能量代谢
更新时间:2023-12-22 07:30:01 阅读量: 教育文库 文档下载
能量代谢
第六章 生物氧化(Biological oxidation)
第一节 概 述
体内大部分物质都可进行氧化反应,在生物体内进行的氧化反应与体外氧化反应有许多共同之处:它们都遵循氧化反应的一般规律,常见的氧化方式有脱电子、脱氢和加氧等类型;最终氧化分解产物是CO2和H2O,同时释放能量。但是生物氧化反应又有其特点:①体外氧化反应主要以热能形式释放能量;而生物氧化主要以生成ATP方式释放能量,为生物体所利用。②其最大区别在于:体外氧化往往在高温,强酸,强碱或强氧化剂的催化下进行;而生物氧化是在恒温(37℃)和中性pH环境下进行,催化氧化反应的催化剂是酶。 一、生物氧化酶类
体内催化氧化反应的酶有许多种,按照其催化氧化反应方式不同可分为三大类。 (一)脱氢氧化酶类
这一类中依据其反应受氢体或氧化产物不同,又可以分为三种。 1.氧化酶类(oxidases)
氧化酶直接作用于底物,以氧作为受氢体或受电子体,生成产物是水。氧化酶均为结合蛋白质,辅基常含有Cu2+,如细胞色素氧化酶、酚氧化酶、抗坏血酸氧化酶等。抗坏血酸氧化酶可催化下述反应:
第 1 页 共 102 页
2.需氧脱氢酶类(aerobic dehydrogenases)
需氧脱氢酶以FAD或FMN为辅基,以氧为直接受氢体,产物为H2O2或超氧离子(O2),某些色素如甲烯蓝(methylene blue,MB)、铁氰化钾([K3Fe(CN)6]、二氯酚靛酚可以作为这类酶的人工受氢体。如D氨基酸氧化酶(辅基FAD)、L-氨基酸氧化酶(辅基FMN)、黄嘌呤氧化酶(辅基FAD)、醛脱氢酶(辅基FAD)、单胺氧化酶(辅基FAD)、二胺氧化酶等。
粒细胞中NADH氧化酶和NADPH氧化酶也是需氧脱氢酶,它们催化下述反应:
超氧离子在超氧化物歧化酶(superoxide dismutase,SOD)催化下生成H2O2与O2:
第 2 页 共 102 页
3.不需氧脱氢酶类(anaerobic dehydrogenases)
这是人体内主要的脱氢酶类,其直接受氢体不是O2,而只能是某些辅酶(NAD+、NADP+)或辅基(FAD、FMN),辅酶或辅基还原后又将氢原子传递至线粒体氧化呼吸链,最后将电子传给氧生成水,在此过程中释放出来的能量使ADP磷酸化生成ATP,如3磷酸甘油醛脱氢酶、琥珀酸脱氢酶、细胞色素体系等。
4.加氧酶类(oxygenases)
顾名思义,加氧酶催化加氧反应。根据向底物分子中加入氧原子的数目,又可分为加单氧酶(monooxygenase)和加双氧酶(dioxygenase)。
(1)加单氧酶 又称为多功能氧化酶、混合功能氧化酶(mixed function oxidase)、羟化酶(hydroxylase)。加单氧酶催化O2分子中的一个原子加到底物分子上使之羟化,另一个氧原子被NADPH+H+提供的氢还原生成水,在此氧化过程中无高能磷酸化合物生成,反应如下:
第 3 页 共 102 页
加单氧酶实际上是含有黄素酶及细胞色素的酶体系,常常是由细胞色素P450、NADPH细胞色素P450还原酶、NADPH和磷脂组成的复合物。细胞色素P450是一种以血色素为辅基的b族细胞色素,其中的Fe3+可被Na2S2O3等还原为Fe2+,还原型的细胞色素P450与CO结合后在450nm有最大吸收峰,故名细胞色素P450,它的作用类似于细胞色素aa3,能与氧直接反应,将电子传递给氧,因此也是一种终末氧化酶。
加单氧酶主要分布在肝、肾组织微粒体中,少数加单氧酶也存在于线粒体中,加单氧酶主要参与类固醇激素(性激素、肾上腺皮质激素)、胆汁酸盐、胆色素、活性维生素D的生成和某些药物、毒物的生物转化过程。加单氧酶可受底物诱导,而且细胞色素P450基质特异性低,一种基质提高了加单氧酶的活性便可同时加快几种物质的代谢速度,这与体内的药物代谢关系十分密切,例如以苯巴比妥作诱导物,可以提高机体代谢胆红素、睾酮、氢化可地松、香豆素、洋地黄毒苷的速度,临床用药时应予考虑。
(2)加双氧酶 此酶催化O2分子中的两个原子分别加到底物分子中构成双键的两个碳原子上,如色氨酸吡咯酶(色氨酸加双氧酶)、胡萝卜素加双氧酶分别催化下述反应:
5.过氧化氢酶和过氧化物酶
第 4 页 共 102 页
前已叙及需氧脱氢酶和超氧化物歧化酶催化的反应中有H2O2生成。过氧化氢具有一定的生理作用,粒细胞和吞噬细胞中的H2O2可杀死吞噬的细菌,甲状腺上皮细胞和粒细胞中的H2O2可使I氧化生成I2,进而使蛋白质碘化,这与甲状腺素的生成和消灭细菌有关。但是H2O2也可使巯基酶和蛋白质氧化失活,还能氧化生物膜磷脂分子中的多不饱和脂肪酸,损伤生物膜结构、影响生物膜的功能,此外H2O2还能破坏核酸和粘多糖。人体某些组织如肝、肾、中性粒细胞及小肠粘膜上皮细胞中的过氧化物酶体内含有过氧化氢酶(触酶)和过氧化物酶,可利用或消除细胞内的H2O2和过氧化物,防止其含量过高而起保护作用。 (1)过氧化氢酶(Catalase)此酶催化两个H2O2分子的氧化还原反应,生成H2O并释放出O2。
过氧化氢酶的催化效率极高,每个酶分子在0℃每分钟可催化264万个过氧化氢分子分解,因此人体一般不会发生H2O2的蓄积中毒。
(2)过氧化物酶(Peroxidase)此酶催化H2O2或过氧化物直接氧化酚类或胺类物质。 R+H2O2——→RO+H2O或RH2+H2O2——→R+2H2O
某些组织的细胞中还有一种含硒(Se)的谷胱甘肽过氧化物酶(glutathione peroxidase),可催化下述反应: H2O2+2G-SH——→2H2O+GSSG ROOH+2G-SH——→ROH+GSSG+H2O
生成的GSSG又可在谷胱甘肽还原酶催化下由NADPH+H+供氢还原生成G-SH:
第 5 页 共 102 页
临床工作中判定粪便、消化液中是否有隐血时,就是利用血细胞中的过氧化物酶活性将愈创木酯或联苯胺氧化成蓝色化合物。 二、生物氧化的基本概念
机体内进行的脱氢,加氧等氧化反应总称为生物氧化,按照生理意义不同可分为两大类,一类主要是将代谢物或药物和毒物等通过氧化反应进行生物转化,这类反应不伴有ATP的生成;另一类是糖、脂肪和蛋白质等营养物质通过氧化反应进行分解,生成H2O和CO2,同时伴有ATP生物能的生成,这类反应进行过程中细胞要摄取O2,释放CO2故又形象地称之为细胞呼吸(cellular respiration)。 代谢物在体内的氧化可以分为三个阶段,首行是糖、脂肪和蛋白质经过分解代谢生成乙酰辅酶A中的乙酰基;接着乙酰辅酶A进入三羧酸循环脱氢,生成CO2并使NAD+和FAD还原成NADH+H+、FADH2;第三阶段是NADH+H+和FADH2中的氢经呼吸链将电子传递给氧生成水,氧化过程中释放出来的能量用于ATP合成。从广义来讲,上述三个阶段均为生物氧化,狭义地说只有第三个阶段才算是生物氧化,这是体内能量生成的主要阶段,有关的前两个阶段已在代谢各章中讲述,本章只讨论第三个阶段,即代谢物脱下的氢是如何交给氧生成水的?细胞通过什么方式将氧化过程中释放的能量转变成ATP分子中的高能键的?
第二节 呼 吸 链
呼吸链(respiratory chain)是由一系列的递氢体(hydrogen transfer)和递电子体(eletron transfer)按一定的顺序排列所组成的连续反应体系,它将代谢物脱下的成对氢原子交给氧生成水,同时有ATP生成。实际上呼吸链的作用代表着线粒体最基本的功能,呼吸链中的递氢体和递电子体就是能传递氢原子或电子的载体,由于氢原子可以看作是由H+和e组成的,所以递氢体也是递电子体,递氢体和递电子体的本质是酶、辅酶、辅基或辅因子。
第 6 页 共 102 页
一、呼吸链的组成
构成呼吸链的递氢体和递电子体主要分为以下五类 (一)尼克酰胺腺嘌呤二核苷酸(NAD+)或称辅酶I(CoI)。
为体内很多脱氢酶的辅酶,是连接作用物与呼吸链的重要环节,分子中除含尼克酰胺(维生素PP)外,还含有核糖、磷酸及一分子腺苷酸(AMP),其结构如下:
NAD+的主要功能是接受从代谢物上脱下的2H(2H++2e),然后传给另一传递体黄素蛋白。
在生理pH条件下,尼克酰胺中的氮(吡啶氮)为五价的氮,它能可逆地接受电子而成为三价氮,与氮对位的碳也较活泼,能可逆地加氢还原,故可将NAD+视为递氢体。反应时,NAD+的尼克酰胺部分可接受一个氢原子及一个电子,尚有一个质子(H+)留在介质中。
第 7 页 共 102 页
此外,亦有不少脱氢酶的辅酶为尼克酰胺腺嘌呤二核苷酸磷酸(NADP+),又称辅酶Ⅱ(CoⅡ),它与NAD+不同之处是在腺苷酸部分中核糖的2′位碳上羟基的氢被磷酸基取代而成。
当此类酶催化代谢物脱氢后,其辅酶NADP+接受氢而被还原生成NADPH+H+,它须经吡啶核苷酸转氢酶(pyridine nucleotide transhydrogenase)作用将还原当量转移给NAD+,然后再经呼吸链传递,但NADPH+H+一般是为合成代谢或羟化反应提供氢。
第 8 页 共 102 页
(二)黄素蛋白(flavoproteins)
黄素蛋白种类很多,其辅基有两种,一种为黄素单核苷酸(FMN),另一种为黄素腺嘌呤二核苷酸(FAD),两者均含核黄素(维生素B2),此外FMN尚含一分子磷酸,而FAD则比FMN多含一分子腺苷酸(AMP),其结构如下:
第 9 页 共 102 页
在FAD、FMN分子中的异咯嗪部分可以进行可逆的脱氢加氢反应。
第 10 页 共 102 页
第 11 页 共 102 页
FAD或FMN与酶蛋白部分之间是通过非共价键相连,但结合牢固,因此氧化与还原(即电子的失与得)都在同一个酶蛋白上进行,故黄素核苷酸的氧化还原电位取决于和它们结合的蛋白质,所以有关的标准还原电位指的是特定的黄素蛋白,而不是游离的FMN或FAD;在电子转移反应中它们只是在黄素蛋白的活性中心部分,而其本身不能作为作用物或产物,这和NAD+不同,NAD+与酶蛋白结合疏松,当与某酶蛋白结合时可以从代谢物接受氢,而被还原为NADH,后者可以游离,再与另一种酶蛋白结合,释放氢后又被氧化为NAD+。 多数黄素蛋白参与呼吸链组成,与电子转移有关,如NADH脱氢酶(NADh dehydrogenase)以FMN为辅基,是呼吸链的组分之一,介于NADH与其它电子传递体之间;琥珀酸脱氢酶,线粒体内的甘油磷酸脱氢酶(glycerol phosphate dehydrogenase)的辅基为FAD,它们可直接从作用物转移还原当量H++e reducing equivalent)到呼吸链,此外脂肪酰CoA脱氢酶与琥珀酸脱氢酶相似,亦属于FAD为辅基的黄素蛋白类,也能将还原当量从作用物传递进入呼吸链,但中间尚需另一电子传递体称为电子转移黄素蛋白(electrontransferring flavoprotein,ETFP,辅基为FAD)参与才能完成。 (三)铁硫蛋白(ironsulfur proteins,Fe-S)
又称铁硫中心,其特点是含铁原子。铁是与无机硫原子或是蛋白质肽链上半胱氨酸残基的硫相结合,常见的铁硫蛋白有三种组合方式(a)单个铁原子与4个半胱氨酸残基上的巯基硫相连。(b)两个铁原子、两个无机硫原子组成(2Fe-2S),其中每个铁原子还各与两个半胱氨酸残基的巯基硫相结合。(c)由4个铁原子与4个无机硫原子相连(4Fe4S),铁与硫相间排列在一个正六面体的8个顶角端;此外4个铁原子还各与一个半胱氨酸残基上的巯基硫相连(图6-1)。
图6-1 铁硫蛋白结构
(a)单个铁与半胱氨酸硫相连 (b)2Fe-2S (c)4Fe-4S
铁硫蛋白中的铁可以呈两价(还原型),也可呈三价(氧化型),由于铁的氧化、还原而达到传递电子作用。
第 12 页 共 102 页
第 13 页 共 102 页
在呼吸链中它多与黄素蛋白或细胞色素b结合存在。 (四)泛醌(ubiquinone,UQ或Q)
亦称辅酶Q(coenzyme Q),为一脂溶性苯醌,带有一很长的侧链,是由多个异戊二烯(isoprene)单位构成的,不同来源的泛醌其异戊二烯单位的数目不同,在哺乳类动物组织中最多见的泛醌其侧链由10个异戊二烯单位组成。
泛醌接受一个电子和一个质子还原成半醌,再接受一个电子和质子则还原成二氢泛醌,后者又可脱去电子和质子而被氧化恢复为泛醌。
(五)细胞色素体系
1926年Keilin首次使用分光镜观察昆虫飞翔肌振动时,发现有特殊的吸收光谱,因此把细胞内的吸光物质定名为细胞色素。细胞色素是一类含有铁卟啉辅基的色蛋白,属于递电子体。线粒体内膜中有细胞色素b、c1、c、aa3,肝、肾等组织的微粒体中有细胞
第 14 页 共 102 页
色素P450。细胞色素b、c1、c为红色细胞素,细胞色素aa3为绿色细胞素。不同的细胞色素具有不同的吸收光谱,不但其酶蛋白结构不同,辅基的结构也有一些差异。
细胞色素c为一外周蛋白,位于线粒体内膜的外侧。细胞色素C比较容易分离提纯,其结构已清楚。哺乳动物的Cyt c由104个氨基酸残基组成,并从进化的角度作了许多研究。Cyt c的辅基血红素(亚铁原卟啉)通过共价键(硫醚键)与酶蛋白相连(见图6-2),其余各种细胞色素中辅基与酶蛋白均通过非共价键结合。
图6-2 细胞色素C的辅基与酶蛋白的联接方式
细胞色素a和a3不易分开,统称为细胞色素aa3。和细胞色素P450、b、c1、c不同,细胞色素aa3的辅基不是血红素,而是血红素A(见图6?)。细胞色素aa3可将电子直接传递给氧,因此又称为细胞色素氧化酶。
第 15 页 共 102 页
图6-3 血红素A结构式
铁卟啉辅基所含Fe2+可有Fe2+←→Fe3++e的互变,因此起到传递电子的作用。铁原子可以和酶蛋白及卟啉环形成6个配位键。细胞色素aa3和P450辅基中的铁原子只形成5个配位键,还能与氧再形成一个配位键,将电子直接传递给氧,也可与CO、氰化物、H2S或叠氮化合物形成一个配位键。细胞色素aa3与氰化物结合就阻断了整个呼吸链的电子传递,引起氰化物中毒。
第 16 页 共 102 页
二、呼吸链中各种传递体的排列顺序 (一)确定排列顺序的方法
1.根据各种组分的标准氧化还原电位来确定。标准氧化还原电位的数值表示氧化还原能力的大小,标准氧化还原电位负值越大,其还原性越强,容易被氧化;标准氧化还原电位正值越大,其氧化性越强,容易被还原。因此呼吸链中各种组分的排列顺序应当由低电位依次向高电位排列(图-4)。
图6-4 各种传递体的标准氧化还原电位
第 17 页 共 102 页
2.根据在有氧条件下氧化反应达到平衡时各种传递体的还原程度来确定。Chance和Williams使用分光光度法测定离体的线粒体在有氧条件下三羧酸循环反应达到平衡时,呼吸链中各种传递体的还原程度。反应达到平衡时从底物一侧到氧一侧的各种传递体的还原程度应当是递减的,底物的一侧最高,氧一侧最低,如下表中数据所示。
表6-1 有氧动态平衡时电子传递体的还原程度
传递体 还原型% FP:黄素蛋白
这种情况好象物理学上的联通管,图6?A中,若进水量等于出水量,即流量达到平衡时,离进水口最近的水管中水位最高,离出水管最近的水管中水位最低,从进水管到出水管水位逐渐减低,若把水流视为电子流,就是上述实验中的情况。
3.使用特异的抑制剂 特异的抑制剂能阻断呼吸链中的特定环节,阻断部位的底物一侧的各种传递体应为还原型,阻断部位的氧一侧的各种传递体应为氧化型,正象我们阻断联通管的底部一样,阻断部位以前的各水管中水是满的,而阻断部位以后的各水管中水均流光(见图6-5,B)。
NAD 53 FP 20 Cyt b 16 Cyt c 6 Cty aa3 1
第 18 页 共 102 页
图6-5 有氧氧化稳定时各种传递体的还原太分数
A.不加抑制剂 B.加入抗霉A阻断
复合物Ⅰ:催化NADH氧化、CoQ还原。 复合物Ⅱ:催化琥珀酸氧化、CoQ还原 复合物Ⅲ:催化Co QH2氧化、Cyt c还原 复合物Ⅳ:催化Cyt c氧化、O2还原
表6-2 使用抗霉素A前后各种递电子体的还原型百分数
琥珀酸 琥珀酸+抗霉素A FP 40 100 Cyt b 25 100 Cyt c+c1 19 0 Cty aa3 4 0 从表中可以看出,FP、Cyt b位于抗霉素A阻断部位之前,Cyt c、cl、aa3位于阻断部位之后。用不同的抑制剂作此实验,就可以确定呼吸链中各种传递体的排列顺序。
4.在体外实验中,将线粒体分成各种复合物,检测其各自催化的反应,再将其重组,检测其催化能力。
美国格林(Green)等实验室成功地将呼吸链分离成具有催化活性的四种复合物以及CoQ和Cytc.检测各个复合物的功能发现:
第 19 页 共 102 页
可以看出CoQ在复合物Ⅰ与Ⅲ,Ⅱ与Ⅲ之间传递还原当量,Cyt c在复合物Ⅲ与Ⅳ之间传递还原当量。他们又将这四种复合物1:1:1:1的比例混合,加上CoQ和Cyt c重组,基本上恢复了线粒体原有的催化能力。
借助上述实验方法,呼吸链各组分的排列顺序已基本明确,但仍有些不一致的看法,其中以CoQ至细胞色素C这一部分研究得还很不清楚,对于Fe-S和CoQ的定位和数量也有争议。 (二)氧化呼吸链
1.NADH氧化呼吸链 人体内大多数脱氢酶都以NAD+作辅酶,在脱氢酶催化下底物SH2脱下的氢交给NAD+生成NADH+H+,在NADH脱氢酶作用下,NADH+H+将两个氢原子传递给FMN生成FMNH2,再将氢传递至CoQ生成CoQH2,此时两个氢原子解离成2H++2e,2H+游离于介质中,2e经Cyt b、c1、c、aa3传递,最后将2e传递给1/2O2,生成O2-,O2与介质中游离的2H+结合生成水,综合上述传递过程可用图6-6表示。
图6-6 NADH氧化呼吸链
SH2:作用物;(Fe-S):铁硫中心;Cyt:细胞色素
2.琥珀酸氧化呼吸链 琥珀酸在琥珀酸脱氢酶作用下脱氢生成延胡索酸,FAD接受两个氢原子生成FADH2,然后再将氢传递给CoQ,生成CoQH2,此后的传递和NADH氧化呼吸链相同,整个传递过程可用图6-7表示。
第 20 页 共 102 页
图6-7 琥珀酸氧化呼吸链
(Fe-S):铁硫中心:b:琥珀酸脱氢酶复合体的细胞色素
3.线粒体氧化呼吸链总结 线粒体中物质代谢会生成大量的NADH+H+和FADH2-它们可来自丙酮酸氧化脱羧、三羧酸循环、脂肪酸的β-氧化和L-谷氨酸的氧化脱氨等反应,现将某些重要底物氧化时的呼吸链总结于图6-8。
第 21 页 共 102 页
图6-8 线粒体中某些底物氧化时的呼吸链 *ETF:电子传递黄素蛋白,辅基为FAD
三、胞浆中NADH的转移
体内很多物质氧化分解产生NADH,反应发生在线粒体内,则产生的NADH可直接通过呼吸链进行氧化磷酸化,但亦有不少反应是在线粒体外进行的,如3-磷酸甘油醛脱氢反应,乳酸脱氢反应及氨基酸联合脱氨基反应等等。由于所产生的NADH存在于线粒体外,而真核细胞中,NADH不能自由通过线粒体内膜,因此,必须借助某些能自由通过线粒体内膜的物质才能被转入线粒体,这就是所谓穿梭机制,体内主要有两种穿梭机制。
1.α磷酸甘油穿梭(glycerolα-phosphate shuttle)
第 22 页 共 102 页
该穿梭机制主要在脑及骨骼肌中,它是借助于α-磷酸甘油与磷酸二羟丙酮之间的氧化还原转移还原当量,使线粒体外来自NADH的还原当量进入线粒体的呼吸链氧化,具体过程如图6-9。
图6-9 α磷酸甘油穿
当胞液中NADH浓度升高时,胞液中的磷酸二羟丙酮首先被NADH还原成α磷酸甘油(3-磷酸甘油),反应由甘油磷酸脱氢酶(辅酶为NAD+)催化,生成的α磷酸甘油可再经位于线粒体内膜近外侧部的甘油磷酸脱氢酶催化氧化生成磷酸二羟丙酮。线粒体与胞液中的甘油磷酸脱氢酶为同工酶,两者不同在于线粒体内的酶是以FAD为辅基的脱氢酶,而不是NADH+,FAD所接受的质子、电子可直接经泛
第 23 页 共 102 页
醌、复合体Ⅲ、Ⅳ传递到氧,这样线粒体外的还原当量就被转运到线粒体氧化了,但通过这种穿梭机制果只能生成2分子ATP而不是3分子ATP。
2.苹果酸,天冬氨酸穿梭(malate aspartate shuttle):
这种穿梭机制主要在肝、肾、心中发挥作用,其穿梭机制比较复杂,不仅需借助苹果酸、草酸乙酸的氧化还原,而且还要借助α酮酸与氨基酸之间的转换,才能使胞液中来的NADH的还原当量转移进入线粒体氧化,具体过程如图6-10。
图6-10 苹果酸天冬氨酸穿梭 GOT:谷草转氨酸;MDH:苹果酸脱氢酶
当胞液中NADH浓度升高时,首先还原草酰乙酸成为苹果酸,此反应由苹果酸脱氢酶催化,胞液中增多的苹果酸可通过内膜上的二羧酸载体系统与线粒体内的α酮戊二酸交换;进入线粒体的苹果酸,经苹果酸脱氢酶催化又氧化生成草酰乙酸并释出NADH,还原当量从复合体I进入呼吸链经CoQ、复合体Ⅲ、Ⅳ传递,最image/005061360后给氧,所以仍可产生3分子ATP,与在线粒体内产生的NADH氧化相同。与此同时线粒体内的α酮戊二酸由于与苹果酸交换而减少,需要补充,于是在转氨酶作用下由谷氨酸与草酰乙酸进行转氨基反应,生成α酮戊二酸和天冬氨酸,天冬氨酸借线粒体膜上的谷氨酸天冬氨酸载体转移系统与胞液的谷氨酸交换,从而补充了线粒体内谷氨酸由于转氨基作用而造成的损失,进入胞液的天冬氨酸再与胞液中α酮戊二酸进行转氨基,重新又产生草酰乙酸以补充最初的消耗,从而完成整个穿梭过程。
第三节 ATP的生成、储存和利用
第 24 页 共 102 页
ATP几乎是生物组织细胞能够直接利用的唯一能源,在糖、脂类及蛋白质等物质氧化分解中释放出的能量,相当大的一部分能使ADP磷酸化成为ATP,从而把能量保存在ATP分子内。
ATP为一游离核苷酸,由腺嘌呤、核糖与三分子磷酸构成,磷酸与磷酸间借磷酸酐键相连,当这种高能磷酸化合物水解时(磷酸酐键断裂)自由能变化(G)为30.5KJ/mol,而一般的磷酸酯水解时(磷酸酯键断裂)自由能的变化只有8至12KJ/mol,因此曾称此磷酸酐键为高能磷酸键,但实际上这样的名称是不够确切的,因为一种化合物水解时释放自由能的多少取决于该化合物整个分子的结构,以及反应的作用物自由能与产物自由能的差异,而不是由哪个特殊化学键的破坏所致,但为了叙述及解释问题方便,高能磷酸键的概念至今仍被生物化学界采用。
ATP是一高能磷酸化合物,当ATP水解时首先将其分子的一部分,如磷酸(Pi)或腺苷酸(AMP)转移给作用物,或与催化反应的酶形成共价结合的中间产物,以提高作用物或酶的自由能,最终被转移的AMP或Pi将被取代而放出,ATP多以这种通过磷酸基团等转移的方式,而非单独水解的方式,参加酶促反应提供能量,用以驱动需要加入自由能的吸能反应,ATP水解反应的总结如下: ATP——→ADP+Pi 或ATP——→AMP+PPi (焦磷酸)
一、ATP的生成方式 体内ATP生成有两种方式
(一)底物水平磷酸化(substrate level phosphorylation) 底物分子中的能量直接以高能键形式转移给ADP生成ATP,这个过程称为底物水平磷酸化,这一磷酸化过程在胞浆和线粒体中进行,包括有:
第 25 页 共 102 页
(二)氧化磷酸化(oxidative phosphorylation) 氧化和磷酸化是两个不同的概念。氧化是底物脱氢或失电子的过程,而磷酸化是指ADP与Pi合成ATP的过程。在结构完整的线粒体中氧化与磷酸化这两个过程是紧密地偶联在一起的,即氧化释放的能量用于ATP合成,这个过程就是氧化磷酸化,氧化是磷酸化的基础,而磷酸化是氧化的结果。
机体代谢过程中能量的主要来源是线粒体,既有氧化磷酸化,也有底物水平磷酸化,以前者为主要来源。胞液中底物水平磷酸化也能获得部分能量,实际上这是酵解过程的能量来源。对于酵解组织、红细胞和组织相对缺氧时的能量来源是十分重要的。 二、氧化磷酸化偶联部位的测定
确定氧化磷酸化偶联部位通常用两种方法。
(一)P/0值测定 P/0值指在氧化磷酸化过程中消耗一克原子氧所消耗的无机磷的克原子数,或者说消耗一克原子氧所生成的ATP的克分子数。P/0值实质上指的是呼吸过程中磷酸化的效率。
测定P/0值的方法通常是在一密闭的容器中加入氧化的底物、ADP、Pi、氧饱和的缓冲液,再加入线粒体制剂时就会有氧化磷酸化进行。反应终了时测定O2消耗量(可用氧电极法)和Pi消耗量(或ATP生成量)就可以计算出P/0值了。在反应系统中加入不同的底物,可测得各自的P/0值,结合我们所了解的呼吸链的传递顺序,就可以分析出大致的偶联部位了。
表6-3 离体线粒体的P/0比值
第 26 页 共 102 页
底物 (1)β-羟丁酸 (2)琥珀酸 (3)抗坏血酸 (4)细胞色素c 呼吸的组成 NAD+→FMN→CoQ→Cyt→O2 FAN→CoQ→Cyt→O2 Cyt→Cytaa3→O2 Cytaa3→O2 P/0比值 2.4-2.8 1.7 0.88 0.61-0.68 生成ATP数 3 2 1 1 从上表可以看出P/0值为小数,由于线粒体的偶联作用在离体条件下不能完全发挥,故可认为实际的ATP生成数是他们所接近的正整数值。
比较表中的(1)和(2),呼吸链传递的差异是在CoQ之间,两者ATP的生成数相差1,所以这个ATP的生成部位一定在NAD→CoQ之间。
比较表中(2)和(3),呼吸链传递的差异是在Cyt c之间,两者ATP的生成数相差1,所以这个ATP的生成部位在CoQ→Cyt c之间。 比较表中(3)和(4),生成的ATP数均为1,呼吸链传递的区别是在Cyt c→Cyt aa3,故Cytc→ aa3不存在偶联部位,而在Cyt aa3→O2之间存在着一个偶联部位。
(二)根据氧化还原电位计算电子传递释放的能量是否能满足ATP合成的需要
氧化还原反应中释放的自由能△G'O与反应底物和产物标准氧化还原电位差值(△E'O)之间存在下述关系:△G'O=nF△E'O 式中n为氧化还原反应中电子转移数目,F为法拉弟常数(23.062千卡/克分子·伏特,或96500库仑/克分子)。
第 27 页 共 102 页
一克分子ATP水解生成ADP与Pi所释放的能量为7.3千卡,凡氧化过程中释放的能量大于7.3千,均有可能生成一克分子ATP,就是说可能存在有一个偶联部位,根据上式计算,当n=2时,△E'O=0.1583V时可释放7.3千卡能量,所以反应底物与生成物的标准氧化还原电位的变化大于0.1583V的部位均可能存在着一个偶联部位。
从图6-11可以看出,在NAD→CoQ,Cyt b→Cyt c和Cyt aa3→O2处可能存在着偶联部位。必须明确,这种计算的基础是反应处在热力学平衡状态,温度为25℃,pH为7.0,反应底物和产物的浓度均为1克分子,这种条件在体内是不存在的。因此这一计算结果只能供参考。
第 28 页 共 102 页
图6-11 呼吸链中电子对传递时自由能的变化
综上所述,呼吸链中电子传递和磷酸化的偶联部位可用图6-12表示。
第 29 页 共 102 页
图6-12 偶联部位示意图
呼吸链磷酸化的全过程可用下述方程式表示 NADH+H++3ADP+3Pi+1/2O2→NAD++3ATP+4H2O FADH2+2ADP+2Pi+1/2O2→FAD+2ATP+3H2O 三、氧化磷酸化中ATP生成的结构基础
ATP是由位于线粒体内膜上的ATP合成酶催化ADP与Pi合成的。ATP合成酶是一个大的膜蛋白质复合体,分子量在480?00kD,是由两个主要组成(或称因子)构成,一是疏水的F0,另一是亲水的F1,又称F0F1复合体。在电子显微镜下观察线粒体时,可见到线粒体内膜基质侧有许多球状颗粒突起,这就是ATP合成酶,其中球状的头与茎是F1部分,分子量为350?/P>380kD,由α3、β3、γ、δ、ε等9种多肽亚基组成,β与α亚基上有ATP结合部位;γ亚基被认为具有控制质子通过的闸门作用;δ亚基是F1与膜相连所必需,其中中心部分为质子通路;ε亚基是酶的调节部分,F0是由3?个大小不一的亚基组成,其中有一个亚基称为寡霉素敏感蛋
第 30 页 共 102 页
白质(oligomycinsensitivityconferringprotein,OSCP),此外尚有一个蛋白质部分为分子量28kD的因子,F0主要构成质子通道(见图6-13)。
图6-13 线粒体内膜上三联体(三分子体)结构示意图
四、氧化磷酸化的偶联机制
有关氧化磷酸化的偶联机理已经作了许多研究,目前氧化磷酸化的偶联机理还不完全清楚,50年代Slater及Lehninger提出了化学偶联学说,1964年Boear又提出了构象变化偶联学说,这两种学说的实验依据不多,支持这两种观点的人已经不多了。目前多数人支持化学渗透学说(chemiosmotic hypothesis),这是英国生化学家P.Mitchell于1961年提出的,当时没有引起人们的重视,1966年他根据逐步积累的实验证据和生物膜研究的进展,逐步地完善了这一学说。
第 31 页 共 102 页
氧化磷酸化的化学渗透学说的基本观点是:
1.线粒体的内膜中电子传递与线粒体释放H+是偶联的,即呼吸链在传递电子过程中释放出来的能量不断地将线粒体基质内的H+逆浓度梯度泵出线粒体内膜,这一过程的分子机理还不十分清楚(见图6-14)。
图6-14 电子传递与质子传递偶联(注:复合物Ⅱ未显示)
2.H+不能自由透过线粒体内膜,结果使得线粒体内膜外侧H+浓度增高,基质内H+浓度降低,在线粒体内膜两侧形成一个质子跨膜梯度,线粒体内膜外侧带正电荷,内膜内侧带负电荷,这就是跨膜电位△ψ。由于线粒体内膜两侧H+浓度不同,内膜两侧还有一个pH
第 32 页 共 102 页
梯度△pH,膜外侧pH较基质pH约低1.0单位,底物氧化过程中释放的自由能就储存于△ψ和△pH中,若以△P表示总的质子移动力,那么三者的关系可用下式表示: △P=△ψ-59△pH
3.线粒体外的H+可以通过线粒体内膜上的三分子体顺着H+浓度梯度进入线粒体基质中,这相当于一个特异的质子通道,H+顺浓度梯度方向运动所释放的自由能用于ATP的合成,寡霉素能与OSCP结合,特异阻断这个H+通道,从而抑制ATP合成。有关ATP合成的分子机制目前还不十分清楚。
4.解偶联剂的作用是促进H+被动扩散通过线粒体内膜,即增强线粒体内膜对H+的通透性,解偶联剂能消除线粒体内膜两侧的质子梯度,所以不能再合成ATP。
总之,化学渗透学说认为在氧化与磷酸化之间起偶联作用的因素是H+的跨膜梯度。
每对H+通过三分子体回到线粒体基质中可以生成一分子ATP。以NADH+H+作底物,其电子沿呼吸链传递在线粒体内膜中形成三个回路,所以生成3分子ATP。以FADH2为底物,其电子沿琥珀酸氧化呼吸链传递在线粒体内膜中形成两个回路,所以生成两个ATP分子。
自从Mitchell提出化学通透学说以来,已为大量的实验结果验证,为该学说提供了实验依据。
美国Cohen等人于1978年使用完整的大鼠肝细胞作实验材料,以核磁共振(nuclear magneticresonance,NMR)的方法直接观察到完整细胞中胞液与线粒体基质之间存在H+跨膜梯度,胞液的pH值比线粒体基质的pH值低0.3单位,用解偶联剂处理,或用氮气代替氧气切断氧的供应,那么胞液和线粒体基质之间的pH梯度消失。
嗜盐菌(halobacterium haloblum)是一种能在高浓度盐溶液中生长的细菌,该菌中有一种结合蛋白质,称为菌紫质(bacteriorhodopsin),菌紫质能将光能转换成化学能。有人使用嗜盐菌作实验,在无O2的情况下用光照射嗜盐菌,尽管无氧化作用,菌体内仍维持一定的ATP浓度,若加入解偶联剂或加入磷酸化抑制剂DCC,则菌体内ATP浓度降低;而加入呼吸抑制剂抑制电子传递,
第 33 页 共 102 页
即不影响ATP合成,ATP浓度不变,这说明电子传递和H+运动是可以分开加以研究的,嗜盐菌为研究化学渗透学说的H+运动提供了一个理想的模型。于是,有人分离嗜盐菌的菌紫质,并将其重组在人工脂质体中,然后用光照射,可测得跨膜电位为120mV(内负外正),同时膜外侧H+浓度增高,膜内外△pH约为1.8单位,可以算出总的质子移动力约为△P=-120mV-59×1.8mV=226mV,若再将牛心线粒体内膜重组在此脂质体中,光照后可使ADP+Pi生成ATP,这说明质子跨膜梯度可以经过线粒体内膜的三分子体将H+跨膜梯度中储存的能量转变为ATP分子中的化学能。 五、氧化磷酸化抑制剂
氧化磷酸化抑制剂可分为三类,即呼吸抑制剂、磷酸化抑制剂和解偶联剂。
(一)呼吸抑制剂 这类抑制剂抑制呼吸链的电子传递,也就是抑制氧化,氧化是磷酸化的基础,抑制了氧化也就抑制了磷酸化。呼吸链某一特定部位被抑制后,其底物一侧均为还原状态,其氧一侧均为氧化态,这很容易用分光光度法(双波长分光光度计)检定,重要的呼吸抑制剂有以下几种。
鱼藤酮(rotenone)系从植物中分离到的呼吸抑制剂,专一抑制NADH→CoQ的电子传递。 抗霉素A(actinomycin A)由霉菌中分离得到,专一抑制CoQ→Cyt c的电子传递。 CN、CO、NaN3和H2S均抑制细胞色素氧化酶。
(二)磷酸化抑制剂 这类抑制剂抑制ATP的合成,抑制了磷酸化也一定会抑制氧化。 寡霉素(oligomycin)可与F0的OSCP结合,阻塞氢离子通道,从而抑制ATP合成。
二环己基碳二亚胺(dicyclohexyl carbodiimide,DCC)可与F0的DCC结合蛋白结合,阻断H+通道,抑制ATP合成。栎皮酮(quercetin)直接抑制参与ATP合成的ATP酶。
第 34 页 共 102 页
(三)解偶联剂(uncoupler) 解偶联剂使氧化和磷酸化脱偶联,氧化仍可以进行,而磷酸化不能进行,解偶联剂作用的本质是增大线粒体内膜对H+的通透性,消除H+的跨膜梯度,因而无ATP生成,解偶联剂只影响氧化磷酸化而不干扰底物水平磷酸化,解偶联剂的作用使氧化释放出来的能量全部以热的形式散发。动物棕色脂肪组织线粒体中有独特的解偶联蛋白,使氧化磷酸化处于解偶联状态,这对于维持动物的体温十分重要。
常用的解偶联剂有2,4-二硝基酚(dinitrophenol,DNP),羰基-氰-对-三氟甲氧基苯肼(FCCP),双香豆素(dicoumarin)等,过量的阿斯匹林也使氧化磷酸化部分解偶联,从而使体温升高。
过量的甲状腺素也有解偶联作用,甲状腺素诱导细胞膜上Na+-K+-ATP酶的合成,此酶催化ATP分解,释放的能量将细胞内的Na+泵到细胞外,而K+进入细胞,Na+-K+-ATP酶的转换率为100个分子ATP/秒,酶分子数增多,单位时间内分解的ATP增多,生成的ADP又可促进磷酸化过程。甲亢病人表现为多食、无力、喜冷怕热,基础代谢率(BMR)增高,因此也有人将甲状腺素看作是调节氧化磷酸化的重要激素。
六、氧化磷酸化的调节
机体的氧化磷酸化主要受细胞对能量需求的调节
(一)ATP/ADP值对氧化磷酸化的直接影响 线粒体内膜中有腺苷酸转位酶,催化线粒体内ATP与线粒体外ADP的交换,ATP分子解离后带有4个负电荷,而ADP分子解离后带有3个负电荷,由于线粒体内膜内外有跨膜电位(△ψ),内膜外侧带正电,内膜内侧带负电,所以ATP出线粒体的速度比进线粒体速度快,而ADP进线粒体速度比出线粒体速度快。Pi进入线粒体也由磷酸转位酶催化,磷酸转位酶催化OH与Pi交换,磷酸二羧酸转位酶催化Pi2-与二羧酸(如苹果酸)交换。
当线粒体中有充足的氧和底物供应时,氧化磷酸化就会不断进行,直至ADP+Pi全部合成ATP,此时呼吸降到最低速度,若加入ADP,耗氧量会突然增高,这说明ADP控制着氧化磷酸化的速度,人们将ADP的这种作用称为呼吸受体控制。
机体消耗能量增多时,ATP分解生成ADP,ATP出线粒体增多,ADP进线粒体增多,线粒体内ATP/ADP值降低,使氧化磷酸化速度加快,ADP+Pi接受能量生成ATP。机体消耗能量少时,线粒体内ATP/ADP值增高,线粒体内ADP浓度减低就会使氧化磷酸化速度减慢。
第 35 页 共 102 页
(二)ATP/ADP值的间接影响 ATP/ADP值增高时,使氧化磷酸化速度减慢,结果NADH氧化速度减慢,NADH浓度增高,从而抑制了丙酮酸脱氢酶系、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶系和柠檬酸合成酶活性,使糖的氧化分解和TCA循环的速度减慢。
(三)ATP/ADP值对关键酶的直接影响 ATP/ADP值增高会抑制体内的许多关键酶,如变构抑制磷酸果糖激酶、丙酮酸激酶和异柠檬酸脱氢酶,还能抑制丙酮酸脱羧酶、α-酮戊二酸脱氢酶系,通过直接反馈作用抑制糖的分解和TCA循环。 七、高能磷酸化合物的储存和利用
无论是底物水平磷酸化还是氧化磷酸化,释放的能量除一部分以热的形式散失于周围环境中之外,其余部分多直接生成ATP,以高能磷酸键的形式存在。同时,ATP也是生命活动利用能量的主要直接供给形式。 (一)高能化合物
人体存在多种高能化合物,但这些高能化合物的能量并不相同。
体外实验中,在pH7.0,25℃条件下,每克分子ATP水解生成ADP+Pi时释放的能量为7.1千卡或30.4千焦耳,在体内,pH7.4,37℃,ATP、ADP+Pi、Mg2+均处于细胞内生理浓度的情况下,每克分子ATP水解生成ADP+Pi时释放的能量为33.5-50千焦耳或8-12千卡(表6-4)。
表6-4 几种常见高能化合物水解时释放的能量
化合物 磷酸烯醇式丙酮酸 1,3-二磷酸甘油酸 磷酸肌酸 千焦耳/克分子 -62.1 -49.5 -43.9 千卡/克分子 -14.8 -11.8 -10.5 第 36 页 共 102 页
乙酰CoA ATP S-腺苷蛋氨酸 F-6-P 谷氨酰胺 G-6-P -31.4 -30.4 -29.3 -15.6 -14.2 -13.48 -8.2 -7.3 -7.0 -3.8 -3.4 -3.3 卫生学规定,中度体力劳动者每日每kg体重需供给能量34-40千卡,若一成人重70kg,从事中度体力劳动,则每日应供应含能量2450千卡的食物,其中40%的能量转变成化学能储存于ATP分子的高能键中,这一部分能量应为2450×0.4=980.0千卡,按每克分子ATP水解生成ADP+Pi释放7.3千卡能量计算,应当合成:980÷7.3=134.3克分子ATP,ATP的分子量为507.22,所以134.3克分子ATP重达68.12kg,这足以表明ATP在体内的代谢十分旺盛。
ATP在能量代谢中之所以重要,就是因为ATP水解时的标准自由能变化位于多种物质水解时标准自由能变化的中间,它能从具有更高能量的化合物接受高能磷酸键,如接受PEP、1,3-二磷酸甘油、磷酸肌酸分子中的~Pi生成ATP,ATP也能将~Pi转移给水解时标准自由能变化较小的化合物,如转移给葡萄糖生成G-6-P。 (二)ATP能量的转移
ATP是细胞内的主要磷酸载体,ATP作为细胞的主要供能物质参与体内的许多代谢反应,还有一些反应需要UTP或CTP作供能物质,如UTP参与糖元合成和糖醛酸代谢,GTP参与糖异生和蛋白质合成,CTP参与磷脂合成过程,核酸合成中需要ATP、CTP、UTP和GTP作原料合成RNA,或以dATP、dCTP、dGTP和dTTP作原料合成DNA。 作为供能物质所需要的UTP、CTP和GTP可经下述反应再生: UDP+ATP→UTP+ADP
第 37 页 共 102 页
GDP+ATP→GTP+ADP CDP+ATP→CTP+ADP
dNTP由dNDP的生成过程也需要ATP供能: dNDP+ATP→dNTP+ADP (三)磷酸肌酸
ATP是细胞内主要的磷酸载体或能量传递体,人体储存能量的方式不是ATP而是磷酸肌酸。肌酸主要存在于肌肉组织中,骨骼肌中含量多于平滑肌,脑组织中含量也较多,肝、肾等其它组织中含量很少。 磷酸肌酸的生成反应如下:
肌细胞线粒体内膜和胞液中均有催化该反应的肌酸激酶,它们是同工酶。线粒体内膜的肌酸激酶主要催化正向反应,生成的ADP可促进氧化磷酸化,生成的磷酸肌酸逸出线粒体进入胞液,磷酸肌酸所含的能量不能直接利用;胞液中的肌酸激酶主要催化逆向反应,生成的ATP可补充肌肉收缩时的能量消耗,而肌酸又回到线粒体用于磷酸肌酸的合成,此过程可用图6-15表示。
第 38 页 共 102 页
图6-15 磷酸肌酸的生成与利用
肌肉中磷酸肌酸的浓度为ATP浓度的5倍,可储存肌肉几分钟收缩所急需的化学能,可见肌酸的分布与组织耗能有密切关系。 ATP的生成、储存和利用可用下图表示(图6-16)
第 39 页 共 102 页
图6-16 ATP的生成、储存和利用总结示意图
CPK:肌酸磷酸激酶
第四章 糖代谢 第一节 概述(overview)
一、代谢的基本概念(Basis concepts of Metabolism)
第 40 页 共 102 页
机体内的化学反应是在酶的催化下完成的。在细胞内这些反应不是相互独立的,而是相互联系的,一个反应的产物可能就是下一个反应的底物,这样构成一连串的反应,称之为代谢途径(pathway),由不同的代谢途径相互交叉构成一个有组织有目的的化学反应网络(network),称为代谢(metabolism)。体内的代谢途径主要分为两类:一类是由大分子(多糖、蛋白、脂类等)不断降解为小分子(如CO2,NH3,H2O)的过程称之为分解代谢(catabolism);另一类是由小分子(如氨基酸等)生成大分子(如蛋白质)的过程称之为合成代谢(anabolism)。分解代谢主要分三个阶段进行:第一阶段是由复杂的大分子分解为物质基本组成单位的过程,即糖、脂肪和蛋白质降解生成葡萄糖、脂肪酸、甘油和氨基酸;第二阶段是由这些基本分子转变为代谢中间产物,即活泼的二碳化合物的过程,如上述葡萄糖、氨基酸和脂肪酸等降解为乙酰CoA,这期间有少量能量的释放,生成ATP;第三阶段是乙酰CoA氧化生成CO2和H2O的过程,这期间生成的NADH,FADH2通过氧化磷酸化过程,生成大量ATP。合成代谢一般不是分解代谢简单的逆向反应,而是由不同酶催化的,通常需要消耗ATP,还原供氢体多为NADPH。很显然,分解代谢是一个发散的过程(divergent process),而合成代谢是一个集合过程(convergent process)。在正常的机体内,代谢受着严格的调控(regulation),处在动态平衡状态中,这种调节主要是通过各种代谢途径中关键的限速酶的活性变化来实现的。调控发生在两个水平上:一个是细胞内水平,主要由代谢底物、产物的多少来完成;第二个是整体水平,主要通过神经-内分泌系统来实现。
二、食物中糖的消化和吸收(Digestion and absorption of carbohydrates)
食物中的糖类主要是植物淀粉(starch)和动物糖原(glycogen)两类可消化吸收的多糖、少量蔗糖(sucrose)、麦芽糖(maltose)、异麦芽糖(isomaltose)和乳糖(lactose)等寡糖或单糖,这些糖首先在口腔被唾液中的淀粉酶(α-amylase)部分水解α-1,4糖苷键(α-1.4glycosidic bond),进而在小肠被胰液中的淀粉酶进一步水解生成麦芽糖,异麦芽糖和含4个糖基的临界糊精(α-dextrins),最终被小肠粘膜刷毛缘的麦芽糖酶(maltase)、乳糖酶(lactase)和蔗糖酶(sucrase)水解为葡萄糖(glucose)、果糖(fructose)、半乳糖(galatose),这些单糖可吸收入小肠细胞。此吸收过程是一个主动耗能的过程,由特定载体完成,同时伴有Na+转运,不受胰岛素的调控。除上述糖类以外,由于人体内无β-糖苷酶,食物中含有的纤维素(cellulose)无法被人体分解利用,但是其具有刺激肠蠕动等作用,对于身体健康也是必不可少的。临床上,有些患者由于缺乏乳糖酶等双糖酶,可导致食物中糖类消化吸收障碍而使未消化吸收的糖类进入大肠,被大肠中细菌分解产生CO2、H2等,引起腹胀,腹泻等症状。 三、糖的主要生理功能(Functions of carbohydrate)
第 41 页 共 102 页
糖是自然界最丰富的物质之一,人体每日摄入的糖比蛋白质、脂肪多,占到食物总量的百分之五十以上,糖是人体能量的主要来源之一,以葡萄糖为主供给机体各种组织能量,1克葡萄糖完全氧化分解可产生2840J/mol的能量,除了供给机体能量以外,糖也是组成人体组织结构的重要成分:与蛋白质结合形成糖蛋白(glycoprotein)构成细胞表面受体、配体,在细胞间信息传递中起着重要作用;与脂类结合形成糖脂(glyeolipid)是神经组织和细胞膜中的组成成分;还有血浆蛋白、抗体和某些酶及激素中也含有糖。糖的基本结构式是(CH2O)n,故也称之为碳水化合物。
第二节 糖的分解代谢(catabolism of carbohydrate)
人体组织均能对糖进行分解代谢,主要的分解途径有四条:(1)无氧条件下进行的糖酵解途径;(2)有氧条件下进行的有氧氧化;(3)生成磷酸戊糖的磷酸戊糖通路;(4)生成葡萄糖醛酸的糖醛酸代谢。 一、糖酵解途径(glycolytic pathway)
糖酵解途径是指细胞在胞浆中分解葡萄糖生成丙酮酸(pyruvate)的过程,此过程中伴有少量ATP的生成。在缺氧条件下丙酮酸被还原为乳酸(lactate)称为糖酵解。有氧条件下丙酮酸可进一步氧化分解生成乙酰CoA进入三羧酸循环,生成CO2和H2O。 (一)葡萄糖的转运(transport of glucose)
第 42 页 共 102 页
图4-1 葡萄糖通过转运载体转入细胞示意图GLUT代表葡萄糖转运载体
葡萄糖不能直接扩散进入细胞内,其通过两种方式转运入细胞:一种是在前一节提到的与Na+共转运方式,它是一个耗能逆浓度梯度转运,主要发生在小肠粘膜细胞、肾小管上皮细胞等部位;另一种方式是通过细胞膜上特定转运载体将葡萄糖转运入细胞内(图4
第 43 页 共 102 页
-1),它是一个不耗能顺浓度梯度的转运过程。目前已知转运载体有5种,其具有组织特异性如转运载体-1(GLUT-1)主要存在于红细胞,而转运载体-4(GLUT-4)主要存在于脂肪组织和肌肉组织。 (二)糖酵解过程
糖酵解分为两个阶段共10个反应,每个分子葡萄糖经第一阶段共5个反应,消耗2个分子ATP为耗能过程,第二阶段5个反应生成4个分子ATP为释能过程。 1.第一阶段
(1)葡萄糖的磷酸化(phosphorylation of glucose)
进入细胞内的葡萄糖首先在第6位碳上被磷酸化生成6-磷酸葡萄糖(glucose6phophate,G-6-P),磷酸根由ATP供给,这一过程不仅活化了葡萄糖,有利于它进一步参与合成与分解代谢,同时还能使进入细胞的葡萄糖不再逸出细胞。催化此反应的酶是己糖激酶(hexokinase,HK)。己糖激酶催化的反应不可逆,反应需要消耗能量ATP,Mg2+是反应的激活剂,它能催化葡萄糖、甘露糖、氨基葡萄糖、果糖进行不可逆的磷酸化反应,生成相应的6-磷酸酯,6-磷酸葡萄糖是HK的反馈抑制物,此酶是糖氧化反应过程的限速酶(ratelimiting enzyme)或称关键酶(key enzyme)它有同工酶Ⅰ-Ⅳ型,Ⅰ、Ⅱ、Ⅲ型主要存在于肝外组织,其对葡萄糖Km值为10-5~10-6M。
第 44 页 共 102 页
Ⅳ型主要存在于肝脏,特称葡萄糖激酶(glucokinase,GK),对葡萄糖的Km值1~10-2M,正常血糖浓度为5mmol/L,当血糖浓度升高时,GK活性增加,葡萄糖和胰岛素能诱导肝脏合成GK,GK能催化葡萄糖、甘露糖生成其6-磷酸酯,6-磷酸葡萄糖对此酶无抑制作用。
HK与GK两者区别见表4-1。
表4-1 己糖激酶(HK)和葡萄糖激酶(GK)的区别
组织分布 Km 6-磷酸葡萄糖的抑制 HK 绝大多数组织 低 有 GK 肝脏和β细胞 高 无 (2)6-磷酸葡萄糖的异构反应(isomerization of glucose-6-phosphate)
这是由磷酸己糖异构酶(phosphohexose isomerase)催化6-磷酸葡萄糖(醛糖aldose sugar)转变为6-磷酸果糖(fructose-6-phosphate,F-6-P)的过程,此反应是可逆的。
(3)6-磷酸果糖的磷酸化(phosphorylation of fructose-6-phosphate)
此反应是6磷酸果糖第一位上的C进一步磷酸化生成1,6-二磷酸果糖,磷酸根由ATP供给,催化此反应的酶是磷酸果糖激酶1(phosphofructokinase l,PFK1)。
第 45 页 共 102 页
PFK1催化的反应是不可逆反应,它是糖的有氧氧化过程中最重要的限速酶,它也是变构酶,柠檬酸、ATP等是变构抑制剂,ADP、AMP、Pi、1,6-二磷酸果糖等是变构激活剂,胰岛素可诱导它的生成。
(4)1.6二磷酸果糖裂解反应(cleavage of fructose1,6 di/bis phosphate)
醛缩酶(aldolase)催化1.6-二磷酸果糖生成磷酸二羟丙酮和3-磷酸甘油醛,此反应是可逆的。
(5)磷酸二羟丙酮的异构反应(isomerization of dihydroxyacetonephosphate)
磷酸丙糖异构酶(triose phosphate isomerase)催化磷酸二羟丙酮转变为3-磷酸甘油醛,此反应也是可逆的。
到此1分子葡萄糖生成2分子3-磷酸甘油醛,通过两次磷酸化作用消耗2分子ATP。 2.第二阶段:
第 46 页 共 102 页
(6)3-磷酸甘油醛氧化反应(oxidation of glyceraldehyde-3-phosphate
此反应由3-磷酸甘油醛脱氢酶(glyceraldehyde 3-phosphatedehydrogenase)催化3-磷酸甘油醛氧化脱氢并磷酸化生成含有1个高能磷酸键的1,3-二磷酸甘油酸,本反应脱下的氢和电子转给脱氢酶的辅酶NAD+生成NADH+H+,磷酸根来自无机磷酸。
(7)1.3-二磷酸甘油酸的高能磷酸键转移反应
在磷酸甘油酸激酶(phosphaglycerate kinase,PGK)催化下,1.3-二磷酸甘油酸生成3-磷酸甘油酸,同时其C1上的高能磷酸根转移给ADP生成ATP,这种底物氧化过程中产生的能量直接将ADP磷酸化生成ATP的过程,称为底物水平磷酸化(substratelevel phosphorylation)。此激酶催化的反应是可逆的。
(8)3-磷酸甘油酸的变位反应
在磷酸甘油酸变位酶(phosphoglycerate mutase)催化下3-磷酸甘油酸C3-位上的磷酸基转变到C2位上生成2-磷酸甘油酸。此反应是可逆的。
第 47 页 共 102 页
(9)2-磷酸甘油酸的脱水反应
由烯醇化酶(enolase)催化,2-磷酸甘油酸脱水的同时,能量重新分配,生成含高能磷酸键的磷酸烯醇式丙酮酸(phosphoenolpyruvate PEP)。本反应也是可逆的。
(10)磷酸烯醇式丙酮酸的磷酸转移
在丙酮酸激酶(pyruvate kinase,PK)催化下,磷酸烯醇式丙酮酸上的高能磷酸根转移至ADP生成ATP,这是又一次底物水平上的磷酸化过程。但此反应是不可逆的。
丙酮酸激酶是糖的有氧氧化过程中的限速酶,具有变构酶性质,ATP是变构抑制剂,ADP是变构激活剂,Mg2+或K+可激活丙酮酸激酶的活性,胰岛素可诱导PK的生成,烯醇式丙酮酸又可自动转变成丙酮酸。
第 48 页 共 102 页
总结糖的无氧酵解 在细胞液阶段的过程中,一个分子的葡萄糖或糖原中的一个葡萄糖单位,可氧化分解产生2个分子的丙酮酸,丙酮酸将进入线粒体继续氧化分解,此过程中产生的两对NADH+H+,由递氢体α-磷酸甘油(肌肉和神经组织细胞)或苹果酸(心肌或肝脏细胞)传递进入线粒体,再经线粒体内氧化呼吸链的传递,最后氢与氧结合生成水,在氢的传递过程释放能量,其中一部分以ATP形式贮存。
在整个细胞液阶段中的10或11步酶促反应中,在生理条件下有三步是不可逆的单向反应,催化这三步反应的酶活性较低,是整个糖的有氧氧化过程的关键酶,其活性大小,对糖的氧化分解速度起决定性作用,在此阶段经底物水平磷酸化产生四个分子ATP。
第 49 页 共 102 页
第 50 页 共 102 页
正在阅读:
能量代谢12-22
路面冰雪除雪机设计05-29
人力资源管理师笔、面试题集(很实用)09-21
月下桨声教案10-09
工商管理毕业论文-公司员工培训的研究01-31
2018年中华诗词之美课后答案解析10-10
马铃薯品种鉴别08-11
展的基础, 具有巨大的商业和公益价值07-24
据说是申论阅卷规则04-12
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 代谢
- 能量
- 2019届高考语文第一轮考点集训测试卷6
- 污水方案
- 药物对小鼠耐缺氧能力的影响
- 天津大学管理与经济学部2015年博士研究招生办法(网页版)
- 采煤机检修工
- 一年级音乐下册第4单元《玩具兵进行曲》教案新人教版正式版
- 西方戏剧史
- 离婚法定标准之变
- 总经办秘书岗位服务标准化10.10
- 绩效考核操作手册
- (桥)桥墩爬模施工
- 5年高考真题分类汇编2014~2010专题九 区域可持续发展
- 我眼中的儿童英语学习
- A集团组织变革与人力资源转型案例
- 46寸超窄边4X4液晶拼接墙技术方案1 - 图文
- PLC病房呼叫系统设计 - 图文
- 1 物质的量 气体摩尔体积
- 2011年中考物理力学压轴题精选(含答案)
- 第二单元《我们周围的空气》考点知识点整理
- qq伤感孤独个性签名