一个基于matlab的建模与仿真软件包的电动和混合动力电动汽车的设计

更新时间:2023-05-13 07:42:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1770IEEETRANSACTIONSONVEHICULARTECHNOLOGY,VOL.48,NO.6,NOVEMBER1999

AMatlab-BasedModelingandSimulationPackageforElectricandHybridElectricVehicleDesign

KarenL.Butler,Member,IEEE,MehrdadEhsani,Fellow,IEEE,PreyasKamath,Member,IEEE

Abstract—ThispaperdiscussesasimulationandmodelingpackagedevelopedatTexasA&MUniversity,V-Elph2.01.V-Elphfacilitatesin-depthstudiesofelectricvehicle(EV)andhybridEV(HEV)con gurationsorenergymanagementstrate-giesthroughvisualprogrammingbycreatingcomponentsashierarchicalsubsystemsthatcanbeusedinterchangeablyasembeddedsystems.V-Elphiscomposedofdetailedmodelsoffourmajortypesofcomponents:electricmotors,internalcombustionengines,batteries,andsupportcomponentsthatcanbeintegratedtomodelandsimulatedrivetrainshavingallelectric,serieshybrid,andparallelhybridcon gurations.V-ElphwaswrittenintheMatlab/Simulinkgraphicalsimulationlanguageandisportabletomostcomputerplatforms.

ThispaperalsodiscussesthemethodologyfordesigningvehicledrivetrainsusingtheV-Elphpackage.AnEV,aseriesHEV,aparallelHEV,andaconventionalinternalcombustionengine(ICE)drivendrivetrainhavebeendesignedusingthesimulationpackage.Simulationresultssuchasfuelconsumption,vehicleemissions,andcomplexityarecomparedanddiscussedforeachvehicle.

IndexTerms—Electricvehicle,hybridelectricvehicle,model-ing,simulation.

I.INTRODUCTION

RESENTLY,onlyelectricandlow-emissionshybridve-hiclescanmeetthecriteriaoutlinedintheCaliforniaAirRegulatoryBoard(CARB)regulationswhichrequireapro-gressivelyincreasingpercentageofautomobilestobeultraloworzeroemissionsbeginningintheyear1998[1].Thoughpurelyelectricvehicles(EV’s)areapromisingtechnologyforthelong-rangegoalofenergyef ciencyandreducedatmosphericpollution,theirlimitedrangeandlackofsup-portinginfrastructuremayhindertheirpublicacceptance[2].Hybridvehiclesofferthepromiseofhigherenergyef ciencyandreducedemissionswhencomparedwithconventionalautomobiles,buttheycanalsobedesignedtoovercometherangelimitationsinherentinapurelyelectricautomobilebyutilizingtwodistinctenergysourcesforpropulsion.Withhybridvehicles,energyisstoredasapetroleumfuelandinanelectricalstoragedevice,suchasabatterypack,andiscon-vertedtomechanicalenergybyaninternalcombustionengine(ICE)andelectricmotor,respectively.Theelectricmotoris

ThisworkwassupportedbytheTexasHigherEducationCoordinatingBoardAdvancedTechnologyProgram(ATP),TexasA&MUniversityOf ceoftheVicePresidentforResearch,andAssociateProvostforGraduateStudiesthroughtheCenterforEnergyandMineralResourcesandtheTexasTransportationInstitute.

K.L.ButlerandM.EhsaniarewiththeDepartmentofElectricalEngineer-ing,TexasA&MUniversity,CollegeStation,TX77843-3128USA.P.KamathiswiththeMotorola,Inc.,Schaumburg,ILUSA.PublisherItemIdenti erS0018-9545(99)09279-8.

P

usedtoimproveenergyef ciencyandvehicleemissionswhiletheICEprovidesextendedrangecapability.Thoughmanydifferentarrangementsofpowersourcesandconvertersarepossibleinahybridpowerplant,thetwogenerallyacceptedclassi cationsareseriesandparallel[3].

Computermodelingandsimulationcanbeusedtoreducetheexpenseandlengthofthedesigncycleofhybridvehiclesbytestingcon gurationsandenergymanagementstrategiesbeforeprototypeconstructionbegins.Interestinhybridvehiclesimulationgrewinthe1970’swiththedevelopmentofseveralprototypesthatwereusedtocollectaconsiderableamountoftestdataontheperformanceofhybriddrivetrains[4].Studieswerealsoconductedtoanalyzehybridelectricvehicle(HEV)concepts[5]–[11].Severalcomputerprogramshavesincebeendevelopedtodescribetheoperationofhybridelectricpowertrains,including:simpleEVsimulation(SIMPLEV)fromtheDOE’sIdahoNationalLaboratory[12],MARVELfromArgonneNationalLaboratory[13],CarSimfromAeroViron-mentInc.,JANUSfromDurhamUniversity[14],ADVISORfromtheDOE’sNationalRenewableEnergyLaboratory[15],VehicleMissionSimulator[16],andothers[17],[18].Aprevioussimulationmodel(ELPH)developedatTexasA&MUniversitywasusedtostudytheviabilityofanelectricallypeakingcontrolschemeandtodeterminetheapplicabilityofcomputermodelingtohybridvehicledesign[19],butwasessentiallylimitedtoasinglevehiclearchitecture.OtherworkconductedbythehybridvehicledesignteamatTexasA&MUniversityisreportedinpapersbyEhsanietal.[20]–[24].V-Elph[25],[26]isasystem-levelmodeling,simulation,andanalysispackagedevelopedatTexasA&MUniversityusingMatlab/Simulink[27]tostudyissuesrelatedtoEVandHEVdesignsuchasenergyef ciency,fueleconomy,andvehicleemissions.V-Elphfacilitatesin-depthstudiesofpowerplantcon gurations,componentsizing,energymanagementstrategies,andtheoptimizationofimportantcomponentpa-rametersforseveraltypesofhybridorelectriccon gurationorenergymanagementstrategy.Itusesvisualprogrammingtechniques,allowingtheusertoquicklychangearchitectures,parameters,andtoviewoutputdatagraphically.Italsoin-cludesdetailedmodelsthatweredevelopedatTexasA&MUniversityofelectricmotors,internalcombustionengines,andbatteries.

Thispaperdiscussesthemethodologyfordesigningsystem-levelvehiclesusingtheV-Elphpackage.AnEV,aseriesHEV,aparallelEV,andaconventionalICEdrivendrivetrainhavebeendesignedusingthesimulationpackage.Thesimulationresultsarecomparedanddiscussedforeachvehicle.

0018–9545/99$10.00©1999IEEE

BUTLERetal.:MATLAB-BASEDMODELINGANDSIMULATIONPACKAGE

Fig.1.System-levelrepresentationofageneralvehicledrivetraininV-Elph.

II.DRIVETRAINDESIGNMETHODOLOGY

SeverallevelsofdepthareavailableinV-Elphtoallowuserstotakeadvantageofthefeaturesthatinterestthem.Atthemostbasiclevel,ausercanrunsimulationstudiesbyselectinganEV,series,orparallelhybridvehicle,orconventionalvehicledrivetrainmodelprovidedanddisplaytheresultsusingthegraphicalplottingtools.Inadditiontobeingabletochangethedrivecycleandtheconditionsunderwhichthevehicleoperates,theusercanswitchcomponentsinandoutofavehiclemodeltotrydifferenttypesofengines,motors,andbatterymodels.Theusercanalsochangevehiclecharacteristicssuchassizeandweight,gearratios,andthesizeofthecomponentsthatmakeupthedrivetrain.

Anintermediateusercancreatehis/herownvehiclecon g-urationsusingablankvehicledrivetraintemplateasshowninFig.1.Thisdrivetrainwasconstructedgraphicallybyconnectingthemaincomponentblocks(drivecycle,controller,powerplant,andvehicledynamics)ponentscanbeisolatedtorunparametersweepsthatcreateperformancemapswhichassistincomponentsizingandselection.Acontrollerblockisdesignedwithlogicstatementswhichcreatethesignalsrequiredtocontroltheindividualsystem-levelcomponents.Avehicledynamicsblockisdesignedwithinputparameterssuchasroadangle,mass,anddragcoef cientnecessarytocomputevehicleoutputdynamicparameterssuchasenginespeedandroadspeed.Thedrivecycleblockisdesignedbyselectingadrivecyclefromthosesuppliedbythepackageorcreatinganewdrivecycle.

Finally,advanceduserscanpursuesophisticateddesignobjectivessuchasthecreationofentirelynewcomponentmodelsandtheoptimizationofapowerplantbycreatingadd-onfeaturesthatarecompatiblewiththemodelingsysteminterface.V-Elphallowstheinterconnectionofmanytypesofelectricalormechanicalcomponentutilizedinavehicledrivetrain,ponentmodelscanbecreatedfromlookuptables,empir-icalequations,andbothsteady-stateanddynamicequations.EachcomponentmodeliscreatedusingthegeneralmodelandinterfaceshowninFig.2.Thecomponentmodelsarestoredinalibrary,calledthelibraryofcomponentsasshowninFig.3.Thespeedatwhichthesimulationexecutesis

highly

1771

ponentinput/output

interface.

Fig.3.Libraryofcomponents.

dependentonthecomplexityofthecomponentmodelsusedinavehicledesign.VariousdetailedcomponentmodelsarecurrentlyutilizedintheV-Elphpackage.TheyweredevelopedbymembersoftheELPHresearchteamatTexasA&MUniversityanddesignedbasedonsteady-stateanddynamicequations.

III.DESIGN

OF

VEHICLEDRIVETRAINS

Inthissection,thedesignandanalysisofanEVdrivetrain,twoparallelHEVdrivetrainswithdifferentcontrolstrategies,aseriesHEVdrivetrain,andaconventionalICE-drivenvehicledrivetrainusingtheV-Elphpackagearediscussed.Adescriptionisgivenoftheperformancespeci cationsandthecontrolstrategyandpowerplantdevelopedforeachvehicledesign.Atypicalmid-sizedfamilysedanwasusedasthebasisforeachvehicle.Thevehicles’componentsweresizedtoprovideenoughpowertomaintainacruisingspeedof120km/honalevelroadandanaccelerationperformanceof0–100km/hin16sforshorttimeintervals.Thevehicleswerealsodesignedtomaintainhighwayspeedsforseveralhundredseconds.TheICE,motor,battery,andvehicledynamicsmodelswereappropriatelycustomizedtomeetthespeci cvehicleperformancerequirementsforeachvehicledesign.

1772IEEETRANSACTIONSONVEHICULARTECHNOLOGY,VOL.48,NO.6,NOVEMBER

1999

Fig.4.Powerplantrepresentationofconventionalvehicledrivetrainde-signedusingV-Elph.

TABLEI

SPECIFICATIONSOFICEDRIVET

RAIN

Simulationstudieswereperformedforeachvehicleusingasimpleaccelerationanddecelerationdrivecycle,anFTP-75ur-bandrivecycle,afederalhighwaydrivecycle,andacommuterdrivecycle.Variousperformanceparametersgeneratedduringthesimulationstudiesaregraphicallypresentedinthepaper.Atableisincludedwhichcomparesperformanceparameterssuchasfuelconsumptionandemissionsforeachsimulationstudy.

A.ICEConventionalDriveTrainDesign

TheconventionalICE-drivendrivetrainwasdesignedbasedonthespeci cationsofaBuickLeSabre(1991model)[28].Thevehiclesfour-speedautomatictransmissionwasmodeledasamanualtransmissionwithaclutch,retainingthesameoverallgearratios.Itisafour-doorsedansix-passengervehiclewithadesired0–60mphinthe10-srangecharacteristicandacurbweightof3483lbs(1580kgs).ThepowerplantisshowninFig.4.TableIshowstheengineandvehiclespeci cationsutilizedtodesigntheconventionaldrivetrain.B.ParallelHybridElectricDriveTrainDesign

Inatypicalparalleldesign,consistingofanICEandanelectricmotorinatorque-combiningcon guration,eithertheICEortheelectricmotorcanbeconsideredtheprimaryenergysourcedependingonthevehicledesignandenergymanagementstrategy.ThedrivetraincanalsobedesignedsothattheICEandelectricmotorarebothresponsibleforpropulsionoreachistheprimemoveratacertaintimeinthedrivecycle.Acomponent’sfunctionalrolecouldchangewithinthecourseofadrivecycleduetobatterydepletionorothervehiclerequirements.Vehiclearchitecturedecisions,controlstrategies,componentselectionandsizing,gearing,

and

Fig.5.ParallelHEVdrivetraincon guration.

otherdesignparametersbecomeconsiderablymorecomplexinaparallelhybridduetothesheernumberofchoicesandtheireffectonavehiclesperformancegivenaparticularmission.Thevehicledrivetraincon gurationinFig.5wasdesignedinV-ElphforaparallelHEV.Itisbasedonatypicalmid-sizedfamilysedanwithagrossmassof1838Kgthatincludestheadditionalbatteriesusedinthehybridpowerplant.ThedrivetrainincludesacontrollerwhichmanipulatesthetorquecontributionsoftheelectricmotorandICE.Thebatteryprovidespowerfortheinductionmotor.TheICEmodelwassizedtoprovideenoughpowertomaintainacruisingspeedof120km/honalevelroadandtheelectricmachinewassizedtoprovideacceptableaccelerationperformanceof0–100km/hin16sforshorttimeintervals.

TheICEmodelwasdesignedbasedonPowellsengineanalysis[29].Theinductionmachinemodel[20]performstwofunctionsinthedrivetrain:asamotoritprovidestorqueatthewheelstoacceleratethevehicle,andasageneratoritrechargesthebatteryduringdeceleration(regenerativebraking)orwhen-everthetorqueproducedbythepowerplantexceedsthedemandfromthedriver.Vectorcontrolwasutilizedtoextendtheconstantpowerregionofthemotor,makingitpossibletorunthemotoroverawidespeedrange.Themotorcanprovidetherequestedtorqueuptotheconstantpowerthresholdatspeedsabovethebasespeedofthemotor;operationbeyondthispointisrestrictedtoavoidexceedingthemotor’spowerrating.TheHEVdesignutilizesthewidespeedrangeofthevector-controlledinductionmotortoimprovetheoverallsystemef ciency.

Thebatterymodel[23]usesthecurrentloadandbatterystateofchargetodeterminedcbusvoltage.Voltagetendstodropasthestateofchargedecreasesandastheamountofcurrentdrawnfromthebatteryincreases.Atlowcurrents,thebatteryef ciencyisreasonablyhighregardlessofthestateofcharge.

TwoparallelHEVdrivetrainsweredesignedusingdifferentcontrolstrategies,referredtoascontrolstrategy1andcontrolstrategy2.Controlstrategy1operatessuchthattheICErunsataconstantfuelthrottleangleandtheelectricmachinemakesupthedifferencebetweenthetorquerequestedbythedriverandthetorqueproducedbytheICE.Thisschemeaims

BUTLERetal.:MATLAB-BASEDMODELINGANDSIMULATIONPACKAGETABLEII

COMPONENTSOF

PARALLELHYBRIDDRIVET

RAIN

Fig.6.Drivetrainforserieshybridvehicle.

tominimizetheamountoftimethattheICEisinusebymaximizingthespeedatwhichtheICEisengagedtothewheelswhilemaintainingthebatterystateofchargeoverthedrivecycle.Controlstrategy2operatessuchthattheICErunsoveritsentirespeedrangeandmakestheICEthrottleangleafunctionofspeedtomeetthesteady-stateroadload.Thegeneralprinciplebehindeachstrategyisthattheelectricmotorprovidespowerforpropulsionduringthetransients,accelerationtodeceleration,andtheICEprovidespropulsionduringcruising.

ThesizesofthecomponentsfortheparallelhybriddrivetrainarestatedinTableII.

C.SeriesHybridElectricDriveTrainDesign

InaserieshybridEV,onlyoneenergyconverterprovidestorquetothewheelswhiletheothersareusedtorechargeanenergyaccumulator,usuallyabatterypack.Inatypicalserieshybriddesign,anICE/generatorpairchargesthebatteriesandonlythemotoractuallyprovidespropulsion.TheserieshybriddrivetrainshowninFig.6includesacontrollerandpowerplantandwasdesignedbasedonHochgraf’swork[30].Avector-controlledinductionmotorpoweredbyadcbatterypackof156Vsuppliesthepoweratthedrivewheels.Inaddition,thereisanauxiliarypowerunit(APU)comprisingofanICEdrivinganinductiongenerator.TheAPUsuppliespowertothebatterywhenthedemandedcurrentbytheinductionmotorexceedsathresholdvalueof75A.Thelocalcontrollerisresponsibleforthefollowingtasks:

demandingatorque(positiveornegative)fromthein-ductionmotordependingondrivecyclerequirements; forswitchingon/offtheAPU.

Thetorquedemandedfromtheinductionmotorispositiveduringaccelerationandcruisephasesofthedrivecycle(motoringmode)andisnegativeduringthedecelerationphaseofthedrivecycle(generatormode).Duringthemotoring

1773

TABLEIII

COMPONENTS

OF

SERIESHYBRIDDRIVET

RAIN

Fig.7.EVdrivetrain.

mode,currentisdrawnfromthebattery(discharging)andduringgenerationmodecurrentissuppliedtothebattery(charging).

WhentheAPUison,theICEisrunningatitsoptimumspeedandtheinductiongeneratorchargesthebattery;inthe“off”mode,theICEidles.Thus,theAPUisresponsiblefordecreasingthedrainonthebatterypack,especiallyduringtheaccelerationphasesofthedrivecycle.TheICEcontrolisbasedona“constantthrottlestrategy”whichwasfoundtobeoptimum[30].

Thesystemcontrolstrategyforaserieshybridisnotrequiredtobeascomplexasthecontrollerforaparallelhybridsincethereisonlyonetorqueprovider.Fortheseriesdesigndiscussedinthepaper,theclassicproportional,integral,andderivative(PID)controller[31]isutilized.

ThesizesofthecomponentsfortheserieshybriddrivetrainarestatedinTableIII.D.ElectricDriveTrainDesign

InEV’s,alloftheonboardsystemsarepoweredbybatteriesandelectricmotors.TheelectricdrivetraindesignedusingV-ElphisshowninFig.7.

IntheEV,allthetorquedemandedatthedrivewheelsissolelymetbyavector-controlledinductionmotorpoweredbyadcbatterypackof240V.Thecontrollerdemandsatorque(positiveornegative)fromtheinductionmotor,dependinguponthetorquedemandedbythevehicletomeetthedrivecyclespeed.Theinductionmotortriestomeetthisdemandedtorque.Positivepowerisdemandedfromtheinductionmotor(operatinginmotoringmode)duringaccelerationandcruisephasesofthedrivecycleandnegativepowerisdemandedduringthedecelerationphaseofthedrivecycle(operatingingeneratormode).Duringthemotoringphasetheinductionmotordrawscurrentfromthebatterypack(discharging)andduringthegeneratormodetheinductionmotorsuppliescurrent

1774IEEETRANSACTIONSONVEHICULARTECHNOLOGY,VOL.48,NO.6,NOVEMBER1999

TABLEIV

COMPONENTSOF

ELECTRICVEHICLEDRIVET

RAIN

Fig.8.Drivecycleoneconsistingofacceleration,cruise,anddeceleration.

toit(recharging).Theinductionmotorandbatterypackaresizedtosatisfythepeakpowerrequirementsofthedrivecycle.ThesizesofthecomponentsfortheEVdrivetrainarestatedinTableIV.

IV.SIMULATIONSTUDIES

ToillustratetheperformancepotentialofnewtechnologyvehiclessuchaselectricandhybridEV’s,anelectric,parallelHEV,andseriesHEVweredesignedusingtheV-ELPHpackage.Sincetheenginemodelandmotormodelwerenot ne-tunedtoasetofphysicalcomponents,thesimulationre-sultshavesomeinaccuracies.Theauthors,therefore,designedaconventionalICE-drivenvehicletoserveasthebaselinevehicle.Theninsteadofattachingsigni cancetotheexactsimulationresults,theperformanceofthenewtechnologyvehiclesisinterpretedincomparisontothebaselinevehicle.Fourdrivecycleswereappliedtothevariousvehicledrivetraindesigns.Drivecycleoneconsistedofagradualaccelerationto120km/h,cruise,andthenadecelerationbacktostopasshowninFig.8.DrivecyclestwoandthreewerecomposedoftheFTP-75urbandrivecycleandthefederalhighwaydrivecycle[32]asshowninFigs.9and10,respectively.DrivecyclefourwasacommuterdrivecycleasshowninFig.11whichwasdevelopedbycombiningthreeFTP-75urbandrivecycleswithtwofederalhighwaydrivecycles.Thetwohighwaycyclesareinterspacedbetweeneachoftheurbancycles.

TheV-Elphpackageincludesplottingtoolsthatprovidegraphicaldisplaysofoutputvariablesgeneratedduringsimu-lationstudies.Also,V-ElphprovidesamechanismtofacilitatethestudyofvariousaspectsrelatedtoelectricandhybridEVdrivetraindesignsuchascontrolstrategiesandvehiclecon gurations(e.g.,EVandHEV).Thefollowing guresillustratetheresultsofvarioussimulationstudiesconductedusingthefourdrivecycleswiththe vevehiclecon gurations.Fig.12showsaplotofelectricmotor(EM)torqueandICEtorqueversustimeforthedrivecycleoneappliedto

the

Fig.9.FTP-75urbandrivecycle—drivecycle

two.

Fig.10.Federalhighwaydrivecycle—drivecycle

three.

muterdrivecycle—drivecyclefour.

parallelvehicleusingcontrolstrategy1.Itillustrateshowtheelectricmotortorqueincreaseswiththeincreaseinvehiclespeed.Whenthevehiclereachescruisingspeed,theelectricmotortorquereducestoaslightlynegativeconstantvaluewhiletheICEtorquemaintainsaconstantvalue.Thenduringthedecelerationphaseofthedrivecycle,theICEtorqueisatitsidlingtorquewhiletheelectricmotortorqueisprovidinganegativetorque,operatingingeneratingmode.

BUTLERetal.:MATLAB-BASEDMODELINGANDSIMULATIONPACKAGE

Fig.12.EMtorqueandICEtorquefordrivecycleoneappliedtotheparallelvehiclewithcontrolstrategy

1.

(a)

(b)

Fig.13.(a)EMtorqueforfederalurbandrivecycleappliedtoparallelvehiclewithcontrolstrategy1.(b)ICEtorqueforfederalurbandrivecycleappliedtoparallelvehiclewithcontrolstrategy1.

Fig.13and14showthesplitoftheICEandelectricmotortorqueforcontrolstrategies1and2.

Fig.15and16showtheEMtorqueforthefederalurbandrivecycleappliedtotheserieshybridEVandEVwhicharesimilarbecauseforbothvehiclestheelectricmachineisthesolesourceofpropulsion.InFigs.17and18,thedifferencesinthebatterycurrentforthetwotestcasesareillustrated;thebatterycurrentislargerfortheEVthantheseriesHEV.TableVshowsasummaryofresultsgeneratedbytheV-Elphpackageduringtheapplicationofthefourdrivecyclestothe vevehicledrivetrains.Theweightandcontrolcomplexityisincludedinthetableforeachvehicledrivetrain.Thecontrolcomplexitywasdeterminedbyassessingthecomplexityofthesystemcontrollerusedtomanipulatethecomponentsprovidingpropulsiontothewheels,e.g.,thecontrollerfortheparallelHEVcontrolstheICEandelectricmachine.Foreachdrivecyclethefollowingparametersweretabulated:plex

equations

1775

(a)

(b)

Fig.14.(a)EMtorqueforfederalurbandrivecycleappliedtoparallelvehiclewithcontrolstrategy2.(b)ICEtorqueforfederalurbandrivecycleappliedtoparallelvehiclewithcontrolstrategy

2.

Fig.15.EMtorqueforfederalurbandrivecycleappliedtoseries

HEV.

Fig.16.EMtorqueforfederalurbandrivecycleappliedtoEV.

developedbyRamachandrain1975[33]areimplementedintheV-Elphpackagetocomputetheemissions.Thefuelconsumptioniscomputedasthetotaldistancetraveleddividedbythetotalfuelconsumedduringthedrivecycle.AfuelrateiscomputedbasedonworkbyPowell[29]andthenintegratedoverthetimeofthedrivecycletoyieldthefuelconsumed.Generalobservationsofthecomparisonoftheconventionalvehicletothenewtechnologyvehiclesshowthat:thefuelconsumptionimprovedforeachoftheHEV’swhichyieldeda

1776IEEETRANSACTIONSONVEHICULARTECHNOLOGY,VOL.48,NO.6,NOVEMBER1999

COMPARISONSBETWEEN

TABLEV

VARIOUSVEHICLEDRIVETRAINC

ONFIGURATIONS

reductioninemissions.IngenerallycomparingtheEVtotheHEV’s,thebatteryusagewasless.

Theresultsfortheurbandrivecycle,whichiscomposedofmanyquickaccelerationanddecelerationinstances,showanimprovementinthefuelconsumptionfortheparallelHEVandseriesHEVcomparedtotheconventionalvehicle.Alsotheengineemissionsweregreatlyreduced.FromFigs.15and16,itwasnotedearlierthattheEMtorqueareverysimilarforthefederalurbandrivecycleappliedtotheseriesHEVandEV.However,thedifferenceintheirchangeinthebatteryusageareduetotheinclusionoftheICEintheseriesHEVwhichusesthisfuelsourcetoprovidepowertorechargethebatteries.

ThestrategyofthecontrollerfortheparallelHEVusingcontrolstrategy1wastominimizetheuseoftheICE.Fig.13(a)and(b)showsthedivisionoftheICEandEMtorquefortheurbandrivecycleappliedtotheparallelvehicledrivetrainusingcontrolstrategy1.TheICEtorqueisonlygeneratedwhenthedemandedvehiclespeedisgreaterthan60km/h.Hence,themotorprovidesmostofthepowertothewheelsduringthedrivecycle.ThisbehaviorcanbeseenbycomparingtheenergyusagefortheseriesHEVof2.82MJ

BUTLERetal.:MATLAB-BASEDMODELINGANDSIMULATIONPACKAGE

Fig.17.

Batterycurrentforfederalurbandrivecycleappliedtoseries

HEV.

Fig.18.BatterycurrentforfederalurbandrivecycleappliedtoEV.

andfortheparallelHEVusingcontrolstrategy1of2.67MJwhichshowsthatthemotorintheparallelHEVisusedalmostasmuchasthemotorintheseriesHEV.Thus,thefuelconsumption(km/l)fortheparallelHEVusingcontrolstrategy1isextremelylargeduetotheminimalusageoftheICE.MinimizationoftheICEthrottleisthecontrolstrategyfortheparallelHEVusingcontrolstrategy2.TheICEthrottlepositionisdeterminedusingthesteady-stateload(aerodynamicdragandfriction)requiredataparticularvehiclespeed.Incomparingtheperformanceofthisdrivetrainusingtheurbanandhighwaydrivecycles,thefuelconsumption,thekilometerstraveledperliter,fortheurbancycleisgreaterbecausethemotorisusedmoreduringtheurbancyclethanthehighwaycycle.

Furthermore,thedifferencesintheperformanceofthetwocontrolstrategiesforaparallelHEVarealsoillustratedbycomparingthefuelconsumptionandenergyusageoftheparallelHEV’sforthefederalurbandrivecycle.

SincethebatterypackisthesolepowersupplierintheEV,itsenergyusageisgreaterthantheparallelorserieshybridvehicles,asexpected.

V.CONCLUSION

Thispaperdiscussedanewdrivetrainmodeling,simulation,andanalysispackagedevelopedatTexasA&MUniversityusingMatlab/SimulinktostudyissuesrelatedtoEVandHEVdesignsuchasenergyef ciency,fueleconomy,andvehicleemissions.Thepackageusesvisualprogrammingtechniques,allowingtheusertoquicklychangearchitectures,parameters,andtoviewoutputdatagraphically.Italsoincludesdetailedmodelsofelectricmotors,internalcombustionengines,andbatteries.Thedesignsforfourvehicledrivetrains—anEV,parallelHEV,seriesHEV,andconventionalICEvehicle—are

1777

presented.Theresultsofapplyingsimple,commuter,federalurban,andfederalhighwaydrivecyclesarecompared.Theseresultsillustratethe exibilityofthepackageforstudyingvariousissuesrelatedtoelectricandhybridEVdesign.ThesimulationpackagecanrunonaPCoraUnix-basedwork-station.

ACKNOWLEDGMENT

TheauthorswouldliketoacknowledgetheassistanceofZ.Rahmaninpreparingthispaper.

REFERENCES

[1]M.J.Riezenman,“Electricvehicles,”IEEESpectrum,pp.18–101,Nov.

1992.

[2]V.Wouk,“Hybrids:Thenandnow,”IEEESpectrum,pp.16–21,July

1995.

[3]A.Kalberlah,“Electrichybriddrivesystemsforpassengercarsand

taxis,”SAETech.Rep.910247,1991.

[4]B.Bates,“OntheroadwithaFordHEV,”IEEESpectrum,pp.22–25,

July1995.

[5]M.Hayashidaetal.,“Studyonserieshybridelectriccommuter-car

concept,”SAEJ.SP-1243,Paper970197,Feb.1997.

[6]A.Nikopoulos,H.Hong,andT.Krepec,“Energyconsumptionstudyfor

ahybridelectricvehicle,”SAEJ.SP-1243,Paper970198,Feb.1997.[7]R.D.Senger,“ValidationofADVISORasasimulationtoolforaseries

hybridelectricvehicleusingtheVirginiaTechfuturecarLumina,”Master’sthesis,VirginiaTechUniv.,Blacksburg,1997.

[8]D.HermanceandS.Sasaki,“Hybridelectricvehiclestakethestreets,”

IEEESpectrum,pp.48–52,Nov.1998.

[9]Y.Takehisa,S.Shoichi,andA.Tetsuya,“Toyotahybridsystem:Its

conceptandtechnologies,”inProc.FISITAWorldAutomotiveConf.,Paris,France,Sept.1998.

[10]P.A.AbthoffandJ.S.Kramer,“TheMerecedes-BenzC-classseries

hybrid,”inProc.ElectricVehicleSymp.14,Orlando,FL,Dec.1997.[11]L.J.OswaldandG.D.Skellenger,“TheGM/DOEhybridvehicle

propulsionsystemsprogram:Astatusreport,”inProc.ElectricVehicleSymp.15,Orlando,FL,Dec.1997.

[12]G.Cole,“Simpleelectricvehiclesimulation(SIMPLEV)v3.1,”DOE

b.

[13]W.W.MarrandW.J.Walsh,“Life-cyclecostevaluationsofelec-tric/hybridvehicles,”EnergyConversionManagement,vol.33,no.9,pp.849–853,1992.

[14]J.R.Bumbyetal.,“Computermodelingoftheautomotiveenergyre-quirementsforinternalcombustionengineandbatteryelectric-poweredvehicles,”Proc.Inst.Elect.Eng.,vol.132,pt.A,no.5,pp.265–279,1985.

[15]K.B.WipkeandM.R.Cuddy,“Usinganadvancedvehiclesimulator

(ADVISOR)toguidehybridvehiclepropulsionsystemdevelopment,”availableat:http://www.hev.doe.gov.

[16]R.Noons,J.Swann,andA.Green,“Theuseofsimulationsoftware

toassessadvancedpowertrainsandnewtechnologyvehicles,”inProc.ElectricVehicleSymp.15,Brussels,Belgium,Oct.1998.

[17]B.Auert,C.Cheny,B.Raison,andA.Berthon,“Softwaretoolforthe

simulationoftheelectromechanicalbehaviorofahybridvehicle,”inProc.ElectricVehicleSymp.15,Brussels,Belgium,Oct.1998.

[18]C.KrickeandS.Hagel,“Ahybridelectricvehiclesimulationmodel

forcomponentdesignandenergymanagementoptimization,”inProc.FISITAWorldAutomotiveCongress,Paris,France,Sept.1998.

[19]D.L.BuntinandJ.W.Howze,“Aswitchinglogiccontrollerfora

hybridelectric/ICEvehicle,”inProc.AmericanControlConf.,Seattle,WA,June1995,pp.1169–1175.

[20]M.Ehsani,K.M.Rahman,andH.A.Toliyat,“Propulsionsystemdesign

ofelectricandhybridvehicles,”IEEETrans.Ind.Electron.,vol.44,pp.19–27,Feb.1997.

[21]H.A.Toliyat,K.M.Rahman,andM.Ehsani,“Electricmachinein

electricandhybridvehicleapplication,”inProc.ICPE’95,Seoul,pp.627–635.

[22]M.Ehsani,“Electricallypeakinghybridsystemandmethod,”U.S.

Patent5586613,Dec.1996.

[23]S.MooreandM.Ehsani,“Anempiricallybasedelectrosourcehorizon

lead-acidbatterymodel,”SAEJ.SP-1156,Paper960448,Feb.1996.[24]M.Ehsani,“IntroductiontoELPH:Aparallelhybridvehicleconcept,”

inProc.ELPHConf.,CollegeStation,TX,Oct.1994,pp.17–38.

1778IEEETRANSACTIONSONVEHICULARTECHNOLOGY,VOL.48,NO.6,NOVEMBER1999

[25]K.M.Stevens,“Aversatilecomputermodelforthedesignandanalysis

ofelectricandhybriddrivetrains,”Master’sthesis,TexasA&MUniv.,CollegeStation,1996.

[26]K.L.Butler,K.M.Stevens,andM.Ehsani,“Aversatilecomputer

simulationtoolfordesignandanalysisofelectricandhybriddrivetrains,”in1997SAEProc.ElectricandHybridVehicleDesignStudies,Detroit,MI,Feb.1997,pp.19–25.

[27]“Matlab/simulink,”Version4.2c.1/1.3c,TheMathworksInc.,Natick,

MA.

[28]D.Sherman,“BuickLeSabrelimited,”MotorTrend,pp.65–73,July

1991.

[29]B.K.Powell,“Adynamicmodelforautomotiveenginecontrolanaly-sis,”inProc.18thIEEEConf.DecisionandControl,1979,pp.120–126.[30]C.G.Hochgraf,M.J.Ryan,andH.L.Wiegman,“Enginecontrol

strategyforaserieshybridelectricvehicleincorporatingload-levelingandcomputercontrolledenergymanagement,”SAEJ.SAE/SP-96/1156,pp.11–24.

[31]G.Franklin,J.D.Powell,andM.Workman,DigitalControlofDynamic

Systems.NewYork:Addison-Wesley,1990,pp.222–229.

[32]U.Adler,Ed.,AutomotiveHandbook,2nded.Stuttgart,Germany:

RobertBoschGmbH,1986.

[33]P.Ramachandra,“Optimalandsuboptimalcontrolofautomotiveen-gineef ciencyandemissions,”Ph.D.dissertation,PurdueUniv.,WestLafayette,IN,

1975.

KarenL.Butler(M’94)wasborninPlaquemine,LA,in1963.ShereceivedtheB.S.degreefromSouthernUniversity,BatonRouge,LA,in1985,theM.S.degreefromtheUniversityofTexasatAustinin1987,andthePh.D.degreefromHowardUni-versity,Washington,DC,in1994,allinelectricalengineering.

From1988to1989,shewasaMemberofTech-nicalStaffatHughesAircraftCorporation,CulverCity,CA.SheiscurrentlyanAssistantProfessorintheDepartmentofElectricalEngineeringatTexas

A&MUniversity,CollegeStation.Herresearchfocusesontheareasofcomputerandintelligentsystemsapplicationsinpower,powerdistributionautomation,andmodelingandsimulationofvehiclesandpowersystems.SheistheauthorofseveralpublicationsintheareasofpowersystemprotectionandintelligentsystemsandhasmadeinvitedpresentationsinNigeriaandIndia.SheistheAssistantDirectorofthePowerSystemAutomationLaboratoryatTexasA&MUniversity.

Dr.ButlerisamemberoftheIEEEPowerEngineeringSociety(PES),AmericanSocietyforEngineeringEducation,andtheLouisianaEngineeringSociety.SheisaregisteredProfessionalEngineerintheStatesofLouisiana,Texas,and

Mississippi.

MehrdadEhsani(S’70–M’81–SM’83–F’96)receivedthePh.D.degreeinelectricalengineeringfromtheUniversityofWisconsin,Madison,in1981.Since1981,hehasbeenatTexasA&MUniversity,CollegeStation,whereheisnowaProfessorofElectricalEngineeringandDirectoroftheTexasAppliedPowerElectronicsCenter(TAPC).Heistheauthorofmorethan180publicationsinpulsed-powersupplies,high-voltageengineering,powerelectronics,andmotordrives.Heisthecoauthorofabookonconvertercircuits

forsuperconductivemagneticenergystorageandacontributortoanIEEEguideforself-commutatedconvertersandothermonographs.Heistheauthorof13U.S.andECpatents.Hiscurrentresearchworkisinpowerelectronics,motordrives,andHEV’sandsystems.

Dr.EhsaniwastherecipientofthePrizePaperAwardinstaticpowerconvertersandmotordrivesattheIEEE-IndustryApplicationsSociety1985,1987,and1992AnnualMeetings.In1992,hewasnamedtheHalliburtonProfessorintheCollegeofEngineeringatTexasA&MUniversity.In1994,hewasalsonamedtheDresserIndustriesProfessorinthesamecollege.HehasbeenamemberoftheIEEEPowerElectronicsSocietyAdCom,pastChairmanofthePELSEducationalAffairsCommittee,pastChairmanoftheIEEE-IASIndustrialPowerConverterCommittee,andpastChairmanoftheIEEEMyronZuckerStudent-FacultyGrantprogram.HewastheGeneralChairoftheIEEEPowerElectronicsSpecialistConferencefor1990.HeisanIEEEIndustrialElectronicsSocietyDistinguishedSpeakerandIEEEIndustryApplicationsSocietyDistinguishedLecturer.HeisaregisteredProfessionalEngineerintheStateofTexas.

PreyasKamath(S’94–M’98)wasbornonOctober25,1973inBombay,India.HereceivedtheB.S.degreefromtheUniversityofBombay,Bombay,in1996andtheM.S.degreefromTexasA&MUniversity,CollegeStation,bothinelectricalengineering.

HewasaResearchAssistantfortheELPHgroupatTexasA&MUniversitybetween1996and1998duringwhichhemodeledHEV’sandperformedcomparisonstudies.Currently,heiswithMotorola,Inc.,Schaumburg,IL,asaSystemsEngineer.Hiscurrentresponsibilitiesincludemodelingcomplexcommunicationsystemsandworkingonwide-bandairinterface.Hisinterestsincludewirelesscommunications,signalprocessing,andsystemmodeling.Hehaspublishedarticlesinthe eldofsignalprocessing/communications.

本文来源:https://www.bwwdw.com/article/bbpe.html

Top