Slave Particle Studies of the Electron Momentum Distribution in the Low Dimensional t-J M

更新时间:2023-05-14 17:40:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

arXiv:cond-mat/9304011v1 8 Apr 1993SlaveParticleStudiesoftheElectronMomentumDistributionintheLowDimensionalt JModelShipingFeng ,1J.B.Wu,2Z.B.Su,1,2andL.Yu1,21International2InstituteCentreforTheoreticalPhysics,P.O.Box586,34100Trieste,ItalyofTheoreticalPhysics,ChineseAcademyofSciences,Beijing100080,ChinaTheelectronmomentumdistributionfunctioninthet Jmodelisstudiedintheframeworkofslaveparticleapproach.Withinthedecouplingschemeusedinthegauge eldandrelatedtheories,wetreatformallyphaseandamplitude uctuationsaswellasconstraintswithoutfurtherapproximations.Ourresultindicatesthatthe

electronFermisurfaceobservedinthehigh-resolutionangle-resolvedphotoemissionandinversephotoemissionexperimentscannotbeexplainedwithinthisframework,andthesumruleforthephysicalelectronisnotobeyed.Acorrectscalingbehavioroftheelectronmomentumdistributionfunctionneark~kFandk~3kFinonedimensioncanbereproducedbyconsideringthenonlocalstring elds[Z.Y.Wengetal.,Phys.Rev.B45,7850(1992)],buttheoverallmomentumdistributionisstillnotcorrect,atleastatthemean eldlevel.

PACSnumbers:71.45.-d,75.10.Jm

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

I.INTRODUCTION

Thet Jmodelisoneofthesimplestmodelscontainingtheessenceofstrongcorrelationsanditsimplicationsforoxidesuperconductivity[1,2]stillremainanoutstandingproblem.Thet Jmodelwasoriginallyintroducedasane ectiveHamiltonianoftheHubbardmodelinthestrongcouplingregime,wheretheon-siteCoulombrepulsionUisverylargeascomparedwiththeelectronhoppingenergyt,andthereforetheelectronsbecomestronglycorrelatedtoavoidthedoubleoccupancy.Inthiscase,theelectron’sHilbertspaceisseverelyrestrictedduetothisconstraint σ CiσCiσ≤1.Anderson[1]andlaterZhangandRice[2]havearguedstronglythatthebasicphysicsofoxidesuperconductorscanbedescribedbythet Jmodel.

Thenormalstatepropertiesofoxidesuperconductorsexhibitanumberofanomalouspropertiesinthesensethattheydonot tintheconventionalFermiliquidtheory[3,4].SomepropertiescanbeinterpretedonlyintermsofadopedMottinsulator[3,4].Acentralquestioninthetheoryofthesestronglycorrelatedsystemsconcernsthenatureoftheelec-tronFermisurface(EFS)[4].Thehigh-resolutionangle-resolvedphotoemissionandinversephotoemissionexperiments[5]demonstratetheexistenceofalargeEFS,withanareacon-sistentwiththebandstructurecalculations.SincethebandtheoryisconsistentwiththeLuttingertheorem[6],thismeansthattheEFSareacontains1-δelectronpersite,whereδistheholedopingconcentration.AlthoughthetopologyofEFSisingeneralagreementwithone-electron-bandcalculations,theFermivelocityisquitedi erent.Thisindicatesthatelectroncorrelationsrenormalizeconsiderablytheresultsobtainedintheframeworkofasingle-particletreatment.Ithasrecentlybeenshownbysmallclusterdiagonalizationthatinatwo-dimensional(2D)squarelatticetheEFSwithinthet JmodelisconsistentwithLuttinger’stheorem[7].MonteCarlosimulationsforanearlyhalf- lled2DHubbardmodelalsosupportthisresult[8].Moreover,theelectronmomentumdistributionfunctionofa2Dt Jmodelwasstudied[9]byusingtheLuttinger-Jastrow-Gutzwillervariational

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

Fermiedge.Forone-dimensional(1D)largeUlimitHubbardmodelwhichisequivalenttothet Jmodel,OgataandShiba[10]obtainedtheelectronmomentumdistributionfunc-tionbyusingLieb-Wu’sexactwavefunction[11].TheirresultalsoshowstheexistenceofEFSaswellasthesingularbehavioratk~kFandk~3kFinthemomentumdistributionfunction.Furthermore,YokoyamaandOgata[12]studiedthe1Dt Jmodelbyusingexactdiagonalizationofsmallsystemsandfoundthepower-lawsingularityappearingatkFinthemomentumdistributionfunction.

Sofar,strongcorrelatione ectscanbeproperlytakenintoaccountonlybynumericalmethods[7–10,12],suchasvariationalMonte-Carlotechnique[13],exactclusterdiagonaliza-tion[14],andvariousrealizationsofquantumMonte-Carlomethod[15].Apartfromthesenumericaltechniques,ananalyticalapproachtothet Jmodelreceivingagreatdealofattentionistheslaveparticletheory[4,16],wheretheelectronoperatorCiσispresentedas

Ciσ=a ifiσwithaiastheslavebosonandfiσasthefermion,orviceversa.Thiswaythe

non-holonomicconstraint

σ CiσCiσ≤1(1)

isconvertedintoaholonomicone

a iai+ σ fiσfiσ=1,(2)

whichmeansagivensitecannotbeoccupiedbymorethanoneparticle.Anewgaugedegreeoffreedommustbeintroducedtoincorporatetheconstraint,whichmeansthattheslaveparticlerepresentationshouldbeinvariantunderalocalgaugetransformationai→aieiθ(ri,t),fiσ→fiσeiθ(ri,t),andallphysicalquantitiesshouldbeinvariantwithrespecttothistransformation.Wecallsuchslaveparticleapproachas”conventional”.Theadvantageofthisformalismisthatthechargeandspindegreesoffreedomofelectronmaybeseparatedatthemean eldlevel,wheretheelementarychargeandspinexcitationsarecalledholons

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

uidsofspinonsandholonsrepresentthesamesetofelectrons,andtheymust,onaverage, owtogether.ThedecouplingofchargeandspindegreesoffreedominthelargeUlimitHubbardmodelisundoubtedlycorrectin1D[10],wherethechargedegreesoffreedomofthegroundstateareexpressedasaSlaterdeterminantofspinlessfermions,whileitsspindegreesoffreedomareequivalenttothe1DS=1

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

followingRef.20,toshowthatthescalingbehavioroftheelectronmomentumdistributionfunctionneark~kFandk~3kFin1Dcanbereproducedbyconsideringthenonlocalstring eldsinthemean eldapproximation,butthereisstillnoEFS,andthesumrulefortheelectronnumberisstillviolated.IfLuttingertheoremisobeyed,theFermivolumeisinvariantunderinteractions.Thusourmean eldresultseemstoindicatethatthecorrectscalingbehavioroftheelectronmomentumdistributiondoesnotguaranteetheexistenceofEFS(inthesenseofglobaldistribution)inthesametheoreticalframework.SectionIVisdevotedtoasummaryanddiscussionsonrelatedproblems.

II.FORMALSTUDYOFELECTRONMOMENTUMDISTRIBUTION

Theslaveparticletheorycanbetheslavebosonortheslavefermiontheoriesaccordingtostatisticsassignedtospinonsandholons.Theslavebosonformulation[21]isoneofthepopularmethodsoftreatingthet Jmodel.Thismethod,however,doesnotgiveagoodenergyofthegroundstate[22].Forexample,inthehalf- lledcase,wherethet JmodelreducestotheantiferromagneticHeisenbergmodel,thelowestenergystateobtainedbythismethodfailstoshowtheexpectedlong-rangeN´eelorder,andtheenergyisconsiderablyhigherthannumericalestimates[13].Also,itdoesnotsatisfytheMarshallsignrule[23].However,thistheoryprovidesaspinonFermisurface[17]eveninthemean eldapproximation.Alternatively,theslavefermionapprochnaturallygivesanorderedN´eelstateathalf- lling[24],whichobeystheMarshall[23]signrule.Thegroundstateenergyobtainedinthiscaseismuchbetterthantheslavebosoncase.Atthemean eldlevel,theyarequitedi erentalthoughinprincpletheyshouldbeequivalenttoeachother.Thedi erencesmaybereducedbygoingbeyondthemean eld[25]approximation.Inthefollowing,weusebothapproachestodiscusstheelectronmomentumdistributionfunctionandthesumruleobeyedbyit,andadirectcomparisonoftheobtainedresultsismade.Firstconsidertheslavefermionrepresentationinwhichtheelectronoperatorcanbe

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

withtheconstraint σbiσbiσ+e iei=1.Inthiscase,theLagrangianLsfandthepartitionfunctionZsfofthet Jmodelintheimaginarytimeτcanbewrittenas

Lsf= b iσ τbiσ+biσ 1),

iσ e i τei+H+λi(e iei+i i b iσσ

H= teie b J

jiσbjσ+

<ij>σ

ZDλe

sf DeDeDbDbieie dτLsf(τ),

1 δ= <b iσbiσ>=1

σ

(3)(6)

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

′Dσ(Ri Rj,τ τ′)= <Tτbiσ(τ)b jσ(τ)>

= 1

Zsf DeDeDbDb ′′ Dλe i(τ)ej(τ)biσ(τ)bjσ(τ)e dτLsf(τ).(10)

Thespinon-holonscatteringcontainedineq.(10)isafourparticleprocess,thereforethespinonandholonarestronglycoupled.Atthemean eldlevel,theholonsandspinonsareseparatedcompletely.However,inmanytheoreticalframeworks,suchastheusualgaugetheoriesdiscussedbymanyauthors[17,26],wherethevertexcorrectionsareignored,buttheRPAbubblesareincluded,thespinonsandholonsarestillstronglycoupledbyphase uctuations(gauge elds)[17],amplitude uctuations[25]andothere ects.Nevertheless,inallthesecasestheelectronGreen’sfunctionGσ(k,iwn)canbepresentedasaconvolutionofthefermionGreen’sfunctiong(k,iwn)andbosonGreen’sfunctionDσ(k,iwn)

Gσ(k,iwn)=1

β wmg(q,iwm)Dσ(q+k,iwm+iwn).(11)

Thecouplingofthegauge eldtotheseparticlescanbestrongandapartialresummationofdigramshasbeencarriedout[17],butthevertexcorrectionswereneglected,beingtheessenceofthedecouplingapproximation.Thisisanimportantbuttheonlyapproximationapartfromthesumrulesforslaveparticles(6)-(7)inourformalstudy.Inwhatfollows,onewill ndthatmanydi cultiesmightappearduetothisapproximation.ThefermionandbosonGreen’sfunctionscanbeexpressedasfrequencyintegralsoffermionandbosonspectralfunctionsas

g(k,iwn)= ∞dw

iwn w ∞,(12)

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

respectively[27].Substitutingeqs.(12)and(13)intoeq.(11),weobtaintheelectronGreen’sfunctionbysummingovertheMatsubarafrequencyiwm,

Gσ(k,iwn)=

1

2π ∞ ∞dw′′iwn+w′ w′′,(14)

wherenF(w′)andnB(w′′)aretheFermiandBosedistributionfunctions,respectively.ThespectralfunctionsAe(q,w′)andAbσ(k,w′′)obeythesumrulescomingfromthecommutationrelations,

∞dw

2πAbσ(k,w)=2.(16)

Theelectron’sHilbertspacehasbeenseverelyrestricted,butthefermionandbosonthem-selvesarenotrestricted.Byananalyticcontinuationiwn→w+iηintheelectronGreen’sfunction(14),theelectronspectralfunctionAcσ(k,w)= 2ImGcσ(k,w)canbeobtainedas

Acσ(k,w)=

1

2πAe(q,w′)Abσ(q+k,w+w′)[nF(w′)+nB(w+w′)].(17)

Therefore,theelectronspectralfunctionAcσ(k,w)obeysthesumrule

σ∞dw ∞

2πnB(w)Abσ(k,w),(19)

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

ThisisbecausenB(w)Abσ(k,w)andnF(w)Ae(k,w)canbeinterpretedastheprobabilityfunctionsofstatekwithenergywforbosonandfermion,respectevely.AsimilarinterpretionisalsovalidfortheelectronspectralfunctionAcσ(k,w).Thusthenumberofelectronsinstatekisobtainedbysummingoverallenergiesw,weightedbytheelectronspectralfunction

nc(k)= σ∞dwN ∞ qσnbσ(k+q)ne(q).(21)

Ineq.(21),the rsttermoftherighthandside1-δisindependentofk,andtherforeitistrueforallkstatesoftheentireBrillouinzone.Thevalueofthesecondtermoftherighthandsideisoftheorderofδ,andhenceitisnotenoughtorestoretheEFS,i.e.,thedistributionoutsidetheshould-beEFSisstilloftheorder1.Fig.1showsthemean eldelectronmomentumdistributionnc(k)fordopingδ=0.125in1D.Beyondthemean eldapproximation,butstillwithinthedecouplingscheme(11),therearenoimportantcorrectionsfortheglobalfeaturesoftheelectronmomentumdistributionandEFS,buttheFermivelocitywillbemodi ed.Thisisbecausetheessentialglobalfeaturesoftheelectronmomentumdistributionaredominatedbythe rsttermoftherighthandside,1 δineq.

(21),andthesecondtermoftherighthandsideineq.(21),whichisoftheorderofδ,isnotenoughtocancelout1 δateachkoutsidethekFstate,i.e.,kF<k<π,fork>0,and π<k< kF,fork<0.Sincenbσ(k+q)≥0andne(q)≥0,andaminussignappearsbetweenthe rstandthesecondtermsoftherighthandsideineq.(21),thenitisimpossibletoshifttheweight1 δinstatekoutsidetheFermipointsintostatek′insidetheFermipoints,i.e.,0<k′<kF,fork′>0,and kF<k′<0,fork′<0.Theabovediscussionsarealsotrueforthe2Dcase.Therefore,thereisnoEFSinthestandardsensewithinthedecouplingscheme(11)intheconventionalslavefermionapproach.Ifδholesareintroducedintothehalf- lledsystem,onemightexpectthatthetotalelectronnumberpersitewouldbe1-δ.However,asurprisingresultis

1

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

Alternatively,intheslavebosonrepresentation,theelectronoperatorcanbeexpressedas

Ciσ=fiσb i,wherefiσisfermionandbiisslaveboson,withthecontraint

Inthiscase,theLagrangianLsbandthepartitionfunctionZsbofthet Jmodelmaybewrittenas

Lsb= iσ fiσ τfiσ σ fiσfiσ+b ibi=1.+ ib i τbi

+H+ iλi(b ibi

iσ+ σ fiσfiσ 1),(23)H= t

+J bib jfiσfjσ µ fiσfiσ<ij>σ

Zsb

1 δ= σ fiσ>=<fiσ DbDbDfDf Dλb ibie dτLsb(τ),(26)1

nc(k)=1 δ+

Acσ(k,w)=1+δ,1(28)

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

Incomparisonwitheq.(21),thesecondtermoftherighthandsideofeq.(29)changessignasanessentialdi erenceoftheelectronmomentumdistributionfunctionbetweentheslavebosonandslavefermionrepresentations.However,thevalueofthesecondtermoftherighthandsideofeq.(29)isalsooftheorderofδ,anditisalsonotenoughtorestoretheEFS.Fig.2showsthemean eldelectronmomentumdistributionnc(k)fordopingδ=0.125in1D.Beyondthemean eldapproximation,butstillwithinthedecouplingscheme,therearenoimportantcorrectionsfortheglobalfeaturesoftheelectronmomentumdistribution.Thereasonisalmostthesameasintheconventionalslavefermionapproach.Theessentialglobalfeaturesoftheelectronmomentumdistributionaredominatedbythe rsttermoftherighthandside1 δineq.(29).Sincenfσ(k+q)≥0andnb(q)≥0,andaplussignappearsbetweenthe rstandthesecondtermsoftherighthandsideineq.(29),itisimpossibletoremovethose1 δstatesbeyondtheFermipoints.Thebestsituationisthatanamountoforderofδisaddedintoeachk′statewithintheFermipoints.Theabovediscussionisalsovalidforthe2Dcase.Therefore,thereisnoEFSwithinthedecouplingschemeintheconventionalslavebosonapproach.Inthiscase,thesumruleoftheelectronnumberisalsoviolatedasintheslavefermioncase.Thedi erencebetweenthesetwoapproachesisthattheelectronnumberismorethantheexpectedvalueintheslavebosonrepresentation,butlessthanitintheslavefermionrepresentation.

TheseresultsindicatethatthereisnorealEFSfortheelectronmomentumdistributionfunctionnc(k)neark~kFwithinthedecouplingschemeintheconventionalslaveparticleapproach.Thesumruleofthephysicalelectronnumberisviolated.ThescalingbehavioroftheelectronmomentumdistributionnearkFisalsonotcorrectlydescribedbythisscheme.Thetheorycanbeappliedtoboth1Dand2Dsystems.Itwasproposed[17,26]thatthelowenergyphysicsofthet Jmodelcanbedescribedbyatheoryoffermionsandbosonscoupledbyagauge eld.Ourresultsalsoindicatethatthegauge elds(phase uctuations)discussedbymanyauthors[17,26,28]arenotstrongenoughtorestoretheEFSunderthedecoupling

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

experiments[5]thatoxidesuperconductingmaterialsexhibitanEFS,andtheEFSobeysLuttingertheorem[6],whichmeanstheFermivolumeisinvariantunderinteraction.InthissensetheEFSofstrongcorrelatedsystemsshouldalsobedescribedbyanadequatetheoryeveninthemean eldapproximation.Infact,therearrangementsofspincon guationsintheelectronhoppingprocess[10],whicharenonlocale ectsandbeyondtheconventionalslaveparticleapproach,playanessentialroletorestoreEFSforasystemofdecoupledchargeandspindegreesoffreedom.Thustheelectronisnotacompositeofholonandspinononly,anditshouldincludeother eldswhichdescribethenonlocale ects.InthenextSection,wewillseethatthescalingbehaviorofnc(k)neark~kFandk~3kFcanbeobtainedin1Dbyconsideringsomenonlocale ects.BeforegoingtothenextSection,wewouldliketoemphasizethatthe”FermiSurface”obtainedpreviously[29]fromtheslavebosontheoryisaspinonFermisurface,nottherealEFS.Inordertointerpretthehigh-resolutionangle-resolvedphotoemissionandinversephotoemissionexperiments[5],thespinonFermisurfaceisnotenoughbecauseexperimentshaveshowntheEFSforrealelectrons.

III.THESCALINGBEHAVIOROFTHEELECTRONMOMENTUM

DISTRIBUTION

FUNCTIONANDTHEEFFECTSOFNONLOCALSTRINGFIELDIN1DInteracting1DelectronsystemsgenerallybehavelikeLuttingerliquids[18]inwhichthecorrelationfunctionshavepower-lawdecaywithexponentswhichdependontheinteractionstrength.Forthe1DHubbardmodel,anexactsolutionwasexplicitlyobtainedbyLiebandWu[11].InthelimitofJ→0,thet JmodelisequivalenttothelargeUlimitHubbardmodel[1,2,10].Thusthe1Dt Jmodelprovidesagoodtestforvariousapproaches.TheasymptoticformsofsomecorrelationfunctionsaswellasthesingleelectronGreen’sfunctionhavebeenobtainedbymanyauthorsusingdi erentapproximations[20,30].Inparticular,OgataandShiba[10]obtainedtheelectronmomentumdistributionfunctionnc(k)byusing

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

andthecorrectscalingbehaviorofnc(k)atk~kFandk~3kF.ItiswellestablishedthattheLandauFermiliquidtheorybreaksdownin1D,namely,(1)thereisno nitejumpofthemomentumdistributionattheFermisurface;(2)thereisnoquasi-particlepropagationand(3)thespinandchargeareseparated.Ontheotherhand,thereisstillawellde nedFermisurfaceatkF,asonewouldexpectfromtheLuttingertheorem.Itisremarkablethattheexactsolutionofthe1DHubbardmodeldemonstratesexplicitlythesetwoaspectsatthesametime.Inthissenseitisimportanttocheckwhetherbothaspectsremaininanyappropriateapproximatetreatmentofthe1Dmodel.Toourknowledge,suchglobalfeaturesoftheelectronmomentumdistributionfunctionevenin1Dwereobtainedonlybyusingnumericaltechniqes.InthisSection,wetrytostudyanalyticallythisproblem.ACP1boson-solitonapproachincludingthee ectsofthenonlocalstring eldtostudythelargeUHubbardmodelwasrecentlydevelopedbyWengetal.[20].Theyhaveshownthattheelectronisacompositeparticleofholon,spinon,togetherwithanonlocalstring eld.Wewilldrawheavilyontheirresults,butwetrytomakethepresentationself-contained.Thecorrectscalingformoftheelectronmomentumdistributionfunctioncanbeobtainedeveninthemean eldapproximationifoneconsidersthenonlocalstring eld.

Forconvenience,webeginwiththet Jmodel,butconsiderthelimitJ→0+whichisa xedpointdi erentfromJ=0.Inthiscase,thet JHamiltonianmaybewrittenas

H= t CiσCjσ+h.c.(31)

<ij>σ

AsintheCP1boson-solitonapproach[20],theelectronoperatorCiσcanbeexpressedintheslavefermionrepresentationincludingthee ectsofnonlocalstring eldsas

iCiσ=e ieπ

2 l<inlisthestring

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

thatbiσannihilatesthespinσandisanonlocalphaseshiftGi=eiπ

2Xjhj,(34)

andtheHamiltonianmayberewrittenas

H= t iσ [b iσbi+1σhi+1hi+h.c] µ

+ iλi(h ihi+ σ ih ihi(35)b iσbiσ 1).

FollowingWengetal.

[20],wecanobtaintheasymptoticsingularbehavioroftheelectronmomentumdistributionbyasimilarcalculation,andtheresultisinagreementwiththeirs.

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

factorwillcontributeanadditionalpower-lawdecayintheasymptoticsingleelectronGreen’sfunction,andonemaynegelectitforsimplicityifonlyinterestedintheleadingcontribution.Themaine ectduetothenonlocalstringisalreadypresent.IntheMFA,oursituationisverysimilar.Eq.(32)holdsexactlyintheN´eellimitofthespincon guration,andthereforethequantummany-bodye ectsareneglected.Thisdoesnota ecttheleadinglong-wavelengthbehavior.Inthispaper,however,wearemainlyinterestedintheglobalfeaturesoftheelectronmomentumdistribution.IfLuttingertheorem[6]isobeyed,theFermivolumeisinvariantunderinteractionandastronglyinteractingsystemshouldalsoshowalargeEFSeveninthemean eldapproximation.Thusamean eldtreatmentisausefultestforthepresentapproach.

Themean eldapproximationtotheHamiltoian(35)amountstotreatingλiasaconstant,independentofpositionandtodecouplingthespinon-holoninteractioninaHartree-likeapproximationbyintroducingtheorderparamerters

χ= σ B<bAiσbi+1σ>,(36)

Bφ=<hAihi+1>,(37)

wherewehaveconsideredtwosublatticesAandBwithi∈A,i+1∈B.Theself-consistentequationsaboutλ,χ,φ,andµcanbeobtainedbyminimizingthefreeenergy.

UnderthesameapproximationastheoneusedtoobtaintheasymptoticsingleelectronGreen’sfunction(i.e.,Gifactorineq.(32)hasbeendropped),thesingleparticleelectronGreen’sfunctionGcσ(k,iwn)inthepresentmean eldapproxmationcanbeobtainedas

Gcσ(k,iwn)=

where

wk=λ tφγk,εk=λ µ tχγk,γk=2cos(k).(39)12(1+δ))(1+δ) wq2,(38)

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

Acσ(k,w)=π

2(1+δ))]δ(w+εq k±π

1Acσ(k,w)=1+δ,(41)nc(k)=1 δ 2(1+δ)),(42)

1

2(1+δ)

duetothepresenceofnonlocalstring elds.Fig.3showstheelectronmomentumdistribu-tionnc(k)inthemean eldapproximation,includingthenonlocalstring eldsfordopingδ=0.125in1D.ThesingularbehavioroftheelectronmomentumdistributionfunctionatkFand3kFisinqualitativeagreementwiththenumericalresults[10],butthesumruleforthetotalelectronnumberisstillviolatedandEFSstilldoesnotexistinthepresentframeworkundertheaboveapproximations.Beyondtheseapproximations,thesituationisnotclearyet.IfLuttingertheorem[6]isobeyed,thentherearenoimportantcorrectionstotheglobalfeaturesoftheelectronmomentumdistributionfunctionandnoEFSbeyondthemean eldapproximationinthesametheoreticalframework.Sincetherearrangementsofquantumspincon gurationsinthehoppingprocessplayanessentialroletorestoretheEFS[10],theneq.(32)whichholdsexactly[20]intheN´eellimitofthespincon guration,isperhapsnotenoughtodescribeallofthesequantumspincon gurations.Thusourfeelingisthatinthistheoreticalframework,thecorrectsingularbehaviorofelectronmomentumdistributionmaybeobtained,butitdoesnotguaranteetheexistenceofEFS.Wealsonotethatonlytheasymptoticformswerediscussedinthepreviousworksbymanyauthors[30],whiletheglobalfeaturesofthemomentumdistributionfunctionhavenotbeenconsideredbytheirtheoreticalmethods.

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

IV.SUMMARYANDDISCUSSIONS

Wehavediscussedtheelectronmomentumdistributionfunctionandthesumruleoftheelectronnumberinthet Jmodelbyusingtheslaveparticleapproach.Underthedecouplingscheme(11)usedinthegauge eld[17]andrelatedtheories,wehaveformallyprovedthatEFScannotberestoredandthesumruleofelectronnumberisviolatedintheframeworkofconventionalslaveparticleapproach.For1Dt Jmodel,thecorrectsingularityformscanbereproducedbyconsideringthenonlocalstring eldsinthespecialmean eldapproximation,butthereisstillnoEFSandthesumruleisstillnotsatis ed.

Inthepresentslaveparticleapproachtostudyt Jmodel,wehavepushedouttheupperHubbardband.Thismeanswehaveneglectedthedoublyoccupiedsitesintheoriginalslaveparticleapproach[21]:Ciσ=a ifiσ+σdifi σ,withaconstraintaiai+

wherea iistheslaveboson,f f σiσfiσ+d idi=1,iσisfermion,anddiisbosonwhichdescribesthedoublyoccupiedsites,orviceversa.Infactintheoriginalslaveparticleapproachtheelectronspectralfunctionobeysthesumruleofconventionalelectron,i.e., σ ∞ ∞dw

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

vertexcorrectionsareneglected,i.e.,thedecouplingschemeisadopted,thedi cultywillremain.Ontheotherhand,itisdi cultytointroducevertexcorrectionsinthepresentformofthegauge eldtheory,becausetheinfrareddivergencehasnotyetbeenproperlyhandled.Anotherpossibilitytoavoidthisdi cultyisthatoneshouldmakeanewinterpretationoftheconstraint(2)andthephysicalmeaningofspinonsandholons.Infacttheconstraint

(2)isanoperatoridentity,andonereplacestheconstraint(2)byeqs.(6)and(7)intheslavefermionapproach,oreqs.(26)and(27)intheslavebosoncase.Itisnotclearthatthisisacorrectwayofimposingtheconstraint,i.e.,thechargeisrepresentedbyafermion,whilethespinisrepresentedbyabosonintheslavefermionapproachandviceversaintheslavebosonversion.Thecrucialpointistoimplementthelocalconstraintrigorously[34].Finally,accordingtotheimplicationsofnumericalsolutions[10],theelectronisperhapsnotacompositeofholonandspinononly,butitrathershouldbeacompositeofholon,spinontogetherwithsomethingelse.ThisisbecausetheBethe-ansatzLieb-Wu’sexactwavefunction[10]for1DHubbardmodelatlargeUlimitmaybewrittenas

Ψ(x1,···,xN)=( 1)Qdet[exp(ikixQi)]Φ(y1,···,yM),(44)

wherethedeterminantdependsonlyonthecoordinatesofparticles(xQ1<···<xQN)but

notontheirspins.ThusitisthesameastheSlaterdeterminantofspinlessfermionswithmomentakj’s.Thespinwavefunctionφ(y1,···,yM)isthesameastheBethe’sexactsolutionof1DHeisenbergspinsystem.Inthesecondquantizationrepresentation,aspinlessfermionoperatormayberesponsiblefortheSlaterdeterminantofspinlessfermions,butasimplefermionorbosonoperatormaybenotenoughtodescribethespinwavefunction.Perhapsitshouldbeafermionorbosonoperatortogetherwithsomethingelse,suchastheJordan-Wigner’sform[35]in1D,oramapofthethreespinoperatorsoftheSU(2)algebraontoacoupleofcanonicalbosonoperators,liketheHolstein-Primako form[36],areresponsibleforthespinwavefunction.Webelievethatasuccessfultheoreticalframeworkmustinclude

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

Tosummarize,wearefacingadilemma:ifwewouldliketosplitoneelectronintotwoparticles,onekeepingtrackofthecharge,theotherkeepingtrackofthespin,andimposecorrespondingsumrulesonthem[eqs.(6)-(7)oreqs.(26)-(27)]andthenusethedecouplingschemefortheirexpectationvalues,theresultingelectrondistributiondoesnotsatisfythesumruleanddoesnotshowanEFS.Inthissense,wehaveprovedinthispaperaNo-Gotheorem.Thealternativewouldbetogiveuptheattractivelysimpleinterpretationofspinonsandholonsandtolookformorecomplicatedchargeandspincollectiveexcitations.Finallywenotethatthepresentslaveparticleapproachisdi erentfromthose rstproposedbyBarnes[37]andrediscoveredandextendedbyColeman[38],ReadandNewns

[39],andKotliarandRuckenstein[40]intheirworksonthemixedvalenceproblemandtheheavyfermionsystems.Intheirformulation,thespinandchargedegreesoffreedomarenotdecoupled,wheretheauxiliarybosonskeeptrackonlyoftheenvironmentbymeasuringtheoccupationnumbersineachofthepossiblestatesforelectronhopping.TheirtheorydescribesthepropertiesofaFermiliquid,andisanotherstory.

ACKNOWLEDGMENTS

TheauthorswouldliketothankDr.Z.Y.Wengforhelpfuldiscussions.S.P.FengandZ.B.SuwouldliketothanktheICTPforthehospitality.

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

REFERENCES

OnleavefromtheDepartmentofPhysics,BeijingNormalUniversity,Beijing100875,

China.

[1]P.W.Anderson,in”FrontiersandBorderlinesinManyParticlePhysics”,ProceedingsoftheInternationalSchoolofPhysics”EnricoFermi”,1987(North-Holland,Amsterdam,1987)1;Science235,1196(1987).

[2]F.C.ZhangandT.M.Rice,Phys.Rev.B37,3759(1988).

[3]”HighTemperatureSuperconductivity”,Proc.LosAlamosSymp.,1989,K.S.Bedell,

D.Co ey,D.E.Meltzer,D.Pines,andJ.R.Schrie er,eds.,Addison-Wesley,RedwoodCity,California(1990).

[4]See,e.g.,thereview,L.Yu,in”RecentProgressinMany-BodyTheories”,Vol.3,T.L.Ainsworthetal.,eds.,Plenum,1992,P.157.

[5]C.G.Olsonetal.,Phys.Rev.B42,381(1990),andreferencestherein;”PhysicsandMaterialsScienceofHighTemperatureSuperconductors”,eds.,R.Kossowsky,S.Meth-fessel,andD.Wohlleben(KluwerAcademic,Dordrecht,1990);C.M.Fowleretal.,Phys.Rev.Lett.68,534(1992);J.C.Campuzanoetal.,Phys.Rev.Lett.64,2308(1990);B.O.Wellsetal.,Phys.Rev.Lett.65,6636(1990);T.Takahashietal.,Phys.Rev.B39,6636(1989).

[6]J.M.Luttinger,Phys.Rev.121,942(1961).

[7]W.StephanandP.Horsch,Phys.Rev.Lett.66,2258(1991).

[8]D.J.Scalapino,inRef.3;S.Sorella,E.Tosatti,S.Baroni,R.Car,andM.Parrinello,”ProgressinHighTemperatureSuperconductivity”(WorldScienti c,Singapore,1988),vol.14,p.457.

The electron momentum distribution function in the $t-J$ model is studied in the framework of slave particle approach. Within the decoupling scheme used in the gauge field and related theories, we treat formally phase and amplitude fluctuations as well as

[10]M.OgataandH.Shiba,Phys.Rev.B41,2326(1990);H.ShibaandM.Ogata,Int.J.

Mod.Phys.B5,31(1991).

[11]E.H.LiebandF.Y.Wu,Phys.Rev.Lett.20,1445(1968);C.N.Yang,Phys.Rev.

Lett.19,1312(1967).

[12]H.YokoyamaandM.Ogata,Phys.Rev.Lett.67,3610(1991).

[13]T.K.LeeandShipingFeng,Phys.Rev.B38,11809(1988);C.Gros,Phys.Rev.B38,

931(1988).

[14]See,e.g.,thereview,E.Dagotto,Int.J.Mod.Phys.B5,77(1991).

[15]S.Sorella,A.Parola,M.Parrinello,andE.Tosatti,Int.J.Mod.Phys.B3,1875(1989);

J.E.HirschandS.Tang,Phys.Rev.Lett.62,591(1989).

[16]See,e.g.,thereview,P.A.LeeinRef.3.

[17]N.NagaosaandP.A.Lee,Phys.Rev.Lett.64,2450(1990),andreferencestherein;P.

A.LeeandN.Nagaosa,Phys.Rev.B46,5621(1992);P.A.Lee,Phys.Rev.Lett.63,680(1990).

[18]F.D.M.Haldane,Phys.Rev.Lett.45,1358(1980);Phys.Lett.81A,153(1981);J.

Phys.C14,2585(1981);J.Solyom,Adv.Phys.28,201(1979).

[19]P.W.Anderson,Phys.Rev.Lett.64,1839(1990);67,2092(1991).

[20]Z.Y.Weng,D.N.Sheng,C.S.Ting,andZ.B.Su,Phys.Rev.B45,7850(1992);Phys.

Rev.Lett.67,3318(1991).

[21]Z.ZouandP.W.Anderson,Phys.Rev.B37,627(1988).

[22]S.Liang,B.Doucot,andP.W.Anderson,Phys.Rev.Lett.61,365(1988).

[23]W.Marshall,Proc.Roy.Soc.London,Ser.A232,48(1955).

本文来源:https://www.bwwdw.com/article/b76e.html

Top