Evolution of Cosmological Density Distribution Function from the Local Collapse Model
更新时间:2023-07-18 01:18:01 阅读量: 实用文档 文档下载
- evolution推荐度:
- 相关推荐
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
RESCEU-18/02UTAP-429/2002
EvolutionofCosmologicalDensityDistributionFunctionfromthe
LocalCollapseModel
YasuhiroOhta,IsshaKayoandAtsushiTaruya
arXiv:astro-ph/0301567v1 29 Jan 2003DepartmentofPhysicsandResearchCenterfortheEarlyUniverse(RESCEU),SchoolofScience,UniversityofTokyo,Tokyo113,Japan.ohta@utap.phys.s.u-tokyo.ac.jp,kayo@utap.phys.s.u-tokyo.ac.jp,ataruya@utap.phys.s.u-tokyo.ac.jpABSTRACTWepresentageneralframeworktotreattheevolutionofone-pointproba-bilitydistributionfunction(PDF)forcosmicdensityδandvelocity-divergence eldsθ.Inparticular,wederiveanevolutionequationfortheone-pointPDFsandconsiderthestochasticnatureassociatedwiththesequantities.Underthelocalapproximationthattheevolutionofcosmic uid eldscanbecharacter-izedbytheLagrangianlocaldynamicswith nitedegreesoffreedom,evolutionequationforPDFsbecomesaclosedformandconsistentformalsolutionsareconstructed.Adoptingthislocalapproximation,weexplicitlyevaluatetheone-pointPDFsP(δ)andP(θ)fromthesphericalandtheellipsoidalcollapsemodelsastherepresentativeLagrangianlocaldynamics.InaGaussianinitialcondition,whilethelocaldensityPDFfromtheellipsoidalmodelalmostcoincideswiththethatofthesphericalmodel,di erencesbetweensphericalandellipsoidalcollapse
modelarefoundinthevelocity-divergencePDF.Thesebehaviorshavealsobeencon rmedfromtheperturbativeanalysisofhigherordermoments.Importantly,thejointPDFoflocaldensity,P(δ,t;δ′,t′),evaluatedatthesameLagrangianpositionbutatthedi erenttimestandt′fromtheellipsoidalcollapsemodelexhibitsalargeamountofscatter.Themeanrelationbetweenδandδ′doesfailtomatchtheone-to-onemappingobtainedfromsphericalcollapsemodel.Moreover,thejointPDFP(δ;θ)fromtheellipsoidalcollapsemodelshowsasimilarstochasticfeature,bothofwhichareindeedconsistentwiththerecentresultfromN-bodysimulations.Hence,thelocalapproximationwithellipsoidalcollapsemodelprovidesasimplebutamorephysicalmodelthanthesphericalcollapsemodelofcosmologicalPDFs,consistentwiththeleading-orderresultsofexactperturbationtheory.
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
Subjectheadings:cosmology:theory-galaxies:clustering-galaxies:darkmatter-large-scalestructureofuniverse-methods:analytical
1.INTRODUCTION
Thelarge-scalestructureoftheuniverseisthoughttobedevelopedbythegravitationalinstabilityfromthesmallGaussiandensity uctuations.Inauniversedominatedbydarkmatter,theevolutionofmassdistributionisentirelygovernedbygravitationaldynamics.Whileluminousobjectssuchasthegalaxiesandtheclustersaresubsequentlyformedbycomplicatedprocessesincludinggasdynamicsandradiativeprocess,thedarkmatterdistri-butionisthemostfundamentalproductinthehierarchicalclusteringofthecosmicstructureformation.Inparticular,theclusteringfeatureofdarkmatterdistributionisdirectlyob-servedviaweakgravitationallensinge ect(Bartelmann&Schneider2001forreviewandreferencestherein).Thus,thestatisticalstudyofthelarge-scalemassdistributionprovidesausefulcosmologicaltoolinprobingtheformationmechanismofdarkmatterhalos,aswellastheobservedluminousdistribution.
Inprinciple,allthestatisticalinformationofdarkmatterdistributionischaracterizedbytheprobabilitydistributionfunctions(PDFs)formassdensity uctuationandvelocity elds,δandv.Amongthese,theone-pointPDFfordensity eld,P(δ),isoneofthemostfundamentalstatisticalquantitiesandbecauseofitssimplicity,therehasbeennu-meroustheoreticalstudiesonitsevolutionfromaGaussianinitialcondition.Fromtheanalyticalstudyofone-pointPDFs,Kofmanetal.(1994) rstcalculatedthePDFusingtheZel’dovichapproximation.Foraperturbativeconstructionofone-pointPDF,Bernardeau&Kofman(1995)andJuszkiewiczetal.(1995)introducedtheEdgeworthexpansiontoderivetheanalyticformulaforPDFs.Ontheotherhand,basedonthetree-levelapproximation,Bernardeau(1992b)constructedthePDFfromthegeneratingfunctionofthevertexfunc-tion.Interestingly,thevertexfunctioninthetree-levelapproximationisobtainedasanexactsolutionofthesphericalcollapsemodel.Thee ectofsmoothinghasbeenlaterincor-poratedintohiscalculationandtheanalyticPDFwascomparedwithN-bodysimulations(Bernardeau1994b).Followingtheseresults,Fosalba&Gazta naga(1998a)proposedtousethesphericalcollapsemodelforthepredictionofhigher-ordermomentsbeyondthetree-levelapproximation.Themostremarkablepointintheirapproximationisthattheleading-orderpredictionexactlymatchestheoneobtainedfromtherigorousperturbationtheoryandthecorrectionfornext-to-leadingorderiseasilycomputedbysolvingthesimplesphericalcol-lapsedynamics.Further,thesphericalcollapseapproximationisrecentlyextendedtothepredictionofone-pointPDF(Scherrer&Gazta naga2001,seealsoProtogeros&Scherrer
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
1997).TheapproximationhasbeentestedagainstN-bodysimulationsandagoodagreementwasfoundeveninanon-linearregimeofthedensityperturbation.
Ontheotherhand,fromthenumericalstudy,Kayo,Taruya&Suto(2001)recentlyshowedthatthelog-normalPDFquantitativelyapproximatestheone-pointPDFP(δ)intheN-bodysimulationsemergingfromtheGaussianinitialcondition,irrespectiveoftheshapeofinitialpowerspectra.Thelog-normalPDFhasbeenlongknownasanempiricalmodelcharacterizingtheN-bodysimulations(e.g.,Kofmanetal.1994;Bernardeau&Kofman1995;Taylor&Watts2000)ortheobservedgalaxydistribution(e.g,Hamilton1985;Bouchetetal.1993;Kofmanetal.1994).Recently,agoodagreementwiththelog-normalmodelhasbeenreportedinthenumericalstudyofweaklensingstatistics(Taruyaetal.2002a),andanattempttoclarifytheoriginofthelog-normalbehaviorhasalsomade(Taruyaetal.2002b).Mathematically,thelog-normalPDFisobtainedfromaone-to-onelocalmappingbetweentheGaussianandthenon-lineardensity elds.Thus,thesuccessful ttotheN-bodysimulationmightbeinterpretedtoimplythattheevolutionoflocaldensitycanbewell-approximatedbytheone-to-onelocalmapping.Indeed,theanalyticPDFforthesphericalcollapseapproximationcanalsobeexpressedasaone-to-onelocalmappingviathesphericalcollapsemodel.
TheabovenaivepicturehasbeencriticallyexaminedbyKayo,Taruya&Suto(2001)evaluatingthejointPDFP(δ1,t1;δ2,t2),i.e.,jointprobabilityofthelocaldensity eldsδ1andδ2atthesamecomovingpositionbutatthedi erenttimest1andt2.Ithasbeenfoundthatalargeamountofscatterintherelationbetweenδ1andδ2showsupandtheirmeanrelationsigni cantlydeviatesfromthepredictionfromtheone-to-onelog-normalmapping.Althoughthismightnotbesurprising,thegoodagreementbetweenthelog-normalandthesimulatedPDFsbecomesmorecontrivedanddi culttobeexplainedinastraightforwardmanner.
De nitely,thefailureoftheone-to-onelocalmappingsomehowre ectsthenon-localityofthegravitationaldynamics.Thatis,theevolutionoflocaldensitycannotbedeterminedbytheinitialvalueofthelocaldensityonly.Rather,thelocaldensitycanbeexpressedasmulti-variatefunctionsoflocaldensityandotherlocalquantitiessuchasvelocity,gradientoflocaldensity,velocity-divergenceandsoon.Furthermore,initialvaluesoftheselocalquantitiesarerandomlydistributedoverthethree-dimensionalspace.Asaconsequence,evenifthedynamicsisdeterministic,therelationbetweentheevolvedandtheinitiallocaldensityinevitablybecomesstochastic.Inasense,thesituationisquitesimilartothenon-linearstochasticbiasingofgalaxies,i.e.,thestatisticaluncertaintybetweengalaxiesanddarkmatterarisingfromthehiddenvariables(e.g.,Dekel&Lahav1999;Taruya,Koyama&Soda1999;Taruya&Suto2000).Then,takingaccountofthisstochasticnature,the
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
crucialissueistoconstructasimplebutphysicallyplausiblemodelofone-pointPDF,atleast,consistentwiththeN-bodysimulationsinaqualitativemanner.Further,thein uenceofstochasticityontheevolutionoflocalquantitiesshouldbeinvestigated.
Thepurposeofthispaperistoaddresstheseissuesstartingfromageneraltheoryofevolutionofone-pointPDF.Inparticular,wederiveanevolutionequationforthedensityandthevelocity-divergencePDFsandconsiderhowthestochasticnatureofthelocaldensity eldemerges.Duetotheincompletenessoftheequations,anytheoreticalapproachusingtheevolutionequationsforPDFsgenerallybecomesintractable.However,underthelocalap-proximationthattheevolutionofdensity eld(orvelocity-divergence)isentirelydeterminedbythelocaldynamicswith nitedegreesoffreedom,weexplicitlyshowthattheanalyticalsolutionfortheevolutionequationsisconsistentlyconstructed.Basedonthisapproxima-tion,theone-pointPDFsforthedensityandthevelocity-divergencearecomputedfromtheellipsoidalcollapsemodel,asanaturalextensionoftheone-to-onemappingofthespher-icalcollapseapproximation.Further,thestochasticnaturearisingfromthemulti-variatefunctionoflocalquantitiesisexplicitlyshownevaluatingthejointPDFsofthelocaldensityand/orthevelocity-divergence.Thein uenceofthise ectisdiscussedindetailcomparingwiththesphericalcollapseapproximation.
Thispaperisorganizedasfollows.Insection2,weconsiderageneralframeworktotreattheevolutionofone-pointPDFsandderivetheevolutionequationsfortheEulerianandtheLagrangianPDFs(Sec.2.2and2.3).Then,adoptingthelocalapproximation,consistentsolutionsfortheseequationsareobtained(Sec.2.4).Further,thestochasticnatureoftheevolutionofPDFsisquanti edevaluatingjointPDFs(Sec.2.5).Asanapplicationofthesegeneralconsiderations,insection3,wegiveanexplicitevaluationofone-pointPDFsadoptingthesphericalandtheellipsoidalcollapsemodelsasrepresentativeLagrangianlocaldynamics.ThequalitativefeaturesoftheresultsarecomparedwiththeperturbativeanalysispresentedinappendixBorthepreviousN-bodystudy.Finally,section4isdevotedtotheconclusionandthediscussion.
2.EVOLUTIONEQUATIONFORPROBABILITYDISTRIBUTION
FUNCTION
2.1.Preliminaries
Throughoutthepaper,wetreatdarkmatterasapressure-lessandnon-relativistic uid.Assumingthehomogeneousandisotropicbackgrounduniverse,thedensity eldδ(x,t),thepeculiarvelocity eldv(x,t)andthegravitationalpotentialφforthe uidfollowtheequation
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
ofcontinuity,theEulerequationandthePoissonequationasfollows:
δ
a
v
a ·{(1+δ)v}=0,1(1)(v· )v+Hv=
xj (x,t),···,(4)
andde nethejointPDF,P(F;t),whichgivesaprobabilitydensitythatthequantityFtakessomevaluesof(δ,v, δ,···)atthetimet.Intermsofthis,theone-pointPDFofthedensity uctuationsP(δ;t)isgivenas
dFiP(F;t),(5)P(δ;t)=
Fi=δ
andsimilarlytheone-pointPDFofthedimensionlessvelocitydivergence,P(θ;t),is
P(θ;t)=dFiP(F;t),
Fi=θ(6)
whereθ≡ ·v/(aH).
Ingeneral,astatisticalcharacterizationofthelarge-scalestructureiscoordinate-dependent.Physically,thereareatleasttwomeaningfulcoordinates,i.e.,theLagrangianandtheEule-riancoordinates.WhiletheEuleriancoordinateis xedonacomovingframe,theLagrangiancoordinateis xedon uidparticlesandfollowsthemotionofthe uid ow.Hence,astimegoeson,highdensityregionsintheLagrangianspaceoccupylargervolumethanthoseintheEulerianspace.WethusconsiderboththeLagrangianPDFPLandtheEulerianPDF
PE,de nedintheLagrangianandtheEuleriancoordinates,qandx,respectively.The
correspondingexpectationvalues, ··· Land ··· Earealsointroduced.
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
Inthefollowingsubsection,we rstconsidertheLagrangianPDFandderivetheevolu-tionequation.ThenwederivetheevolutionequationforEulerianPDFinsection2.3.Theevolutionequationsderivedherearenotyetclosedbecauseoftheunknownfunctions.Insec-tion2.4wediscussanapproximatetreatmentusingthelocaldynamicsmodel,whichenablesustoobtainaclosedformofevolutionequationandtoconstructaconsistentsolution.
grangianone-pointPDF
ToderivetheevolutionequationfortheLagrangianone-pointPDF,weintroduceanarbitraryfunctionoflocaldensity,g(δ),andconsidertheevolutionofitsexpectationvalue, g(δ(q,t)) LevaluatedinaLagrangianframe.Thedi erentiationofthisexpectationvalue
withrespecttotimebecomes
dFig(δ)PL(F;t)=dδg(δ) ti
dtg(δ(q,t)) =
L dgdt =L idFidg(δ)dtPL(F;t).(8)
Theright-hand-sideoftheaboveequationcanbeexpressedbyintegratingbypartas
dg(δ) PL(F;t)= PL(F;t)dFidFig(δ)dtdtii PL(δ;t).= dδg(δ)dtδ
Here,thequantity[A]BdenotestheconditionalmeanofAforagivenvalueofB:
[A]B≡dFiAP(F|B)
Fi=B(9)(10)
withthefunctionP(F|B)beingtheconditionalPDFforagivenB,i.e.,P(F|B)=P(F)/P(B).
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
Now,recallingthefactthatg(δ)isanarbitraryfunctionoflocaldensityδ,equation
(7)mustbeequivalenttoequation(8)intheLagrangeframe.Thecomparisonbetweenequation(7)andequation(9)thenleadstothefollowingevolutionequation: dδ
δ
tPL(θ;t)+ dtPL(θ;t)
θ=0.(12)
2.3.Eulerianone-pointPDF
TheevolutionequationfortheEulerianone-pointPDFscanalsobederivedbyrepeatingthesameprocedureasabove,buttheresultantexpressionsareslightlydi erentfromthoseoftheLagrangianPDFs.Thetimederivativeoftheexpectationvalue g(δ) Ebecomes
tPE(δ;t).(13)
Asfortheexpectationvalueof g/ t,withahelpoftheLagrangiantimederivative,weobtain δdδ1
dδdδdδ
1
dδ
=1av· g(δ(x,t)) E
tg(δ(x,t)) =
E dδg(δ) dt(t) PE(δ;t)+H[θ(t)]δPE(δ;t).(16)δ
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
Hence,therelation g/ t E= g(δ) E/ t,nottheequation dg/dt E= g(δ) E/ t,leads
totheevolutionequationfortheEulerianone-pointPDFP(δ,t).Fromequations(13)and
(14),weobtain
dδ
δ
tPE(θ;t)+ dt(t)
Notethatthezero-meanofthevelocitydivergence θ E=0isalwaysguaranteedfrom
equation(18),whichiseasilyshownbyintegratingtheaboveequationoverθdirectly. PE(θ;t)θ =HθPE(θ;t).(18)
2.4.Localapproximation
Theevolutionequationsintheprevioussubsectionarerathergeneralandinderivingthesewedidnotspecifythedynamicsof uidevolution.Inthissense,theyarenotcloseduntilfunctionalformsoftheconditionalmeans[dδ/dt]δ,[θ]δand[dθ/dt]θarespeci ed.Inotherwords,theseequationsrequiretheadditionalequationsgoverningtheevolutionoftheconditionalmeans.However,anattempttoobtaintheclosedsetofevolutionequationssu ersfromseriousmathematicaldi culty,so-calledclosureproblem,whichiswell-knowninthesubjectof uidmechanicsand/orplasmaphysics(e.g.,Chenetal.1989;Goto&Kraichnan1993).SimilartotheBBGKYhierarchy,ifonederivestheevolutionequationsfortheconditionalmeans,thereappearnewunknownconditionalmeans.Thus,wemustfurtherrepeatthederivationofevolutionequationforthenewquantities.Continuingthisoperation,onecould nallyobtainthein nitechainoftheevolutionequations,whichisgenerallyintractable.
Insteadoftheexactanalysistacklingthedi cultproblem,weratherfocusonanapprox-imatetreatmentoftheevolutionofone-pointPDFs,wherethesolutionsfortheevolutionequationsareconsistentlyconstructed.Toimplementthis,weadoptthelocalapproximationthattheevolutionofthelocaldensityδandthevelocity-divergenceθisdescribedbytheLagrangiandynamicswith nitedegreesoffreedom,whoseinitialconditionsarecharacter-izedbytheinitialparameters,p=(p1,p2,···pn),givenatthesameLagrangiancoordinate.
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
Aswillbeexplicitlyshowninthenextsection,forinstance,ifthesphericalcollapsemodelisadoptedasLagrangianlocaldynamics,theevolutionoflocaldensityischaracterizedbythesinglevariable,whichcanbesetasthelinearlyextrapolateddensity uctuation,δl.Ifadoptingtheellipsoidalcollapsemodel,thedynamicaldegreesoffreedomreducetothree,representingtheprincipalaxesofinitialhomogeneousellipsoid,λ1,λ2andλ3.Thus,inthisapproximation,thedensity uctuationscanbeexpressedasδ=f(p,t),andusingthisexpression,thevelocity-divergenceisgivenbyθ= (df/dt)/H(1+f)fromtheequationofcontinuity(1).Withinthelocalapproximation,providedtheinitialdistributionfunctionPI(p),theformoftheconditionalmeanscanbecompletelyspeci edanditcanbeexpressed
intermsofthefunctionsPI(p)andf(p,t).
Letus rstconsidertheLagrangianPDF.Inthiscase,theformalexpressionsfortheconditionalmeans[dδ/dt]δand[dθ/dt]θaregivenby
dδdf(p,t)dpiPI(p)PL(δ;t)i 111= δDθ+.(20)dtθdtdtdt
Withtheseexpressions,theevolutionequations(11)and(12)becomeaclosedformandtheconsistentsolutionscanbeconstructedasfollows: PL(δ;t)=dpiPI(p)δD(δ f(p,t)),(21)
PL(θ;t)=
ii dpiPI(p)δDθ+1dt .(22)
Theproofthattheaboveequationsindeedsatisfytheevolutionequations(11)and(12)canbeeasilyshownbydi erentiatingequations(21)and(22)withrespecttotime.ForthePDFofthelocaldensity,onehas
δD(δ f(p,t)) t dfδD(δ f(p,t))=dpiPI(p) δi
fromthepropertyoftheDirac’sdeltafunction.Intheaboveequation,theoperator / δinthelastlinecanbefactoredoutandonecanusetheexpressionofconditionalmean(19).Then,thetimederivativeoftheone-pointPDFPL(δ;t)isrewrittenas dδ
δ
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
whichcoincideswiththeevolutionequation(11).Asforthevelocity-divergencePDFPL(θ;t),weconsistentlyrecovertheevolutionequation(12)withahelpofequation(20):
1 δDθ+ tdt 1dfdδDθ+=dpiPI(p)H(1+f) θdti = PL(θ;t).(24)dtθ
TheapproximatesolutionoftheEulerianone-pointPDFsarealsoobtainedsimilarly,butthefactor1/(1+δ)mustbeconvolvedwiththeLagrangianPDFduetothepresenceofinertialterm(r.h.sofeqs.[17][18]):
PE(δ;t)=1
δDθ+1
dt 1+f(p,t).(26)
Note,however,thatthesePDFsdonotsatisfythefollowingconditions:normalizationcon-dition 1 E=1andzeromeans δ E=0and θ E=0.Thisfactsimplyre ectsthatthe
conservationofEulerianvolumecannotbealwaysguaranteed,incontrasttotheconserva-tionofLagrangianvolumeensuredbythemassconservation.AspointedoutbyFosalba&Gazta naga(1998a)(seealsoProtogeros&Scherrer1997),were-scaletherelationbetweenδandf(p,t)asfollows:
PI(p)δ=g(p,t)≡NE{1+f(p,t)} 1;NE(t)≡dpi
i
dt
dt =δ1PE(δ;t)1 idpiPI(p)dhdg=
θ1+g
dg
H(1+g)
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
Further,theconditionalmean[θ]δcanbeexpressedas
[θ]δ= 1
dt (31)
δ
fromtheequationofcontinuity(1).Then,thesolutionsofequations(17)and(18)becomes
PE(δ;t)=1
1+gδD(θ h(p,t)).(33)
Onecaneasilyshowthatequations(32)and(33)satisfytheevolutionequations(17)and
(18),withthecorrectnormalizationandthezeromean.
TheabovesolutionsforEulerianPDFcanberegardedasageneralizationofthepreviousstudybasedontheZel’dovichapproximation(Kofmanetal.1994)and/orthesphericalcollapsemodel(Scherrer&Gazta naga2001,seealsoProtogeros&Scherrer1997).Note,however,thatthegeneralexpressionofvelocity-divergencePDFPE(θ;t)di ersfromthe
oneobtainedpreviously.Whilethefactor1/(1+δ)isconvolvedintheintegralinequation
(33),theresultantexpressionbyKofmanetal.(1994)obviouslyomittedthisfactor.Inourprescription,thePDFPE(θ;t)isconstructedfromtheevolutionequation,whichbasically
reliesontheequationofcontinuity.Thismeansthat,evenforthevelocity-divergencePDF,thefactor1/(1+δ)isnecessarytoensurethemassconservation.Infact,theexpression(33)canalsobeobtainedfromthejointPDFPE(δ,θ;t)integratingoverthelocaldensityδ(see
eq.[36]).Althoughthevelocity-divergencePDFinthepreviousstudyhasbeenobtainedinaratherphenomenologicalway,ourpresentapproachusingtheevolutionequationsmightbehelpfulinconstructingtheconsistentPDFs.
Nevertheless,evenatthispoint,thesolutionsofevolutionequationsshouldberegardedasformalexpressions.InordertoevaluatethePDFsexplicitly,weneedtospecifytheLagrangianlocaldynamics.Inotherwords,thequantitativepredictionforPDFsusingthelocalapproximationcruciallydependsonthechoiceofthelocaldynamics.Wewillseeinthesection3thattheexplicitevaluationofPE(δ;t)andPE(θ;t)adoptingthesphericaland
theellipsoidalcollapsemodelsshowsseveralnoticeabledi erences.
2.5.JointPDF
Sofar,wehaverestrictedourattentiontotheone-pointPDFforthesinglelocalvariable,δorθ.Inourtreatmentofthelocalapproximation,theexpressionsforPDFsaregeneral
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
formsirrespectiveoftheLagrangianlocaldynamics.However,itshouldbeemphasizedthatifthelocaldynamicsischaracterizedbymorethanthetwoinitialparameters,qualitativebe-haviorcouldbesigni cantlychangedfromthelocaldynamicswithsingledegreeoffreedom.Thepointisthattherelationbetweeninitialparametersandtheevolvedresultδorθcannotbedescribedbyaone-to-onemapping.Accordingly,therelationbetweenδandθbecomesnolongerdeterministic.Moreover,thefailureofdeterministicpropertyalsoappearsinthetimeevolutionofsuchlocalvariables.Itisthereforeimportanttodiscussthestochasticnatureofδandθarisingfromthedynamicalevolution.Tocharacterizethis,weconsiderthejointPDF.Withinthelocalapproximation,onecanconstructaconsistentsolutionofEulerianjointPDFbetweenδandθevaluatedatthesametime,PE(δ,θ;t).Further,the
LagrangianjointPDFforthedensity eldevaluatedatthesameLagrangianpositionbutatthedi erenttimes,PL(δ,t;δ′,t′)canalsobeobtained.
TheevolutionequationofPE(δ,θ;t)canbederivedthroughtheexpectationvalueof
anarbitraryfunctiong(δ,θ).Repeatingthesameprocedureasdescribedinsection2.3,weobtain
δdδ θ
δ
dθ tdθPE(δ,θ;t),
θ
dδ tPE(δ,θ;t) Hθ θdθ
dt =
δ,θ11+δ dpiPI(p)dh
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
andthecorrespondingsolutionofequation(34)becomes
PE(δ,θ;t)=1
g(δ(q,t),δ(q,t′)) =dδdδ′g(δ,δ′)dt g(δ(q,t),δ(q,t′))=dt = dδdδ′g(δ,δ′)
TheevolutionequationofLagrangianjointPDFis
dδ
δ
dt dt PL(δ,t;δ′,t′).δ,δ′ dt=
δ,δ′1dtδD(δ f(p,t))δD(δ′ f(p,t′)).
RecallingthatthejointPDFsatisfyingtheevolutionequation(37)shouldbeinvariantunderthetransformation,(δ,t) (δ′,t′),thesolutionconsistentwiththeboundaryconditionPL(δ,t′;δ′,t′)=PL(δ;t′)δD(δ δ′)becomes
PL(δ,t;δ′,t′)=dpiPI(p)δD(δ f(p,t))δD(δ′ f(p,t′)).(38)
i
NoticethatifthelocalLagrangiandynamicsisdescribedbyasingleparameter,theintegralovertheinitialparameterp1inequation(38)canbeformallyperformed.TheresultantexpressionincludesDirac’sdeltafunction,leadingtotheone-to-onemappingbetweenδandδ′.Ontheotherhand,incaseswiththemultivariateinitialparameters,onecannotgenerallyperformtheaboveintegralandtheDirac’sdeltafunctionisnotfactoredout,leadingtothestochasticnatureoflocaldensity elds.
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
OnemightfurtherconsidertheevolutionofEulerianjointPDFPE(δ,t;δ′,t′),which
hasbeenindeedshowninN-bodysimulationsbyKayoetal.(2001).Thederivationofevolutionequationitselfisaneasytask,but,theformalsolutioninthelocalapproximationsu ersfromdi cultiesduetothepresenceofadvectiveterm,whichmightberelatedtoanimportante ectonthenon-localnatureof uid ows.SinceeventheLagrangianjointPDFshowsseveralimportantfeatures,onecanexpectthatthequalitativelysimilarbehaviortotheN-bodyresultscanbeseenfromtheLagrangianjointPDF.Hence,wewillpostponetoanalyzetheEulerianjointPDFPE(δ,t;δ′,t′)andinsteadfocusontheLagrangianjointPDF
PL(δ,t′;δ′,t′).
3.DEMONSTRATIONANDRESULTS
Nowweareinapositiontogiveanexplicitevaluationoftheone-pointPDFbasedonthelocalapproximationdiscussedintheprevioussection.Foranillustrativepurpose,weadoptthesphericalandtheellipsoidalcollapsemodelsassimpleandintuitiveLagrangianlocaldynamics.Afterbrie ydescribingthebasicequationsofthesemodelsinsection3.1,wecomputetheEulerianone-pointPDFsPE(δ)andPE(θ)anddiscussthequalitativedi er-
encesarisingfromthechoiceofLagrangianlocaldynamicsinsection3.2.Inparticularthestochasticityinthemulti-variatefunctionoflocaldensityorvelocity-divergenceisexaminedindetailbyevaluatingthejointPDFs,PL(δ,t;δ′,t′)andPE(δ;θ)fromtheellipsoidalcollapse
model.
3.1.ModelsforLagrangianlocaldynamics
FirstconsiderthesimplestcaseoftheLagrangianlocaldynamics,inwhichtheevolutionoflocalquantitiesisdeterminedbythemassinsideasphereofradiusRcollapsingviaself-gravity:d2R4π3;M=ρR=const,(39)R2
whereMisthemassinsidetheradiusand
ρ/ρm 1=(a/R)3 1asfollows: 2dδ4dδ dt1+δ2H2 m(1+δ)δ,(40)
withthequantity mbeingthedensityparameter, m≡8πGρm/(3H2).AsFosalba&Gazta naga(1998a)stated,thisequationisregardedasashear-lessandirrotationalapprox-
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
imationof uidequations,sinceonecanderivethefollowingequationfromequations(1)to
(3): d2δ4dδ mδ+σijσij ωijωij,(41)dt1+δ2
withahelpoftheLagrangiantimederivative.Herethequantitiesσijandωijrespectivelydenotetheshearandtherotationgivenby
σ1
ij=j
x+ v
j3θδij,
ω1 v
ij=j
xj
√
dt2αi= 4πGρmαi
∞ 1+δ2δ+λext,idτ ,bi=α1α2α3
03,
andtherelationbetweenδandαibecomes
3
δ=a
35 ;linearexternaltide,(42)(45)(46)
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
whereD(t)isthelineargrowthrate.Thevariablesλirepresenttheinitialparametersofprincipalaxes,andintermsofthese,theinitialconditionsreduceto
dαi(t0)=a(t0){1 D(t0)λi},(49)
dt2+2Hdδ
31dt α˙i3 2=H2(1+δ) α˙2 3δij.3Hα1α3
Notethatsimilartothesphericalcollapseapproximation,thethreeinitialparametersλiareregardedastherandomvariables.Whentheinitialconditionofdensity eldisassumedtobeaGaussianrandomdistribution,theexpressionfortheinitialparameterdistributionPI(λi)isanalyticallyobtainedasfollows(e.g.,Doroshkevich1970;Bardeenetal.1986):
23375I1PI(λi)=(λ1 λ2)(λ2 λ3)(λ1 λ3),(52)exp 3262σ5πσll
wherethequantitiesI1andI2denoteI1≡λ1+λ2+λ3andI2≡λ1λ2+λ2λ3+λ3λ1,respectively.
BasedontheseLagrangianlocalmodels,wenumericallycalculatethePDFsassumingtheEinstein-deSitteruniverse( m=1, Λ=0),inwhichthelineargrowthrateDissimplyproportionaltothescalefactora.Forabetterunderstandingofthelateranalysis,inFigure1,weplottheevolutionoflocaldensityδfromtheellipsoidalcollapsemodelforsomeinitialconditions(e,p)givenbye=(λ1 λ3)/(2δl)andp=(λ1+λ3 2λ2)/(2δl).Theresultsarethendepictedasafunctionoflinearlyextrapolateddensityδl=λ1+λ2+λ3andarecomparedwiththeonefromtheone-to-onemappingofsphericalcollapsemodel(solid).Figure1showsthatthelocaldensityoftheellipsoidalcollapsemodelgenerallytakesalargervaluethanthatofthesphericalcollapsemodel.Further,thevarietyofevolveddensityfor xedδlsuggeststhatalargeamountofscatterwillappearinthejointPDFPL(δ,t;δ′,t′)andtheresultantone-pointPDFsPE(δ)andPE(θ)cannot,ingeneral,coincidewiththose
obtainedfromthesphericalcollapsemodel.
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
3.2.Results
IncomputingthePDFsfromtheabovelocalcollapsemodels,onemaypracticallyen-counterthecasewhenthelocaldensityin nitelydivergesat niteelapsedtimeforsomeregionsintheinitialparameterspace,whichhasnotbeentreatedinprevioussection.Toavoidtheunphysicaldivergences,wemustrestricttheintegralinthePDFstotheinitialpa-rameterspaceV(t),inwhichthelocaldensityδdoesnotdiverge.Indeed,thismodi cationslightlya ectsthenormalizationconditionforboththeLagrangianandtheEulerianPDFs,i.e., 1 L,E=1.AlthoughthisdoesnotalteranyqualitativefeaturesofPDFs,weconsider
somemodi cationstokeepthecorrectnormalizationandadoptingthisprocedureinap-pendixA,andtheresultsforone-pointandjointPDFsarepresentedbelow.Note,however,thattheperturbationcalculationdiscussedin3.2.1isfreefromtheseriousdivergencesandwithintheperturbativetreatment,onecanrigorouslydevelopthelocalapproximationforPDFs.
3.2.1.One-pointPDFs
Letusshowtheresultsoftheone-pointPDF.Figure2plotstheone-pointEulerianPDFsofthelocaldensity(top)andthevelocity-divergence(bottom)evaluatedatvariouslinear uctuationvaluesσl.Inbothpanels,thethicklinesrepresenttheresultsobtainedfromtheellipsoidalcollapsemodelwithlinearexternaltide,whilethethinlinesdenotethePDFsfromthesphericalcollapsemodels.IncomputingthePDFs,theLagrangianlocaldynamicsarenumericallysolvedwiththevariousinitialconditionspintheinitialparameterspaceV.Then,weightingbythePDFoftheinitialparameterPI(p),thePDFsareconstructed
bybinningtheevolvedresultsofthedensityδandthevelocity-divergenceθ,togetherwithappropriateconvolutionfactors(seeAppendixA).
Asexpected,theoverallbehaviorsofbothPDFsinFigure2arequalitativelysimilar,irrespectiveoftheLagrangianlocalmodels.Asincreasingthelinear uctuationvalueσl,whilethedensityPDFPE(δ)extendsoverthehigh-densityregionδ 1,thevelocity-
divergencePDFPE(θ)isnegativelyskewedanditextendsoverthenegativeregionθ 1.
Inlookingatthedi erencesineachlocalmodel,wereadilyobserveseveralremarkablefeatures.First,thedensityPDFscomputedfromboththesphericalandtheellipsoidalcollapsemodelsalmostagreewitheachother.At rstglance,thisseemstocontradictwithanaiveexpectationfromthelocaldynamicsinFigure1.However,onemightrathersuspectthattheagreementindensityPDFsisaccidental,duetothedistributionofinitialparametersPI(λi),whichis,atleast,consistentwithanaivepicturethatjointPDFPL(δ,t;δ′,t′)fromthe
ellipsoidalcollapsemodelexhibitsalargemountscatterandthemeanrelationbetweenδand
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
δ′signi cantlydeviatesfromone-to-onemappingofsphericalcollapsemodel(seeSec.3.2.2andFig.4).Ontheotherhand,thevelocity-divergencePDFsfromtheellipsoidalcollapsemodelexhibitlongernon-Gaussiantails,comparedwiththoseobtainedfromthesphericalcollapsemodel.ThedeviationbetweenbothmodelsinPDFPE(θ)becomessigni cantas
increasingthevalueσl.Interestingly,inthenon-linearregimeσl≥1,tailsofPDFPE(θ)fromthesphericalcollapsemodelshowtheoppositetendency,i.e.,theamplitudedecreasesasincreasingσl.
Inordertocharacterizethequalitativebehaviorsmoreexplicitly,weperturbativelysolvetheevolutionequationsforboththesphericalandtheellipsoidalcollapsemodels.Thedi erencesarethenquanti edevaluatingthehigherordermomentsofone-pointstatisticsforthelocaldensityandvelocity-divergence.InappendixB,basedontheformalsolutionofPDFsinsection2.4,perturbativecalculationsoflocalcollapsemodelsarebrie ysummarizedandthesolutionsuptothe fthorderarepresented.Theresultantexpressionsforthehigherordermomentsofdensityandvelocity-divergenceareobtainedasaseriesexpansionoflinearvarianceσl2,uptothetwo-looporderforthevarianceandtheone-looporderfortheskewnessandthekurtosis:
σ2≡ δ2 E=σl2+s2,4σl4+s2,6σl6+···,
δ3 ES3≡
σ6
forthelocaldensityand
24θ6σθ≡ θ2 E=σl2+sθ2,4σl+s2,6σl+···,
θ3 ET3≡
6σθ(53)=S4,0+S4,2σl2+···(55)(56)=T4,0+T4,2σl2+···(58)
forthevelocity-divergence.Then,allthecoe cientsintheaboveexpansionsyieldtherigorousfractionalnumberandTable1displaysasummaryoftheresults.Thecalculationinsphericalcollapsemodelessentiallyreproducesthenon-smoothingresultsobtainedbyFosalba&Gazta naga(1998a,b).Note,however,thatthediscrepancyhasappearedinthehigherordercorrectionofvelocity-divergence(c.f.,eq.[12]withγ=0ofFosalba&Gazta naga1998b).Perhaps,incomputingthevelocity-divergencemoments,Fosalba&Gazta naga(1998b)incorrectlyusedthecumulantexpansionformulaforδlistedinFosalba&Gazta naga(1998a).Further,wesuspectthattheyerroneouslyreplacedtheconvolutionfactor1/(1+δ)
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
inEulerianexpectationvaluewith1/(1+θ).Ontheotherhand,inourcalculation,moments θn Earerigorouslycomputedaccordingtothede nition(B6),withahelpofthevelocity-
divergencePDF(33)withequation(30).Hence,thepresentcalculationisatleastconsistentwiththelocalapproximationinsection2.4andwebelievethatnoseriouserrorhasappearedinpresentresult.
Apartfromthisdiscrepancy,one ndsthattheleading-order(tree-level)calculationofskewnessS3,0andkurtosisS4,0inbothmodelsexactlycoincideswitheachother.Whilethedi erencesinthehigherordercorrectionforlocaldensityarebasicallysmall,consistentwithFigure2,theresultsinvelocity-divergenceexhibitalargedi erence,especiallyinthe
2varianceσθ.Figure3summarizesthedeparturefromtheleading-orderperturbationsforthevariance(top),theskewness(middle)andthekurtosis(bottom),eachofwhichisnormalized
2bytheleadingterm.Clearly,thehigherordercorrectionsforvarianceσθshowthesigni cant
di erencebetweenthesphericalandtheellipsoidalcollapsemodels,althoughthemodelde-pendenceoftheexternaltideinellipsoidalcollapseisrathersmall.Remarkably,theone-loopcorrectionsθ2,4isnegativeinthesphericalcollapsemodelandtherebythequantityσθdoesnotmonotonicallyincrease.Thisbehaviorindeedmatcheswiththenon-monotonicbehaviorofvelocity-divergencePDFseeninFigure2.Inthissense,theperturbationresultssuccess-fullyexplainthenumericalresultsofPDF.ThisfactfurtherindicatesthatinaGaussianinitialcondition,thein uenceofnon-sphericityore ectofshearcouldbenegligibleintheone-pointstatisticsoflocaldensity,whileitalterstheshapeofthePDFPE(θ),whichmight
beanaturaloutcomeofthemultivariatelocalapproximation.
3.2.2.JointPDFs
NextwefocusonthejointPDFs.LeftpanelofFigure4showstheLagrangianjointPDFPL(δ(z=0);δ(z=9))fromtheellipsoidalcollapsemodel,evaluatedatthepresent
timez=0withvariouslinearvariancesσl.Ontheotherhand,rightpanelofFigure4representstheresults xingthelinear uctuationvaluetoσl=2atpresent,butatdi erentoutputtimes.AlthoughFigure4doesnotrigorouslycorrespondtotheN-bodyresultsobtainedbyKayoetal.(2001)(c.f.Fig.7intheirpaper),thequalitativelysimilarfeaturescanbedrawninseveralpoints.First,thescatterbetweenδ(z=0)andδ(z=9)becomesbroaderasincreasingthetimeandthelinearvariance(toptobottominleftpanel).Second,thenonlinearitybetweentheinitialandtheevolveddensityindicatedfromthecurvatureoftheconditionalmean[δ(z)]δ(z=9)(solid)alsotendstoincreaseastimeelapses(toptobottominrightpanel).Theone-to-onemappingobtainedfromthesphericalcollapsemodel(short-dashed)isverydi erentfromthemeanrelation[δ(z)]δ(z=9),buttheirmeanrelations
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
basicallyre ectthequalitativebehavioroflocaldynamicsinFigure1.Thatis,theevolvedresultsoflocaldensityintheellipsoidalcollapsetendstotakealargervaluethanthatinthesphericalcollapse.Moreover,recallthefactthatboththeinitialandthe nalPDFsoflocaldensityPE(δ)showagoodagreementbetweenthesphericalandtheellipsoidalcollapse
model(seeFig.2).ThisisindeedthesamesituationasintheN-bodysimulation;apartfromthedetaileddi erences,asimplemodelofPDFsprovidesanessentialingredientforthestochasticnatureofN-bodyresults.Inthissense,thelocalapproximationwithellipsoidalcollapsemodelscanberegardedasaconsistentandphysicalmodelofone-pointstatistics,whichsuccessfullyexplainstheN-bodysimulations.
Finally,usingtheellipsoidalcollapsemodelwithlinearexternaltide,weexaminetheEulerianjointPDFoflocaldensityandvelocity-divergenceevaluatedatthesametime,i.e.,PE(δ;θ).InFigure5,contourplotsofjointPDFPE(δ;θ)forvariouslinear uctuationvalues
σlaredepictedasfunctionof θandδ.Thisistheso-calleddensity-velocityrelation,whichmightbeofobservationalinterestinmeasuringthedensityparameter mfromthevelocity-densitycomparisonthroughthePOTENTanalysis(e.g.,Bertschinger&Dekel1989).Alongthelineofthis,theoreticalworksbasedontheEulerianperturbationtheoryhaveattractedmuchattention,aswellastheN-bodystudy(e.g.,Bernardeau1992a;Chodorowski&Lokas1997;Bernardeauetal.1999).Basedonthesolutionofthelocalapproximation(36),onecaneasilycalculatetheperturbationseriesofvelocity-densityrelation[θ]δasfunctionoflocaldensityanddensity-velocityrelation[δ]θasfunctionofvelocity-divergence,theleading-orderresultsofwhichareexpectedtocoincidewithpreviousearlyworksinthenon-smoothingcase,exactly.Beyondtheperturbationanalysis,Figure5revealsthegeneraltrendofthestochasticnatureinthevelocity-densityrelation.Asincreasingσl,thescatterbecomesmuchbroaderandtheconditionalmeans[δ]θ(dot-dashed)and[θ]δ(solid)doesnotcoincidewitheachother.Ofcourse,theone-to-onemappingobtainedfromthesphericalcollapsemodel(short-dashed)failstomatchthebothconditionalmeans.ThesequalitativebehaviorisinfactconsistentwiththeN-bodyresultsbyBernardeauetal.(1999)andthepresentmodelprovidesasimplewaytoderivethenon-linearandstochasticvelocity-densityrelation.
4.CONCLUSIONANDDISCUSSION
Inthispaper,startingfromageneraltheoryofevolutionofone-pointPDFs,wederivedtheevolutionequationsforPDFandwithinalocalapproximation,consistentformalsolu-tionsofPDFareconstructedinboththeLagrangianandtheEulerianframes(seeeqs.[21][22]forLagrangianPDFsandeqs.[32][33]witheqs.[27][30]forEulerianPDFs).InordertorevealthestochasticnaturearisingfromthemultivariateLagrangiandynamics,wefurthercon-
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
sidertheEulerianjointPDFPE(δ,θ;t)(eq.[36])andtheLagrangianjointPDFPL(δ,t;δ′,t′)
(eq.[38]).Then,adoptingthesphericalandtheellipsoidalcollapsemodelsasrepresentativeLagrangianlocaldynamics,weexplicitlyevaluatetheEulerianPDFs,PE(δ)andPE(θ),as
wellasthejointPDFs.Theresultsfromtheellipsoidalcollapsemodelshowseveraldis-tinctproperties.WhilethePDFPE(δ)almostcoincideswiththeone-to-onemappingof
thesphericalcollapsemodel,thetailsofvelocity-divergencePDFPE(θ)largelydeviatefrom
thoseobtainedfromthesphericalmodel.Thesebehaviorshavealsobeencon rmedfromtheperturbativeanalysisofhigherordermoments.Ontheotherhand,evaluatingtheLa-grangianjointPDFoflocaldensity,PL(δ,t;δ′,t′),alargescatterintherelationbetweenthe
initialandtheevolveddensity eldswasfoundandtheirmeanrelationfailstomatchtheone-to-onemappingofsphericalcollapsemodel.Thisremarkablyreproducesthesamesitu-ationintheN-bodysimulation.Therefore,thelocalapproximationwithellipsoidalcollapsemodelprovidesasimpleandphysicallyreasonablemodelofone-pointstatistics,consistentwiththeleading-orderresultsofexactperturbationtheory.
Sincethepresentformalismdescribedinsection2isquitegeneral,theapproachdoesnotrestrictitsapplicabilitytothepressure-lesscosmological uid.Rather,onemayapplytothevarious uidsystemsinpresenceorabsenceofgravity.Asmentionedinsection
2.4,however,theapplicabilityorthevalidityoflocalapproximationofPDFs,inprinciple,sensitivelydependsonthechoiceofLagrangianlocaldynamics.Inthelastsection,simpleandintuitiveexampleswereexaminedfortheillustrativepurposes.TheresultsindicatethatthemultivariateLagrangiandynamicsratherthanthelocalmodelwithasinglevariablecandescribevariousstatisticalfeaturesof uidevolutionincludingthestochasticnature.
Perhaps,astraightforwardextensionofthepresenttreatmentistoincludethee ectofredshift-spacedistortionorprojectione ect,whichispracticallyimportantforpropercomparisonwithobservation.Beforeaddressingthisissue,however,rememberthemostprimarilyimportanceofthesmoothinge ect.Whiletheappropriateprescriptionfortop-hatsmoothing lterdoesexistinthelocalapproximationwiththesphericalcollapsemodel(e.g.,Bernardeau1994b;Protogeros&Scherrer1997;Fosalba&Gazta naga1998a),thesmoothinge ectontheapproximationusingellipsoidalcollapsemodelstillneedstobeinvestigated.Thisstepisinparticularacrucialtaskinordertoconstructamorephysicalprescriptionforone-pointstatisticsofcosmic eldsandtheanalysisisnowinprogress.Theresultswillbepresentedelsewhere(Ohta,Kayo&Taruya,inpreparation).
WearegratefultoY.Sutoforreadingthemanuscriptandcomments.I.KacknowledgesthesupportbyTakenaka-IkueikaiFellowship.Thisworkissupportedinpartbythegrand-in-aidforScienti cResearchofJapanSocietyforPromotionofScience(No.1470157).
正在阅读:
Evolution of Cosmological Density Distribution Function from the Local Collapse Model07-18
工程概况-中山环保局12-29
啄木鸟与伐木工作文600字06-22
翻译练习及参考译文04-24
审计局全面从严治党组主体责任落实不够到位问题专项整治情况总结报告08-05
书法兴趣小组活动记录10-18
高考数学复习:第三章 :第三节 三角函数的图象与性质03-09
摄像教程 - 图文01-26
- 1Local Rigidity for Cocycles
- 2REFLECTED BROWNIAN BRIDGE LOCAL TIME CONDITIONED ON ITS LOCAL TIME AT THE ORIGIN
- 3Physical distribution-A
- 4Effects of Biodiversity on ecosystem function
- 5REFLECTED BROWNIAN BRIDGE LOCAL TIME CONDITIONED ON ITS LOCAL TIME AT THE ORIGIN
- 6The evolution of black hole states
- 7The evolution of black hole states
- 8On List Update and Work Function Algorithms
- 9The distribution of spacings between quadratic residues
- 10Model Test One
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Cosmological
- Distribution
- Evolution
- Function
- Collapse
- Density
- Local
- Model
- 湖南美术出版社三年级下册美术全册教案(2015最新精编版)
- 2018年中国房地产移动应用(APP)市场深度调研分析报告目录
- 从执行力到制度设计(完整版)
- 奥的斯的故障代码表
- 挑战模式多人配合怎么打 多人配合注意事项
- 30层高层住宅施工组织设计
- Microsoft office PowerPoint 2003使用技巧与心得
- 咬文嚼字100个常见错字1
- 马克思主义理论与中国社会科学的发展(专题)——马克思及其主义与社会学的发展
- 2015-2020年中国机载雷达行业分析与市场前景预测报告
- 2012年2月份常用物资价格信息参考表
- 2010年教师资格证考试中学教育心理学模拟试题及答案解析(1)
- 《电路》邱关源第五版课后习题答案全集
- 水利工程质量管理规定(部分)
- 2011年中级经济师-房地产专业-多选题百题练-答案解析
- 临时心脏起搏器在外科手术中的应用
- 2014-3公开课教案 图文编排新技术――制作奖状
- 巴洛克增强记忆音乐
- 财神爷《2011年审计实务三百篇》
- 迎新晚会开场短片分镜头剧本