallelHEV’sforthefederalurbandrivecycle.
SincethebatterypackisthesolepowersupplierintheEV,itsenergyusageisgreaterthantheparallelorserieshybridvehicles,asexpected.
V.CONCLUSION
Thispaperdiscussedanewdrivetrainmodeling,simulation,andanalysispackagedevelopedatTexasA&MUniversityusingMatlab/SimulinktostudyissuesrelatedtoEVandHEVdesignsuchasenergyef ciency,fueleconomy,andvehicleemissions.Thepackageusesvisualprogrammingtechniques,allowingtheusertoquicklychangearchitectures,parameters,andtoviewoutputdatagraphically.Italsoincludesdetailedmodelsofelectricmotors,internalcombustionengines,andbatteries.Thedesignsforfourvehicledrivetrains—anEV,parallelHEV,seriesHEV,andconventionalICEvehicle—are
1777
presented.Theresultsofapplyingsimple,commuter,federalurban,andfederalhighwaydrivecyclesarecompared.Theseresultsillustratethe exibilityofthepackageforstudyingvariousissuesrelatedtoelectricandhybridEVdesign.ThesimulationpackagecanrunonaPCoraUnix-basedwork-station.
ACKNOWLEDGMENT
TheauthorswouldliketoacknowledgetheassistanceofZ.Rahmaninpreparingthispaper.
REFERENCES
[1]M.J.Riezenman,“Electricvehicles,”IEEESpectrum,pp.18–101,Nov.
1992.
[2]V.Wouk,“Hybrids:Thenandnow,”IEEESpectrum,pp.16–21,July
1995.
[3]A.Kalberlah,“Electrichybriddrivesystemsforpassengercarsand
taxis,”SAETech.Rep.910247,1991.
[4]B.Bates,“OntheroadwithaFordHEV,”IEEESpectrum,pp.22–25,
July1995.
[5]M.Hayashidaetal.,“Studyonserieshybridelectriccommuter-car
concept,”SAEJ.SP-1243,Paper970197,Feb.1997.
[6]A.Nikopoulos,H.Hong,andT.Krepec,“Energyconsumptionstudyfor
ahybridelectricvehicle,”SAEJ.SP-1243,Paper970198,Feb.1997.[7]R.D.Senger,“ValidationofADVISORasasimulationtoolforaseries
hybridelectricvehicleusingtheVirginiaTechfuturecarLumina,”Master’sthesis,VirginiaTechUniv.,Blacksburg,1997.
[8]D.HermanceandS.Sasaki,“Hybridelectricvehiclestakethestreets,”
IEEESpectrum,pp.48–52,Nov.1998.
[9]Y.Takehisa,S.Shoichi,andA.Tetsuya,“Toyotahybridsystem:Its
conceptandtechnologies,”inProc.FISITAWorldAutomotiveConf.,Paris,France,Sept.1998.
[10]P.A.AbthoffandJ.S.Kramer,“TheMerecedes-BenzC-classseries
hybrid,”inProc.ElectricVehicleSymp.14,Orlando,FL,Dec.1997.[11]L.J.OswaldandG.D.Skellenger,“TheGM/DOEhybridvehicle
propulsionsystemsprogram:Astatusreport,”inProc.ElectricVehicleSymp.15,Orlando,FL,Dec.1997.
[12]G.Cole,“Simpleelectricvehiclesimulation(SIMPLEV)v3.1,”DOE
b.
[13]W.W.MarrandW.J.Walsh,“Life-cyclecostevaluationsofelec-tric/hybridvehicles,”EnergyConversionManagement,vol.33,no.9,pp.849–853,1992.
[14]J.R.Bumbyetal.,“Computermodelingoftheautomotiveenergyre-quirementsforinternalcombustionengineandbatteryelectric-poweredvehicles,”Proc.Inst.Elect.Eng.,vol.132,pt.A,no.5,pp.265–279,1985.
[15]K.B.WipkeandM.R.Cuddy,“Usinganadvancedvehiclesimulator
(ADVISOR)toguidehybridvehiclepropulsionsystemdevelopment,”availableat:http://www.hev.doe.gov.
[16]R.Noons,J.Swann,andA.Green,“Theuseofsimulationsoftware
toassessadvancedpowertrainsandnewtechnologyvehicles,”inProc.ElectricVehicleSymp.15,Brussels,Belgium,Oct.1998.
[17]B.Auert,C.Cheny,B.Raison,andA.Berthon,“Softwaretoolforthe
simulationoftheelectromechanicalbehaviorofahybridvehicle,”inProc.ElectricVehicleSymp.15,Brussels,Belgium,Oct.1998.
[18]C.KrickeandS.Hagel,“Ahybridelectricvehiclesimulationmodel
forcomponentdesignandenergymanagementoptimization,”inProc.FISITAWorldAutomotiveCongress,Paris,France,Sept.1998.
[19]D.L.BuntinandJ.W.Howze,“Aswitchinglogiccontrollerfora
hybridelectric/ICEvehicle,”inProc.AmericanControlConf.,Seattle,WA,June1995,pp.1169–1175.
[20]M.Ehsani,K.M.Rahman,andH.A.Toliyat,“Propulsionsystemdesign
ofelectricandhybridvehicles,”IEEETrans.Ind.Electron.,vol.44,pp.19–27,Feb.1997.
[21]H.A.Toliyat,K.M.Rahman,andM.Ehsani,“Electricmachinein
electricandhybridvehicleapplication,”inProc.ICPE’95,Seoul,pp.627–635.
[22]M.Ehsani,“Electricallypeakinghybridsystemandmethod,”U.S.
Patent5586613,Dec.1996.
[23]S.MooreandM.Ehsani,“Anempiricallybasedelectrosourcehorizon
lead-acidbatterymodel,”SAEJ.SP-1156,Paper960448,Feb.1996.[24]M.Ehsani,“IntroductiontoELPH:Aparallelhybridvehicleconcept,”
inProc.ELPHConf.,CollegeStation,TX,Oct.1994,pp.17–38.
1778IEEETRANSACTIONSONVEHICULARTECHNOLOGY,VOL.48,NO.6,NOVEMBER1999
[25]K.M.Stevens,“Aversatilecomputermodelforthedesignandanalysis
ofelectricandhybriddrivetrains,”Master’sthesis,TexasA&MUniv.,CollegeStation,1996.
[26]K.L.Butler,K.M.Stevens,andM.Ehsani,“Aversatilecomputer
simulationtoolfordesignandanalysisofelectricandhybriddrivetrains,”in1997SAEProc.ElectricandHybridVehicleDesignStudies,Detroit,MI,Feb.1997,pp.19–25.
[27]“Matlab/simulink,”Version4.2c.1/1.3c,TheMathworksInc.,Natick,
MA.
[28]D.Sherman,“BuickLeSabrelimited,”MotorTrend,pp.65–73,July
1991.
[29]B.K.Powell,“Adynamicmodelforautomotiveenginecontrolanaly-sis,”inProc.18thIEEEConf.DecisionandControl,1979,pp.120–126.[30]C.G.Hochgraf,M.J.Ryan,andH.L.Wiegman,“Enginecontrol
strategyforaserieshybridelectricvehicleincorporatingload-levelingandcomputercontrolledenergymanagement,”SAEJ.SAE/SP-96/1156,pp.11–24.
[31]G.Franklin,J.D.Powell,andM.Workman,DigitalControlofDynamic
Systems.NewYork:Addison-Wesley,1990,pp.222–229.
[32]U.Adler,Ed.,AutomotiveHandbook,2nded.Stuttgart,Germany:
RobertBoschGmbH,1986.
[33]P.Ramachandra,“Optimalandsuboptimalcontrolofautomotiveen-gineef ciencyandemissions,”Ph.D.dissertation,PurdueUniv.,WestLafayette,IN,
1975.
KarenL.Butler(M’94)wasborninPlaquemine,LA,in1963.ShereceivedtheB.S.degreefromSouthernUniversity,BatonRouge,LA,in1985,theM.S.degreefromtheUniversityofTexasatAustinin1987,andthePh.D.degreefromHowardUni-versity,Washington,DC,in1994,allinelectricalengineering.
From1988to1989,shewasaMemberofTech-nicalStaffatHughesAircraftCorporation,CulverCity,CA.SheiscurrentlyanAssistantProfessorintheDepartmentofElectricalEngineeringatTexas
A&MUniversity,CollegeStation.Herresearchfocusesontheareasofcomputerandintelligentsystemsapplicationsinpower,powerdistributionautomation,andmodelingandsimulationofvehiclesandpowersystems.SheistheauthorofseveralpublicationsintheareasofpowersystemprotectionandintelligentsystemsandhasmadeinvitedpresentationsinNigeriaandIndia.SheistheAssistantDirectorofthePowerSystemAutomationLaboratoryatTexasA&MUniversity.
Dr.ButlerisamemberoftheIEEEPowerEngineeringSociety(PES),AmericanSocietyforEngineeringEducation,andtheLouisianaEngineeringSociety.SheisaregisteredProfessionalEngineerintheStatesofLouisiana,Texas,and
Mississippi.
MehrdadEhsani(S’70–M’81–SM’83–F’96)receivedthePh.D.degreeinelectricalengineeringfromtheUniversityofWisconsin,Madison,in1981.Since1981,hehasbeenatTexasA&MUniversity,CollegeStation,whereheisnowaProfessorofElectricalEngineeringandDirectoroftheTexasAppliedPowerElectronicsCenter(TAPC).Heistheauthorofmorethan180publicationsinpulsed-powersupplies,high-voltageengineering,powerelectronics,andmotordrives.Heisthecoauthorofabookonconvertercircuits
forsuperconductivemagneticenergystorageandacontributortoanIEEEguideforself-commutatedconvertersandothermonographs.Heistheauthorof13U.S.andECpatents.Hiscurrentresearchworkisinpowerelectronics,motordrives,andHEV’sandsystems.
Dr.EhsaniwastherecipientofthePrizePaperAwardinstaticpowerconvertersandmotordrivesattheIEEE-IndustryApplicationsSociety1985,1987,and1992AnnualMeetings.In1992,hewasnamedtheHalliburtonProfessorintheCollegeofEngineeringatTexasA&MUniversity.In1994,hewasalsonamedtheDresserIndustriesProfessorinthesamecollege.HehasbeenamemberoftheIEEEPowerElectronicsSocietyAdCom,pastChairmanofthePELSEducationalAffairsCommittee,pastChairmanoftheIEEE-IASIndustrialPowerConverterCommittee,andpastChairmanoftheIEEEMyronZuckerStudent-FacultyGrantprogram.HewastheGeneralChairoftheIEEEPowerElectronicsSpecialistConferencefor1990.HeisanIEEEIndustrialElectronicsSocietyDistinguishedSpeakerandIEEEIndustryApplicationsSocietyDistinguishedLecturer.HeisaregisteredProfessionalEngineerintheStateofTexas.
PreyasKamath(S’94–M’98)wasbornonOctober25,1973inBombay,India.HereceivedtheB.S.degreefromtheUniversityofBombay,Bombay,in1996andtheM.S.degreefromTexasA&MUniversity,CollegeStation,bothinelectricalengineering.
HewasaResearchAssistantfortheELPHgroupatTexasA&MUniversitybetween1996and1998duringwhichhemodeledHEV’sandperformedcomparisonstudies.Currently,heiswithMotorola,Inc.,Schaumburg,IL,asaSystemsEngineer.Hiscurrentresponsibilitiesincludemodelingcomplexcommunicationsystemsandworkingonwide-bandairinterface.Hisinterestsincludewirelesscommunications,signalprocessing,andsystemmodeling.Hehaspublishedarticlesinthe eldofsignalprocessing/communications.
正在阅读:
一个基于matlab的建模与仿真软件包的电动和混合动力电动汽车的设计05-13
荆楚地区非物质文化遗产保护对策初探_基于仙桃市剅河镇的调查03-27
金榜题名学校高一下期英语测试卷(七)11-03
抛物线及其标准方程试题105-19
英语三年级上册unit 4 we love animals08-13
淘宝客服与客户沟通的技巧07-01
住宅区车库安全管理系统 - 图文01-05
营养学教案05-23
新疆少数民族风俗习惯介绍08-25
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 电动汽车
- 软件包
- 建模
- 仿真
- 混合
- 电动
- 基于
- 动力
- matlab
- 一个
- 设计
- 2014江苏省公共基础知识包过题库
- 巧识别监控红外灯
- 浅谈医疗IT隔离电源供电系统
- 2016考研 哈尔滨工业大学计算机科学与技术学院
- 中山一中2011-2012学年高一第一次段考(语文)
- 从_论十大关系_看毛泽东的经济生态思想
- 统计过程控制与诊断:第3讲 控制图的判断准则
- 浅析《傲慢与偏见》中四种不同的婚姻类型
- 2014春节期间消防安全应急预案
- 2009年老旧汽车报废更新补贴资金发放范围及标准
- 第二十九章投影与视图教材分析
- 丰台区2015年1月九年级语文期末试卷及答案
- 产前超声软标志筛查胎儿染色体异常的临床价值
- 1新闻发布须懂公众心理
- 语文学科苏教版七年级上册期末复习题及答案四
- 欢乐颂分集剧情第5集(共45集)_欢乐颂剧情介绍_欢乐颂大结局_欢乐颂演员表
- 大一第一个学期总结
- 最新二级建造师复习提纲-房屋建筑工程建筑施工专业基础知识
- MATLAB--计算国土面积
- 边远地区农村少先队辅导员专业素质的现状分析及发展构思