2016 - Cell - Biology and Applications of CRISPR Systems - 图文

更新时间:2023-12-28 04:44:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

LeadingEdge

Review

BiologyandApplicationsofCRISPRSystems:

HarnessingNature’sToolboxforGenomeEngineering

?ez,1andJenniferA.Doudna1,2,3,4,5,6,*AddisonV.Wright,1JamesK.Nun

ofMolecularandCellBiology,UniversityofCalifornia,Berkeley,Berkeley,CA94720,USA

HughesMedicalInstituteHHMI,UniversityofCalifornia,Berkeley,Berkeley,CA94720,USA

3DepartmentofChemistry,UniversityofCalifornia,Berkeley,Berkeley,CA94720,USA

4CenterforRNASystemsBiology,UniversityofCalifornia,Berkeley,Berkeley,CA94720,USA5InnovativeGenomicsInitiative,UniversityofCalifornia,Berkeley,Berkeley,CA94720,USA

6PhysicalBiosciencesDivision,LawrenceBerkeleyNationalLaboratory,Berkeley,Berkeley,CA94720,USA*Correspondence:doudna@berkeley.eduhttp://dx.doi.org/10.1016/j.cell.2015.12.035

2Howard1Department

Bacteriaandarchaeapossessarangeofdefensemechanismstocombatplasmidsandviralinfec-tions.UniqueamongthesearetheCRISPR-Cas(clusteredregularlyinterspacedshortpalindromicrepeats-CRISPRassociated)systems,whichprovideadaptiveimmunityagainstforeignnucleicacids.CRISPRsystemsfunctionbyacquiringgeneticrecordsofinvaderstofacilitaterobustinter-ferenceuponreinfection.InthisReview,wediscussrecentadvancesinunderstandingthediversemechanismsbywhichCasproteinsrespondtoforeignnucleicacidsandhowthesesystemshavebeenharnessedforprecisiongenomemanipulationinawidearrayoforganisms.

CRISPR-Cas(clusteredregularlyinterspacedshortpalindromicrepeats-CRISPRassociated)adaptiveimmunesystemsarefoundinroughly50%ofbacteriaand90%ofarchaea(Makarovaetal.,2015).Thesesystemsfunctionalongsiderestriction-modi-?cationsystems,abortiveinfections,andadsorptionblockstodefendprokaryoticpopulationsagainstphageinfection(Labrieetal.,2010).Unlikeothermechanismsofcellulardefense,whichprovidegeneralizedprotectionagainstanyinvadersnotpos-sessingcountermeasures,CRISPRimmunityfunctionsanalo-gouslytovertebrateadaptiveimmunitybygeneratingrecordsofpreviousinfectionstoelicitarapidandrobustresponseuponreinfection.

CRISPR-Cassystemsaregenerallyde?nedbyagenomiclo-cuscalledtheCRISPRarray,aseriesof??20–50base-pair(bp)directrepeatsseparatedbyunique‘‘spacers’’ofsimilarlengthandprecededbyanAT-rich‘‘leader’’sequence(Jansenetal.,2002;Kuninetal.,2007).NearlytwodecadesafterCRISPRlociwere?rstidenti?edinEscherichiacoli,spacerswerefoundtoderivefromviralgenomesandconjugativeplasmids,servingasrecordsofpreviousinfection(Bolotinetal.,2005;Ishinoetal.,1987;Mojicaetal.,2005;Pourceletal.,2005).SequencesinforeignDNAmatchingspacersarereferredtoas‘‘proto-spacers.’’In2007,itwasshownthataspacermatchingaphagegenomeimmunizesthehostmicrobeagainstthecorrespondingphageandthatinfectionbyanovelphageleadstotheexpansionoftheCRISPRarraybyadditionofnewspacersoriginatingfromthephagegenome(Barrangouetal.,2007).

CRISPRimmunityisdividedintothreestages:spacerac-quisition,CRISPRRNA(crRNA)biogenesis,andinterference(Figure1A)(Makarovaetal.,2011b;vanderOostetal.,2009).Duringspaceracquisition,alsoknownasadaptation,foreignDNAisidenti?ed,processed,andintegratedintotheCRISPRlocusasanewspacer.ThecrRNAbiogenesisorexpression

stageinvolvesCRISPRlocustranscription,oftenasasinglepre-crRNA,anditssubsequentprocessingintomaturecrRNAsthateachcontainasinglespacer.Intheinterferencestage,aneffectorcomplexusesthecrRNAtoidentifyanddestroyanyphageorplasmidbearingsequencecomplementaritytothespacersequenceofthecrRNA.

ThesestepsarecarriedoutprimarilybyCasproteins,whichareencodedbycasgenes?ankingtheCRISPRarrays.Thespe-ci?ccomplementofcasgenesvarieswidely.CRISPR-Cassys-temscanbeclassi?edbasedonthepresenceof‘‘signaturegenes’’intosixtypes,whichareadditionallygroupedintotwoclasses(Figure1B)(Makarovaetal.,2011b;Makarovaetal.,2015;Shmakovetal.,2015).TypesI–IIIarethebeststudied,whileTypesIV–VIhaveonlyrecentlybeenidenti?ed(MakarovaandKoonin,2015;Makarovaetal.,2015;Shmakovetal.,2015).ThesignatureproteinofTypeIsystemsisCas3,aproteinwithnucleaseandhelicasedomainsthatfunctionsinforeignDNAdegradationtocleaveDNAthatisrecognizedbythemulti-protein-crRNAcomplexCascade(CRISPR-associatedcomplexforantiviraldefense).InTypeIIsystems,thesignaturecas9geneencodesthesoleproteinnecessaryforinterference.TypeIIIsystemsaresigni?edbyCas10,whichassemblesintoaCascade-likeinterferencecomplexfortargetsearchanddestruction.TypeIVsystemshaveCsf1,anuncharacterizedproteinproposedtoformpartofaCascade-likecomplex,thoughthesesystemsareoftenfoundasisolatedcasgeneswithoutanassociatedCRISPRarray(MakarovaandKoonin,2015).TypeVsystemsalsocontainaCas9-likesinglenuclease,eitherCpf1,C2c1,orC2c3,dependingonthesubtype(Shmakovetal.,2015;Zetscheetal.,2015a).TypeVIsystemshaveC2c2,alargeproteinwithtwopredictedHEPN(highereu-karyotesandprokaryotesnucleotide-binding)RNasedomains(Shmakovetal.,2015).TypeI,III,andIVsystemsareconsidered

Cell164,January14,2016a2016ElsevierInc.29

Figure1.FunctionandOrganizationofCRISPRSystems

(A)CRISPRimmunityoccursinthreestages.UponintroductionofforeignDNA,theadaptationma-chineryselectsprotospacersandinsertsthemintotheleaderendoftheCRISPRlocus.DuringcrRNAbiogenesis,theCRISPRlocusistranscribedandsequenceelementsintherepeatsdirectprocess-ingofthepre-crRNAintocrRNAseachwithasinglespacer.ThecrRNAthenassembleswithCasproteinstoformtheeffectorcomplex,whichactsintheinterferencestagetorecognizeforeignnucleicaciduponsubsequentinfectionanddegradeit.

(B)CRISPRsystemsareextremelydiversebutcanlargelybeclassi?edintosixmajortypes.Repre-sentativeoperonsforeachtypeareshownhere.Genesonlypresentinsomesubtypesareshownwithdashedoutlines.Genesinvolvedininterfer-encearecoloredred,thoseinvolvedincrRNAbiogenesisarecoloredyellow,andthoseinvolvedinadaptationarecoloredblue.TypeIVsystemsarenotablefortheirfrequentoccurrenceintheabsenceofCRISPRloci.

Class1systemsbasedontheirmulti-subuniteffectorcom-plexes,whilethesingle-subuniteffectorTypeII,V,andVIsys-temsaregroupedintoClass2(Makarovaetal.,2015;Shmakovetal.,2015).

ThestudyofCRISPRbiologyhasrevealedenzymemecha-nismsthatcanbeharnessedforprecisiongenomeengineeringandotherapplications,leadingtoanexplosionofinterestinbothnativeCRISPRpathwaysandtheuseofthesesystemsforapplicationsinanimals,plants,microbes,andhumans.InthisReview,wediscussrecentadvancementsinthe?eldthatrevealunexpecteddivergence,aswellasunifyingthemesunder-lyingthethreestagesofCRISPRimmunity.Ineachcase,wehighlightthewaysinwhichthesesystemsarebeingharnessedforapplicationsacrossmanyareasofbiology.

30Cell164,January14,2016a2016ElsevierInc.

Acquisition:CreatingGeneticRecordsofPastInfections

CRISPRimmunitybeginswiththedetec-tionandintegrationofforeignDNAintothehostcell’schromosome.IntheStrep-tococcusthermophilusTypeII-Asystem,whereacquisitionwas?rstdetectedexperimentally,newspacersfrombacte-riophageDNAareinsertedintotheleaderendoftheCRISPRlocus,causingdupli-cationofthe?rstrepeattomaintaintherepeat-spacerarchitecture(Figure1A)(Barrangouetal.,2007).SubsequentstudiesusingtheE.coliTypeI-Esystemveri?edthatCas1andCas2mediatespaceracquisition(Datsenkoetal.,2012;Swartsetal.,2012;Yosefetal.,2012).Theselectionofnewprotospacersequencesisnonrandomand,inmostsystems,dependsonthepresenceofa2–5nucleotideprotospaceradjacentmotif(PAM)foundnexttotheprotospacer

sequence(Deveauetal.,2008;Mojicaetal.,2009).PAM-speci?cselectionofprotospacersiscriticalforimmunity,ascrRNA-guidedinterferenceinmostsystemsdependsonthePAMsequenceforforeignDNAdetectionanddestruction,whichavoidsself-targetingatthePAM-freeCRISPRlocus.Interest-ingly,spacersoriginatingfromthehostgenomearepresentinalmost20%ofCRISPR-containingorganisms,suggestingalter-nativerolesoftheCRISPR-Casmachineryindirectingotherpro-cessessuchasendogenousgeneregulationandgenomeevolu-tion(Westraetal.,2014).SpaceracquisitionhasbeenobservedexperimentallyinvarioussystemsacrossTypesI–III.Here,wefocusonrecentmechanisticstudiesofacquisitioninTypeI-EandTypeII-Asystems,inwhichthemostcomprehensivestudieshavebeendone.

Figure2.ProtospacerSelectionandInte-grationinAdaptation

(A)Theselectionofprotospacersforacquisitionispoorlyunderstood,butstudiessuggestatleastthreedistinctmechanismsfortheselectionofsubstratesforintegration.InTypeIsystems,primedadaptationoccurswhenCascadebindsapartiallymismatchedtarget.Thenuclease/heli-caseCas3isrecruitedtothetargetsiteandthenlikelytranslocatesalongthetargetDNAtoanewsite.Thenewlocationisthenselectedasapro-tospacertobeusedbyCas1-Cas2intheintegra-tionreaction.InE.coli,naiveadaptationinvolvesthenuclease/helicaseRecBCD.ThedegradationproductsappeartoserveassubstratesforCas1-Cas2,buthowthevariable-lengthsingle-strandedproductsofRecBCDactivityareconvertedintodouble-strandedprotospacersofappropriatesizeisunknown.InTypeIIsystems,Cas9recognizesPAMsitesandlikelyrecruitsCas1-Cas2toacquirethe?ankingsequence.

(B)Cas1-Cas2actasanintegrasetoinsertpro-tospacersintotheCRISPRlocusasnewspacers.Thecomplexwithprotospacerboundrecognizestheleader-adjacentrepeatandcatalyzesapairoftransesteri?cationreactions.The30OHofeachprotospacerstrandmakesanucleophilicattackontherepeatbackbone,oneattheleader-sideandoneatthespacerside.Theresultinggappedproductisthenrepaired,causingduplicationofthe?rstrepeat.

TypeIAcquisition

AcquisitioninE.colioccursviatwomechanisms—naiveandprimed(Figure2A).NaiveacquisitioninitiatesuponinfectionbypreviouslyunencounteredDNAandreliesontheCas1-Cas2integrasecomplextorecognizeandacquirenewspacersfromforeignDNA.OverexpressionofCas1andCas2intheabsenceofotherCasproteinsleadstotheacquisitionof33bpspacersattheleader-proximalendoftheCRISPRarray(Datsenkoetal.,2012;Yosefetal.,2012).ThePAMoftheE.coliCRISPR-Cassystemwasidenti?edas50-AWG-30,withtheGbecomingthe?rstnucleotideoftheintegratedspacer(Dat-′ez-Villasen?oretal.,2013;Levyetal.,senkoetal.,2012;D?

?ezetal.,2014;Savitskayaetal.,2013;Shmakov2015;Nun

etal.,2014;Swartsetal.,2012;Yosefetal.,2012;Yosefetal.,2013).InadditiontothePAM,adinucleotidemotif,AA,foundatthe30endoftheprotospacerwasalsoshowntobepresentinadisproportionatelylargenumberofspacers(Yosefetal.,2013).ArecentcrystalstructureoftheCas1-Cas2complexboundtoanunprocessedprotospacerrevealedsequence-spe-ci?ccontactswiththe50-CTT-30sequenceonthePAM-comple-

mentarystrand,suggestingthatCas1recognizesPAMsitesonpotentialproto-spacersbeforetheyareprocessedforintegration(Wangetal.,2015).

Afteraspacerisacquiredfromanewinvader,theresultingcrRNAassembleswithCasproteinstoformCascade,theinterferencecomplexcapableoftargetingPAM-adjacentDNAsequencesmatchingthespacersequenceofthecrRNA(Brounsetal.,2008;Joreetal.,2011;Lint-neretal.,2011).Upontargetbinding,thehelicase/nucleaseCas3isrecruitedtothesiteandprocessivelydegradestheforeignDNA(Hochstrasseretal.,2014;MulepatiandBailey,2011;Sinkunasetal.,2011;Sinkunasetal.,2013;Westraetal.,2012).Strikingly,whenCascadeencountersamutantPAMorprotospacerthatpreventsCas3degradation,hyperac-tivespaceracquisitionfromthetargetedplasmidorgenomeistriggeredinaprocesscalled‘‘priming’’(Figure2A)(Datsenkoetal.,2012;Lietal.,2014;Richteretal.,2014;Savitskayaetal.,2013;Swartsetal.,2012).Primingincreasesthehost’srepertoireoffunctionalspacers,allowingthehosttoadapttoin-vadersthatevadetheCRISPR-Cassystembymutation.Cascadeiscapableofbindingescapemutanttargetsites,andrecentsingle-moleculestudiesshowedthatthepresenceofCas1andCas2allowsfortherecruitmentofCas3tothesesites(Blosseretal.,2015;Reddingetal.,2015;Richteretal.,2014).TherecruitedCas3canthentranslocateineitherdirection,incontrasttotheunidirectionalmovementobservedatperfecttar-gets,withoutdegradingthetargetDNA(Reddingetal.,2015).Cas1andCas2mayaccompanythetranslocatingCas3and

Cell164,January14,2016a2016ElsevierInc.31

beactivatedforprotospacerselection,allowingforrobustacqui-sitiononeithersideofthetargetsite.

PrimedacquisitionhasalsobeenshownexperimentallyintheP.atrosepticumTypeI–Fsystem,inwhichCas2andCas3arenaturallyfusedasasinglepolypeptidethatassociateswithCas1,aswellasintheHaloarculahispanicaTypeI-Bsystem,wherenaiveacquisitionwasnotexperimentallyobserved(Lietal.,2014;Richteretal.,2014;Richteretal.,2012).AcquisitioninH.hispanicaalsorequiresCas4,a50/30exonucleasefoundinmostTypeIsubtypesaswellasTypeII-BandTypeVsystems,andwhichmightbeinvolvedingenerating30overhangsonpro-tospacerspriortointegration(Lemaketal.,2013;Lietal.,2014;Makarovaetal.,2015).AlthoughCas1andCas2maybethemin-imalproteinsrequiredforspaceracquisitioninsomesystems,theassociationofCas1,Cas2,andtheinterferencemachineryallowsthehosttocoordinaterobustadaptiveimmunityinTypeIsystems.

Self-versusNon-Self-Recognition

ThemechanismunderlyingthepreferenceforforeignoverselfDNAduringprotospacerselectionremainedpoorlyunderstooduntilarecentstudyonspaceracquisitionduringnaiveacquisi-tion.SpaceracquisitioninE.coliwasshowntobehighlydepen-dentonDNAreplication,andforeign-derivedspacerswerepreferredoverself-derivedspacersbyabout100-to1,000-fold(Levyetal.,2015).Analysisofthesourceofself-derivedspacersdemonstratedthatprotospacerswereacquiredlargelyfromgenomiclocipredictedtofrequentlygeneratestalledrepli-cationforksanddouble-strandedDNAbreaks(Levyetal.,2015).SuchharmfuldsDNAbreaksarerepairedbythehelicase/nucleaseRecBCDcomplex,whichdegradesthebrokenendsuntilreachingaChi-site,afterwhichonlythe50endisdegraded(DillinghamandKowalczykowski,2008).DuetothelowerfrequencyofChisitesinforeignDNA,RecBCDispredictedtopreferentiallydegradeplasmidsandviralDNA,resultinginthegenerationofcandidateprotospacersubstratesforCas1andCas2(Levyetal.,2015)(Figure2A).RecBCDdegradesDNAasymmetrically,yieldingsingle-strandedfragmentsrangingfromtenstohundredsofnucleotideslongfromonestrandandkilobaseslongfromtheother(DillinghamandKowalczykowski,2008).ItisunclearhowCas1-Cas2substrates,whichare33bplongandpartiallydoublestrandedwith30overhangs,are

generatedfromRecBCDproducts(Nun

?ezetal.,2015a;Nun?ezetal.,2015b;Wangetal.,2015).ItispossiblethatssDNAprod-uctsre-annealtoproducepartialduplexes,followedbyprocess-ingto33bpbyanunknownmechanismpriortointegrationintotheCRISPRlocus.RecentcrystalstructuresofCas1-Cas2withboundprotospacerrevealthatthecomplexde?nesthelengthoftheduplexregionoftheprotospacerviaarulermechanismand

maycleavethe30overhangstotheir?nallength(Nun

?ezetal.,2015b;Wangetal.,2015).Theinvolvementofahelicase/nucleaseinbothTypeI-Eprimedandnaiveacquisition(Cas3andRecBCD,respectively),aswellasinCas4-containingsub-types,hintsataconservedmechanismforprotospacergenera-tion.ItisalsoworthnotingthatRecBCDisconservedprimarilyinGram-negativebacteria,whileGram-positivebacteriaandarchaearelyonAddABandHerA-NurA,respectively,to?llasimilarrole(Blackwoodetal.,2013;DillinghamandKowalczy-kowski,2008).WhetherCRISPR-Cassystemsintheseorgan-32Cell164,January14,2016a2016ElsevierInc.

ismshaveevolvedtocooperatewiththeseevolutionarilydistinctmachineriesremainstobetested.

MechanismofProtospacerIntegration

Cas1andCas2playcentralrolesintheacquisitionofnew

spacers,wheretheyfunctionasacomplex(Nun

?ezetal.,2014).CrystalstructuresofCas1andCas2,withorwithoutboundprotospacer,revealedtwocopiesofaCas1dimer

bridgedbyacentralCas2dimer(Nun

?ezetal.,2014;Nun?ezetal.,2015b;Wangetal.,2015).Cas1functionscatalytically,whileCas2appearstoserveaprimarilystructuralrole(Arslan

etal.,2014;Datsenkoetal.,2012;Nun

?ezetal.,2014;Yosefetal.,2012).

The?rstinsightintothemechanismofprotospacerintegrationwasgainedbySouthernblotanalysisofthegenomicCRISPRlocusofE.colicellsoverexpressingCas1andCas2(Arslanetal.,2014).Thisrevealedintegrationintermediatesconsistentwithtwotransestere?cationreactions,whereeachstrandoftheprotospacerisintegratedintooppositesidesoftheleader-proximalrepeat(Figure2B).Thisintegrase-likemodelwasfurtherbolsteredbytheinvitroreconstitutionofprotospacerintegrationintoaplasmid-encodedCRISPRlocususingpuri?ed

Cas1-Cas2complex(Nun

?ezetal.,2015a).Theintegrationreac-tionrequireddouble-strandedDNAprotospacerswith30-OHendsthatareintegratedintoplasmidDNAviaadirectnucleo-philictransesteri?cationreaction,reminiscentofretroviralinte-grasesandDNAtransposases(Engelmanetal.,1991;MizuuchiandAdzuma,1991).

Althoughdeepsequencingofinvitrointegrationproductsre-vealedpreferentialprotospacerintegrationadjacenttothe?rstrepeat,con?rmingthatCas1-Cas2directlyrecognizetheCRISPRlocus,integrationalsooccurredatthebordersofevery

repeatatvaryinglevels(Nun

?ezetal.,2015a).Thiscontrastswithspaceracquisitiononlyoccurringatthe?rstrepeatinE.coliinvivo(Datsenkoetal.,2012;Swartsetal.,2012;Yosefetal.,2012).TodetermineiftheCas1-Cas2complexhassequencespeci?cityfortheleader-repeatsequence,arecentstudytookadvantageoftheCas1-catalyzeddisintegrationreac-tion,areversaloftheintegrationreactionalsoobservedwithretroviralintegrasesandtransposases(Chowetal.,1992;Rollieetal.,2015).Disintegrationactivitywasstimulatedwhenusingthecorrectleader-repeatbordersequences,highlightingintrinsicsequence-speci?crecognitionbyCas1.Furthermore,disintegra-tionwasfasterattheleader-repeatjunctioncomparedtotherepeatdistalend(Rollieetal.,2015).Takentogether,protospacerintegrationlikelybeginsattheleader-repeatjunctionviasequence-speci?crecognitionbyCas1,followedbyasecondnucleophilicattackattherepeatdistalend.Thisensurespreciseduplicationofthe?rstrepeat,asobservedinvivo,afterDNArepairbyhostproteins.Theintegrationmechanismishypothe-sizedtobehighlyspeci?c,asalmostallacquiredspacerswithacorrespondingAAGPAMareorientedwiththe50-Gattheleader-proximalend,leadingtofunctionalcrRNA-dependenttar-getingbyCascadeandCas3(Shmakovetal.,2014).Apreferenceforintegrationintheproperorientationwasobservedinvitro

whenprotospacerswitha50-Gwereused(Nun

?ezetal.,2015a);however,inclusionofpartofthePAMinspacershasonlybeenobservedinE.coli,raisingthequestionofhowCas1-Cas2inothersystemsproperlyorienttheintegrationreaction.

TypeIIAcquisition

WhilemostmechanisticworkonacquisitionhasbeenperformedinTypeIsystems,recentstudiesinTypeIIsystemshavealsoshedlightonkeyaspectsofspaceracquisition.Onegeneraliz-able?ndinginTypeIIsystemsisthedependenceofacquisitiononinfectionbydefectivephage(Hynesetal.,2014).Asigni?cantproblemwithCRISPRimmunityisthetimerequiredforforeignDNAtobeidenti?ed,integratedintotheCRISPRlocus,tran-scribed,processed,andassembledintoaninterferencecom-plexthatmustthenbeginthesearchforappropriatetargets.Sincelyticphagecankillcellswithin20min,providinginsuf?-cienttimeforthismulti-stepprocess,Hynesandcolleaguestestedthehypothesisthatinitialimmunizationtakesplacefrominfectionbyadefectivephage.SupplementationofactivephagewithUV-irradiatedphageorphagesusceptibletoarestriction-modi?cationsystemstimulatedspaceracquisitioncomparedtothatobservedwithactivephagealone(Hynesetal.,2014).Theauthorsspeculatethatacquisitionfromcompromisedphagemightalsorepresentthedominantmodeofacquisitioninwildpopulations,allowingforasmallsubsetofthepopulationtoac-quireresistanceandescapewithoutneedingtooutpacearapidlyreproducingphage.

TypeIIAcquisitionMachinery

TypeIIsystemsaresubdividedintoII-A,II-B,andII-Cbasedonthepresenceorabsenceofanadditionalcasgenealongsidetheminimalcomplementofcas1,cas2,andcas9.TypeII-Asystemscontaincsn2,whileTypeII-Bsystems,whichareleastcommonlyfound,containcas4(Chylinskietal.,2014;Makarovaetal.,2011b).TypeII-Csystemscompriseonlytheminimalthreegenes.Csn2hasbeenshowntobeessentialforacquisitioninseveralTypeII-Asystems(Barrangouetal.,2007;Heleretal.,2015;Weietal.,2015b).Itformsatetramerwithatorroidalarchi-tecturethatbindsandslidesalongfreeDNAends,thoughitsfunctioninCRISPRsystemsisunclear(Arslanetal.,2013;Ellingeretal.,2012;Kooetal.,2012;Leeetal.,2012).Cas4,discussedabove,islikelyinvolvedinacquisitioninTypeII-Bsys-tems.TypeII-Csystems,whichconstitutethemajorityofidenti-?edTypeIIsystems(Chylinskietal.,2014;Makarovaetal.,2015),arepossiblyfunctionalforacquisitionintheabsenceofauxiliaryacquisitionfactors,thoughinthecaseoftheCampylo-bacterjejunisystem,acquisitionwasonlyobservedfollowinginfectionbyphageencodingaCas4homolog(HootonandCon-nerton,2014).

Recently,twosimultaneousstudiesdemonstratedthat,inadditiontoCas1,Cas2,andCsn2,Cas9playsanecessaryroleintheacquisitionofnewspacersinTypeIIsystems(Heleretal.,2015;Weietal.,2015b).Bothgroups,oneworkingwiththeCRISPR1TypeII-AsystemofS.thermophilus,theotherwiththeTypeII-AsystemofStreptococcuspyogenesandtheCRISPR3systemofS.thermophilus,alsoTypeII-A,showedthatwild-typeorcatalyticallyinactiveCas9(dCas9)supportedrobustspaceracquisition,whereasdeletionofCas9abolishedspaceracquisition.ItisproposedthatCas9servestorecognizePAMsitesinpotentialprotospacersandmarkthemforrecogni-tionbyCas1andCas2(Figure2A).Thishypothesiswascon?rmedbymutatingthePAM-interactingresiduesofCas9,re-sultingincompletelossinPAM-speci?cityinthenewlyacquiredspacers(Heleretal.,2015).ThispresentsastrikingcontrasttotheE.coliTypeI-Esystem,whereCas1-Cas2recognizePAMsequencesindependently.

Intriguingly,expressionofdCas9resultsintheacquisitionofprimarilyself-targetingspacers,suggestingthatmanyacquisi-tioneventsleadtoself-targetingandsuicide(Weietal.,2015b).MicrobialpopulationsmayrelyonafewindividualstoacquirephageresistancewhiletherestsuccumbtoinfectionorCRISPR-mediatedsuicide.Somesystems,suchasthatfoundinE.coli,mayevolvetousehostprocessestobiasacquisitionawayfromself-targeting.Alternatively,S.thermophilusmighthavemechanismsofself-non-self-discriminationthatweremaskedinthestrainoverexpressingCRISPRproteins.Phagechallengeexperimentswithwild-typeS.thermophilusrevealedthatsomesequenceswereacquiredasspacersdisproportion-atelyoftenacrossmultipleexperiments,suggestingthattheTypeIIacquisitionmachineryhaspreferencesinadditiontoCas9-dependentPAMselection,thoughnoclearpatternemergedwithrespecttothegenomiclocationorsequenceofprotospacersthatindicatedabasisforthepreferences(Paez-Espinoetal.,2013).

Additionally,itwasdemonstratedthatthefourproteinsoftheS.pyogenesCRISPRsystem(Cas1,Cas2,Csn2,andCas9)formacomplex,suggestingthatCas9directlyrecruitstheacquisitionproteinstopotentialtargets(Heleretal.,2015).WhiledrawingcomparisonsbetweentheinvolvementofCas9inacquisitionandprimedacquisitioninTypeIsystemsistempting,neithergroupsawevidencethatacquisitionwasaffectedbythepres-enceofexistingspacersmatchingorcloselymatchingtheinfect-ingphageorplasmid(Heleretal.,2015;Weietal.,2015b).Inaddition,whilethetrans-activatingcrRNA(tracrRNA)thatformsacomplexwithCas9andthecrRNAisnecessaryforacquisition,itisunclearwhetheracorrespondingcrRNAisalsorequired(He-leretal.,2015;Weietal.,2015b).FuturemechanisticworkwillberequiredtoshedlightonthesimilaritiesbetweenCas9-mediatedspaceracquisitionandtheprimedacquisitioninTypeIsystems.TypeIIProtospacerIntegration

ThesequencerequirementsforprotospacerintegrationinTypeII-AsystemswererecentlydemonstratedinS.thermophilus(Weietal.,2015a).SimilartoE.coli,theleaderandasinglerepeatweresuf?cienttodirectintegration.Furthermore,onlythetennucleotidesoftheleaderproximaltothe?rstrepeatarerequiredtolicensetheintegrationofnewspacers,incontrasttothe60ntminimalrequirementinE.coli(Weietal.,2015a;Yo-sefetal.,2012).Alimitedmutationalstudyoftherepeatshowedthatthe?rsttwonucleotidesarenecessaryforacquisition,whilethe?naltwonucleotidescanbemutatedwithoutconsequence(Weietal.,2015a).Thus,Cas1-Cas2-catalyzedintegrationattheleader-repeatjunctionissequencespeci?c,whiletheattackattherepeat-spacerjunctionisdeterminedbyarulermecha-nism,inagreementwithobservationsfromexperimentsinthe

E.colisystem(D?

′ez-Villasen?oretal.,2013).Together,these?nd-ingssupportthefunctionalconservationoftheCas1-Cas2inte-grasecomplexdespitedivergentmechanismsofprotospacerselectionbetweenTypesIandIICRISPR-Cassystems.CRISPRIntegrasesasGenome-ModifyingTools

AswithmanyotherCasproteins,theCas1-Cas2integrasecomplexshowspromiseforuseinmodifyinggenomes.WhileCas1-Cas2catalyzeareactionsimilartothatofmanyintegrases

Cell164,January14,2016a2016ElsevierInc.33

andtransposases,theyexhibitseveralfundamentaldifferencesthatmakethemuniquelysuitedtocertainapplications.Cas1-Cas2complexeslacksequencespeci?cityfortheDNAsubstratetobeintegrated,apropertythatcouldmakethesystemidealforbarcodinggenomes.Genomebarcodingallowsfortrackinglin-eagesoriginatingfromindividualcells,facilitatingstudiesofpop-ulationevolution,cancer,development,andinfection(BlundellandLevy,2014).Cas1-Cas2complexesintegrateshortDNAse-quences,incontrastwithcurrenttechniquesbasedonrecombi-nasesthatintegrateentireplasmids,resultinginpotential?tnesscostsandunwantednegativeselection(BlundellandLevy,2014).Interestingly,invitrointegrationofDNAsubstratesintoplasmidtargetsrevealedintegrationintonon-CRISPRsites(Nu-n

?ezetal.,2015a),suggestingthatCas1-Cas2canbeharnessedtointegrateintoawidearrayoftargetsequences.Agreaterun-derstandingoftheminimalfunctionalrecognitionmotifforvariousCas1-Cas2integraseswillfacilitatethedevelopmentofthistechnology.

crRNPBiogenesis:GeneratingMolecularSentinelsfortheCell

CRISPRimmunesystemsuseRNA-programmedproteinstopa-trolthecellinsearchofDNAmoleculesbearingsequencescom-plementarytothecrRNA.AssemblyofthesemolecularsentinelsbeginswithtranscriptionoftheCRISPRlocustogeneratelong,precursorCRISPRRNAs(pre-crRNAs),followedbyprocessingintoshortcrRNAguides(Brounsetal.,2008;Carteetal.,2008).ThepromoterisembeddedwithintheAT-richleadersequenceupstreamoftherepeat-spacerarray,orsometimeswithintherepeatsequences(Zhangetal.,2013).Here,webrie?yreviewtheprocessingofpre-crRNAscatalyzedbytheCas6en-doribonucleasefamilyinTypeIandIIIsystemsandadistinctprocessingpathwayinTypeIIsystemsthatinvolvesendoge-nousRNaseIII,Cas9,andatracrRNA.ThecrRNAbiogenesispathwayhasbeenextensivelyreviewedelsewhere(Charpentieretal.,2015;HochstrasserandDoudna,2015).ProcessingbyCas6Endoribonucleases

TypeIandTypeIIIsystemsemployCas6endoribonucleasestocleavepre-crRNAssequencespeci?callywithineachrepeat(Brounsetal.,2008;Carteetal.,2008;Haurwitzetal.,2010).AlthoughCas6homologsarevariableinsequence,theyshareaconservedcleavagemechanismthatresultsincrRNAguidescomprisinganentirespacersequence?ankedbyportionsoftherepeatsequenceonthe50and30ends.MaturecrRNAguidesconsistofan8nt50handlederivedfromtherepeatsequenceandvariablelengthsoftherepeatatthe30handle,whichisfurthertrimmedbyas-yet-unidenti?edcellularnuclease(s)inTypeIIIsystems(Haleetal.,2008).AnotableexceptionisinTypeI-Csystems,whichutilizeaCas5variantforcrRNApro-cessing,leavingan11nt50handleand21–26ntatthe30end(Garsideetal.,2012;Nametal.,2012b).InotherTypeIsystems,Cas5subunitsserveanon-catalyticrolecappingthe50endofthecrRNAinCascadecomplexes.

InTypeI-C,I-D,I-E,andI-Fsystems,therepeatsformstablehairpinstructuresthatallowforstructure-andsequence-spe-ci?ccleavagebyCas6atthebaseofthehairpin(Gesneretal.,2011;Haurwitzetal.,2010;Sashitaletal.,2011).Aftercleavage,thehairpinconstitutesthe30handleofthecrRNA.TheCas6pro-34Cell164,January14,2016a2016ElsevierInc.

teinsinHaloferaxvolcanii(Cas6b),E.coliandT.thermophilus(Cas6e),andPseudomonasaeruginosa(Cas6f)remainstablyboundtothe30handleandeventuallybecomepartoftheCascadecomplex(Brendeletal.,2014;Brounsetal.,2008;Ges-neretal.,2011;Haurwitzetal.,2010;Sashitaletal.,2011).

TypeI-A,I-B,III-A,andIII-Brepeatsequencesarenon-palin-dromicandpredictedtobeunstructuredinsolution(Kuninetal.,2007).Thus,therespectiveCas6isthoughttorelyonsequenceforspeci?cityratherthanstructure.Interestingly,acrystalstruc-tureoftheTypeI-ACas6boundtoitscognateRNAstructurere-vealsCas6inducinga3bphairpinintheRNAthatpositionsthescissilephosphateintheenzymeactivesite(ShaoandLi,2013).ItremainsunknownwhetherotherCas6sthatrecognizenon-palindromicrepeatshaveasimilarmechanismofRNAstabiliza-tion.FollowingorconcurrentwiththematurationofthecrRNAs,theCasproteinsinvolvedininterferenceassembleintothe?naleffectorcomplexthatfunctionstorecognizeanddestroytargetsbearingsequencecomplementaritytothecrRNA.InsystemswhereCas6remainsboundtothecrRNA,itmayservetonucleatetheassemblyofthesubunitsthatconstitutetheeffectorcomplexbackbonealongthecrRNA.IntypeIIIsystems,thenumberofbackbonesubunitsde?ningthecomplexlengthisvar-iable,andanyunprotectedcrRNAremainingisdegraded(Haleetal.,2008;Staalsetal.,2014).ProcessinginTypeIISystems

TypeIIsystemsrelyonadifferentmechanismtoprocesspre-crRNAs.InTypesII-AandII-B,pre-crRNAcleavagespeci?cityisaidedbyatracrRNAthathassequencecomplementaritytotheCRISPRrepeatsequence(Deltchevaetal.,2011).ThegeneencodingthetracrRNAistypicallylocatedeitherproximaltoorwithintheCRISPR-caslocus(Chylinskietal.,2014).UponcrRNA:tracrRNAbasepairing,whichisstabilizedbyCas9,endogenousRNaseIIIcleavesthepre-crRNAattherepeat.TherelianceonRNaseIII,whichisnotfoundinarchaea,mayexplainwhyTypeIIsystemsarelimitedtobacteria(Garrettetal.,2015).Anunknownnucleasetrimsthe50endofthecrRNAtoremovethe?ankingrepeatsequenceandportionsofthespacer.InS.pyogenes,the30ntspacersequenceistrimmedtothe20ntthatbase-pairswithcomplementaryforeignsequencesduringinterference(Deltchevaetal.,2011;Jineketal.,2012).

IntheNeisseriameningitidisandC.jejuniTypeII-Csystems,eachrepeatsequenceencodesapromoter,resultinginvaryinglengthsofpre-crRNAsdependingonthetranscriptionstartsite(Dugaretal.,2013;Zhangetal.,2013).AlthoughRNaseIII-medi-atedpre-crRNAprocessingcanstilloccur,RNaseIIIisdispens-ableforinterferenceinthesesystems(Zhangetal.,2013).Thus,Cas9isabletocomplexwiththepre-crRNAandunprocessedtracrRNAforfunctionaltargetinterferencewithoutfurtherpro-cessingofthepre-crRNAs.

Cas6asaBiotechnologyTool

TheCas6homologfromTypeI-Fsystems,Cas6f(alsoknownasCsy4),wasthe?rstCasproteintoberepurposedasatool.Followingdemonstrationofthesequencespeci?cityofCas6fbindingandcleavage,theproteinhasbeenusedforthepuri?ca-tionoftaggedRNAtranscriptsfromcells(Haurwitzetal.,2010;Leeetal.,2013;Salvail-Lacosteetal.,2013;Sternbergetal.,2012).SubsequentstudiesshowedthatCas6fcouldbeusedtoalterthetranslationandstabilityoftaggedmRNAs,allowing

Figure3.InterferencebyClass1Systems

(A)InterferenceinTypeIsystemsiscarriedoutbyCascadeandCas3.CascadeisalargecomplexcomposedofthecrRNA,boundateitherendbyCas5andCas6,multipleCas7subunitsalongthecrRNA,alargesubunit(Cse1,Csy1,Cas8,orCas10),andsometimessmallsubunits(Cse2andCsa5).TheTypeI-Ecomplexisschematizedhere.ThelargesubunitrecognizesthePAMinforeignDNAandinitiatesunwindingofthetargetDNAandannealingtothecrRNA.Cas3isrecruitedtotheresultingR-loopandmakesanick.Itthentrans-locatesalongthedisplacedstrandandproc-essivelydegradesit.

(B)TypeIIIsystemscontaineitherCsmorCmrcomplexes,whichshareasimilararchitecture.TheCsmcomplexfromTypeIII-Asystemsisshownhere.ThecrRNAisboundateitherendbyCsm5/Cmr1andCsm4/Cmr3,whichhavehomologytoCas6andCas5,respectively.Csm3/Cmr4formthebackboneofthecomplex,Cas10servesasthelargesubunit,andCsm2/Cmr5arethesmallsub-unit.ThesecomplexescantargetbothRNAandactivelytranscribedDNA.Cas10catalyzescleav-ageoftargetDNA,whilethebackbonesubunitcatalyzescleavageofthetargetRNAateverysixthbase,whichisunpairedwiththecrRNA.RatherthanrecognizingaPAMsequence,thesecom-plexesonlycleaveifthe50and30handlesofthecrRNAdonotannealtothetarget.

forpost-transcriptionalregulationofproteinexpression(Borch-ardtetal.,2015;Duetal.,2015;Nissimetal.,2014).Cas6fhasalsobeenusedalongsideCas9toprocessmultipleguideRNAsfromasingletranscript,greatlyfacilitatingmultiplexeded-iting(Tsaietal.,2014).

Interference:Precise,ProgrammableDNABindingandCleavage

ImplementationofCRISPRsystemstoprovideimmunityin-volvesRNA-guidedrecognitionandprecisioncuttingofDNAmolecules,apropertythatmakesthemusefulforgenomeengi-neeringandcontrolofgeneexpression.TheextremediversityofthecrRNPtargetingcomplexesislargelyresponsibleforthevari-abilityobservedindifferentCRISPRtypes.WhereasTypesIandIIIusemulti-proteincomplexes,TypesIIandVrelyonasingleproteinforinterference.Extensivestudieshaveelucidatedthemechanismsandstructuresofseveralcomplexesfromeachofthethreemajortypes,revealingthecommonalityoftargetbind-ingthroughcrRNAbase-pairingandhighdivergenceinthema-chineriesandmodesoftargetcleavage.Formorein-depthrecentreviewsfocusedexclusivelyonCRISPRinterference,refertoTsuiandLi(2015)andPlagensetal.(2015).TypeIInterference

InTypeIsystems,therolesoftargetDNArecognitionanddegra-dationaresegregatedintotwodistinctcomponents.ThecrRNA-guidedCascadecomplexbindsandunwindstheDNAtargetsequence(Brounsetal.,2008)andthenrecruitsCas3todegradethetargetinaprocessivemannerthroughthecombinedactionofitsHDnucleaseandhelicasedomains(Figure3A)(Makarovaetal.,2011b;MulepatiandBailey,2013;Sinkunasetal.,2013;Westraetal.,2012).EachTypeIsubtype(I-AthroughI-F)hasadistinctcomplementofCascadecomponentsand,insomecases,signi?cantvariationofthecas3gene(Makarovaetal.,2011b).

TheE.coliCascadecomplexhasservedasthemodelsystemforunderstandingthemechanismofTypeIinterference.Inaddi-tiontothecentral61ntcrRNAbearingthe32ntspacer,thecom-plexcomprises?veproteinsindifferentstoichiometries:(Cse1)1,(Cse2)2,(Cas5)1,(Cas7)6,and(Cas6)1.TheCas7subunitsformthe‘‘backbone’’thatpolymerizesalongthecrRNAanddeter-minesthecrescent-shaped,semi-helicalarchitectureseeninallstructurallycharacterizedCascadecomplexes(Hochstrasseretal.,2014;Jacksonetal.,2014;Joreetal.,2011;Mulepatietal.,2014;Wiedenheftetal.,2011a;Zhaoetal.,2014).Cas6(Cas6einTypeI-Esystems)remainsboundtothe30hairpinfollowingCRISPRmaturation,whileCas5bindsthe50handle(Brounsetal.,2008;Joreetal.,2011).A‘‘smallsubunit’’(Cse2inTypeI-E)isoftenfoundintwocopiesformingthe‘‘belly’’ofthestruc-tureandhelpsstabilizethecrRNAandtargetDNA(Jacksonetal.,2014;Mulepatietal.,2014;Zhaoetal.,2014).A‘‘largesub-unit’’(Cse1inTypeI-E,Cas8inmostothersubtypes)bindsatthe50endofthecrRNAandrecognizesthePAMsequencesandre-cruitsCas3toanauthenticatedtarget(Figure3A)(Hochstrasseretal.,2014;Sashitaletal.,2012).WhileCas6doesnotalwaysremainwiththecomplexandthesmallsubunitisoftenfoundasafusionwiththelargesubunit,theoverallarchitectureofCascadecomplexesisgenerallyconserved(Makarovaetal.,2011b;Plagensetal.,2012;Sokolowskietal.,2014).

Cascadepre-arrangesthespacersegmentofthecrRNAinsix?ve-basesegmentsofpseudoA-formconformation,withthesixthbase?ippedoutandboundbyaCas7subunit(Jacksonetal.,2014;Mulepatietal.,2014;Zhaoetal.,2014).Toinitiate

Cell164,January14,2016a2016ElsevierInc.35

Figure4.InterferencebyClass2Systems

(A)InTypeIIsystems,Cas9formstheeffectorcomplexwithacrRNAandatracrRNA.Cas9iscomposedofthenucleaselobeandthea-helicallobe.ThenucleaselobecontainsboththeHNHandRuvC-likenucleasedomainsaswellasthePAM-interactingdomain.The30hairpinsofthetracrRNAbindthenucleaselobe,whilethestemloopandspacerlinethechannelbetweenthetwolobes.Bindingtoamatching,PAM-adjacenttargetcausestheHNHdomaintomoveintopositiontocleavetheannealedstrand,whilethedis-placedstrandisfedintotheRuvCactivesiteforcleavage.

(B)Cpf1istheeffectorproteininTypeV-Asystems,thebestcharacterizedTypeVsubtype.ItbindsthecrRNAalone.ThestructureofCpf1isunknown,butitcontainsanactiveRuvC-likenucleasedomainfortargetcleavage.Cpf1recognizesaPAMandmakestwostaggeredcutsinamatchingsequence.IthasbeenproposedthatCpf1actsasadimer,witheachmonomerprovidingaRuvCactivesite,thoughtheremaybeanotherunidenti?ednucleasedomain.

interference,Cascade?rstrecognizestrinucleotidePAMsitesinthetargetstrandofforeignDNAthroughspeci?cinteractionswithCse1(Sashitaletal.,2012).UponPAMbinding,theDNAtargetisunwoundstartingatthePAM-proximalendoftheproto-spacertoformanRloopstructure(Hochstrasseretal.,2014;Rollinsetal.,2015;Rutkauskasetal.,2015;Sashitaletal.,2012;Szczelkunetal.,2014;vanErpetal.,2015).Eachstretchof?veexposedbasesinthecrRNAisfreetobindthetargetDNA,leadingtoastablebuthighlydistortedanddiscontinuouscrRNA:targetstrandduplex(Mulepatietal.,2014;Szczelkunetal.,2014).CascadeundergoesaconformationalchangeupontargetbindingthatenablesrecruitmentofCas3tothe

36Cell164,January14,2016a2016ElsevierInc.

Cse1subunit(Hochstrasseretal.,2014;Mulepatietal.,2014).Cas3bindsandnicksthedisplacedstrandusingitscatalyticcenteroftheHDnucleasedomain(Gongetal.,2014;Huoetal.,2014;MulepatiandBailey,2013;Sinkunasetal.,2013;Westraetal.,2012).TheATP-dependenthelicaseactivityofCas3isthenactivated,causingmetal-andATP-dependent30/50translocationandprocessivedegradationofthenon-targetstrand(Gongetal.,2014;Huoetal.,2014;Westraetal.,2012).Cas3initiallydegradesonly200–300ntofthenontargetstrand,thoughitcontinuestranslocatingformanykilobases(Reddingetal.,2015).ExposedssDNAonthetargetstrandmaythenbecomeasubstrateforotherssDNAnucleasesoranadditionalCas3moleculetocompletethedegradationofforeignDNA(MulepatiandBailey,2013;Reddingetal.,2015;Sinkunasetal.,2013).InadditiontothePAM,targetinterferencealsoreliesonaseedregionatthe30endofthespacersegmentofthecrRNA(Semenovaetal.,2011;Wiedenheftetal.,2011b).SinglepointmutationsoftheseedregionoftheE.coliCascadecom-plex,atthe1to5and7to8positionofthespacer,isenoughtodecreasetargetDNAbindingandsubsequentinterference(Semenovaetal.,2011).

Differencesinthecas3geneamongTypeIsubtypessuggestsomevariabilityininterferencemechanism.InsomeTypeI-Especies,Cas3isfusedtoCse1byalinkerthatallowsittostablyassociatewiththeCascadecomplex(Westraetal.,2012).InTypeI-Asystems,theCas3helicaseandnucleasedomainsexistasseparatepolypeptidesthatbothassociatewiththeCascadecomplex(Plagensetal.,2014).InTypeI-Fsystems,Cas3isfusedtoCas2,lendingfurthergeneticsupportfortheinteractionbetweentheinterferenceandacquisitionmachineryduringprimedacquisition(Makarovaetal.,2015;RichterandFineran,2013;Richteretal.,2012).Howthesefusionsanddomainsepa-rationsaffecttheprocessivedegradationobservedinTypeI-Esystemsrequiresfurtherstudy.TypeIIInterference

Incontrasttothemulti-subuniteffectorcomplexesseeninTypeIandTypeIIIsystems(butsimilartoCpf1ofTypeVsystems),theTypeIIsignatureproteinCas9functionsasanindividualprotein,alongwithacrRNAandtracrRNA,tointerrogateDNAtargetsanddestroymatchingsequencesbycleavingbothstrandsofthetarget(Figure4A)(Gasiunasetal.,2012;Jineketal.,2012).ExtensivestudiesonCas9haveyieldedarangeofstructuresofS.pyogenesCas9indifferentsubstrate-boundstates,aswellasstructuresofseveralorthologs(Andersetal.,2014;Jiangetal.,2015;Jineketal.,2014;Nishimasuetal.,2015;Nishimasuetal.,2014).Manyofthesestructures,aswellasthemechanismofCas9targetsearchandrecognition,arereviewedelsewhere(vanderOostetal.,2014);here,wefocusonthemostrecentadvances.

StructuresofCas9haverevealedtwodistinctlobes,thenucleaselobeandthea-helicalorREClobe(Andersetal.,2014;Jineketal.,2014;Nishimasuetal.,2015;Nishimasuetal.,2014).ThenucleaselobeiscomposedoftheHNHnucleasedomain,whichcleavesthetargetstrand,aRuvC-likenucleasedomain,whichcleavesthenon-targetstrandandisseparatedintothreedistinctregionsintheprimarysequencebytheinterveninga-helicallobeandtheHNHdomain,andaC-terminalPAM-interactingdomain(Andersetal.,2014;Jinek

etal.,2014;Nishimasuetal.,2015;Nishimasuetal.,2014).Thea-helicallobecontainsanarginine-rich‘‘bridgehelix,’’whichconnectsthetwolobesandinteractswiththeguideRNA,andisthemostvariableregionofCas9,withinsertionsordeletionsaccountingformuchofthewidevariationinsizeseeninCas9orthologs(Chylinskietal.,2014;Jineketal.,2014;Nishimasuetal.,2014).

Cas9initiatesitstargetsearchbyprobingduplexedDNAforanappropriatePAMbeforeinitiatingtargetunwinding(Sternbergetal.,2014).Thetargetunwindsfromtheseedregion,the?rst10–12nucleotidesfollowingthePAM,towardthePAM-distalend(Szczelkunetal.,2014).Aperfectornear-perfectmatchleadstocleavageofbothDNAstrands,withmismatchesbeingmoretoleratedoutsideoftheseedregion(Congetal.,2013;Jiangetal.,2013;Jineketal.,2012;Sternbergetal.,2014).Themechanismbywhichmismatchesdistantfromthecleavagesitepreventcleavageappearstorelyonthestructural?exibilityoftheHNHdomain,whichhasyettobecrystallizedinproximitytothescissilephosphate(Andersetal.,2014;Nishimasuetal.,2015;Nishimasuetal.,2014).FRETassaysshowthattheHNHdomainswingsintoacatalyticallycompetentpositiononlyuponbindingtoacognatedouble-strandedDNAsubstrate,underscoringthemultiplestepsofconformationalcontrolofCas9-catalyzedDNAcleavage(Sternbergetal.,2015).TheRuvCdomainisinturnallostericallyregulatedbytheHNHdomain.Cleavageofthenon-targetstrandrequiresmovementoftheHNHdomainintoanactiveposition,evenwhenthemis-matchedsubstratesallowfullunwindingofthenon-targetstrand(Sternbergetal.,2015).

RecentcrystalstructuresofS.pyogenesCas9-sgRNAsurveil-lancecomplexandofthesmallerStaphylococcusaureusCas9inatarget-boundstateprovidednewinsightsintoCas9function(Jiangetal.,2015;Nishimasuetal.,2015).ThesgRNA-boundstructurerevealedhowbindingofsgRNAshiftsCas9fromtheauto-inhibitedstateobservedintheapoformtoaconformationcompetentfortargetsearch(Jiangetal.,2015;Jineketal.,2014).Aspreviouslyobservedinlow-resolutionelectronmicro-scopystructures,anucleicacidbindingcleftisformedbetweenthetwolobesuponsgRNAbinding(Jineketal.,2014).Further-more,twoPAM-interactingarginineresiduesarepre-positionedtoallowforscanningofpotentialtargetDNA,a?ndingthatmayexplainthenecessityoftracrRNAindirectingPAM-dependentspaceracquisition.Surprisingly,whilethe30hairpinsofthetracrRNAhavebeenshowntoprovidenearlyallofthebindingenergyandspeci?cityforCas9,therepeat-anti-repeatregionofthesgRNAaswellastheseedsequencewererequiredtoinducetheconformationalrearrangement(Brineretal.,2014;Jiangetal.,2015;Wrightetal.,2015).TheseedsequenceofthesgRNAwasalsofoundtobepre-orderedinanA-formhelix,analogoustothepre-orderedseedregionofguideRNAobservedineukaryoticArgonautestructuresandtheTypeIandTypeIIIeffectorcomplexes,wheretheentirecrRNAispre-arrangedinatarget-binding-competentstate(Jacksonetal.,2014;KuhnandJoshua-Tor,2013;Mulepatietal.,2014;Osawaetal.,2015;Tayloretal.,2015;Zhaoetal.,2014).Theobservedpre-orderingoftheguideRNAprovidesanenergeticcompensationfortheunwindingofthetargetduplextofacilitatebinding.Cas9fromtheTypeII-CCRISPRsystemofS.aureuswascrystallizedincomplexwithsgRNAandasingle-strandedDNAtargetsequence,providinginsightintothestructuralvariationbetweenmoredistantlyrelatedCas9(Nishimasuetal.,2015).S.aureusCas9issigni?cantlysmallerthantheCas9ofS.pyogenes(1,053versus1,368aminoacids)andrecognizesasigni?cantlydifferentguideRNAandPAMsite.TheS.aureusCas9structurerevealedasmallera-helicallobe,withdomainsinthemiddleandPAM-proximalsidenotablyabsent,whilethenucleaselobeislargelyconserved(Nishimasuetal.,2015).Theauthorsproposedanewdomaindesignation,thewedgedomain,whichdivergessigni?cantlybetweenthetwoproteinsandappearsintegraltodeterminingguideRNAorthogonality.AnothersmallCas9,thatfromActinomycesnaeslundi,waspre-viouslycrystallizedintheapoform,buttheabsenceofboundsubstrateandsigni?cantdisorderedregionslimiteddetailedexplorationofthedifferencesbetweentheorthologs(Jineketal.,2014).OtherrecentworkwithTypeII-CCas9proteinsfromN.meningitidisandCorynebacteriumdiphtheriae,amongotherTypeII-Corthologs,revealedthattheseenzymeshaveareducedabilitytounwinddsDNAcomparedtoS.pyogenesCas9andexhibitef?cientPAM-independentandinsomecasestracrRNA-independentcleavageofssDNA(Maetal.,2015;Zhangetal.,2015).Thisactivitymayallowformoreef?cientinterferencewithssDNAplasmidorphageorrepresentamoreancestralactivitythatpredatestheexpansionofthea-helicallobetofacilitatemorerobustDNAunwinding.TypeIIIInterference

TypeIIIsystemsareclassi?edintoTypeIII-AandTypeIII-Bbasedontheireffectorcomplexes(TypeIII-CandIII-Dhavealsobeenidenti?ed,butnotyetcharacterized)(Makarovaetal.,2015).TheformerisconstitutedbytheCsmcomplex,andthelatterbytheCmrcomplex(Makarovaetal.,2011b).PhylogeneticstudiessuggestedthatsomecsmandcmrgenesaredistanthomologsofcasgenesthatcomposetheCascadecomplexofTypeIsystems,andsubsequentstructuralstudieshaverevealedastrikingstructuralconservationbetweenCascadeandtheCsmandCmrcomplexes(Hochstrasseretal.,2014;Jacksonetal.,2014;Makarovaetal.,2013;Mulepatietal.,2014;Osawaetal.,2015;Staalsetal.,2014;Tayloretal.,2015;Zhaoetal.,2014).Foradetaileddiscussionofthestruc-turalsimilaritiesbetweenthesecomplexes,refertoJacksonandWiedenheft(2015).Brie?y,Csm3(inIII-Asystems)orCmr4(inIII-B)polymerizesalongthecrRNAasahelicalbackbone,analogouslytoCas7,whileCsm2orCmr5taketheroleofCse2asthesmallsubunit(Figure3B)(JacksonandWiedenheft,2015).SimilartoCascade,thecrRNAispre-arrangedforbindingwithkinkseverysixnucleotides.Thetargetnucleicacid(RNAinallsolvedTypeIIIstructures)bindsinadistortedmanner,form-ing?ve-nucleotidehelicalstretcheswiththesixthbase?ippedouttoallowfortheextremedeviationfromhelicalnucleicacidobservedinallstructures(Osawaetal.,2015;Tayloretal.,2015).Cmr3andCsm4bindthe50crRNAhandle,whileCas10(alsoreferredtoasCsm1andCmr2)servesasthelargesubunit(Makarovaetal.,2011a;Osawaetal.,2015;Staalsetal.,2014;Tayloretal.,2015).Csm5,Cmr6,andCmr1alsosharehomologywithCas7andcapthehelicalbackboneatthe30endofthecrRNA.InTypeIII-Bsystems,twomajorcrRNAspeciesare

Cell164,January14,2016a2016ElsevierInc.37

generallyobserved,differingbysixnucleotides(Juraneketal.,2012;Staalsetal.,2014).Cryo-electronmicroscopycapturedtwoCmrcomplexesofdifferentsizes,withonecomplexhavingonefewerCmr4andCmr5subunit,suggestingthatthedifferentcrRNAlengthsaretheresultofdifferentcomplexsizes,orviceversa(Tayloretal.,2015).

Despitethestructuralsimilarities,theTypeIIIinterferencecomplexesfunctionquitedistinctlyfromCascade.Thesubstratespeci?cityofCsmandCmrcomplexeshasonlyrecentlybeenclari?ed.EarlyinvivogeneticexperimentssuggestedCsmtar-getedDNA,whileinvitrostudiesofCmrshowedbindingandcleavageactivityagainstRNAonly(Haleetal.,2009;Marraf?niandSontheimer,2008),leadingtoamodelwhereinthetwosubtypeshadevolveddistinctandcomplementarysubstratepreferences.ThissimplemodelwassooncomplicatedbytheobservationthatCsmcomplexesinvitroalsobindandcleaveRNAwhileexhibitingnoactivityagainstDNA(Staalsetal.,2014;Tamulaitisetal.,2014).Meanwhile,theinvivoDNA-targetingactivityofIII-Asystemswasshowntodependontranscriptionatthetargetsite,incontrasttothetranscription-in-dependenttargetingseeninTypeIandTypeIIsystems,andasimilaractivitywasobservedforaIII-Bsysteminvivo(Dengetal.,2013;Goldbergetal.,2014).TheseobservationswerereconciledbythediscoverythattheCsmcomplexfromStaphy-lococcusepidermidisexhibitsbothRNAcleavageandDNAcleavagewhendirectedagainstthenon-templatestrandofactivelytranscribedDNA(Samaietal.,2015).

DNAandRNAinterferencearecarriedoutbydistinctsubunitsoftheTypeIIIcomplexes.RNAinterferenceismediatedbythebackbonesubunitCsm3(orCmr4inIII-Bsystems),whichcleavesthetargeteverysixnucleotidesintheactivesiteofaseparatesubunitbyactivatingtheribose20OHfornucleophilicattackinamannertypicalofmetal-independentRNases(Osawaetal.,2015;Staalsetal.,2014;Tamulaitisetal.,2014;Tayloretal.,2015).Cas10cleavesDNAexposedbyatranscriptionbubbleusingasinglecatalyticsiteinitspalmpolymerasedomain(Samaietal.,2015).ThedetailsofDNAtargetingbyCmrhavenotbeenindependentlycon?rmed,buttheconserva-tionofCas10andevidencefortranscription-dependentplasmidclearingsupportsasimilarmechanism(Dengetal.,2013;Makar-ovaetal.,2011b).

ThedistinctbehaviorofTypeIIIsystemsprovidesthehostmicrobewiththeabilitytotoleratetemperatephages(Goldbergetal.,2014).WhileTypeIandTypeIIsystemstargetanddegradeanyprotospacer-containingDNA,TypeIIIsystemsignoreforeignDNAuntiltranscriptionbeginsthatposesathreattothecell.Thishastheadvantageofallowingcellstoacquiread-vantageousgenescontainedinprophages,suchasantibioticresistancegenes,andcausingcellsuicideintheeventthatalysogenicphagebecomeslyticandbeginstranscribinggeneswithmatchingspacers(Goldbergetal.,2014).However,thestrand-speci?cnatureofboththeRNAtargetingandtranscrip-tion-dependentDNAtargetingimposesanadditionalrestrictionontheintegrationstepofacquisition,asonlyonedirectionofintegrationwillyieldproductiveinterference.Themeansbywhichthisapparentlimitationisovercomeareunclear.TypeIIIsystemsarealsofrequentlyfoundcoexistingwithTypeIsys-tems,inwhichcasetheirdistincttargetspeci?citymightallow

38Cell164,January14,2016a2016ElsevierInc.

forinterferencewithtargetsthatsomehowavoidrecognitionbyCascade(Makarovaetal.,2011b).

TypeIIIsystemsarealsouniqueintheirlackofaPAM.Ratherthanrecognizingadistinctmotiftoavoidauto-immunityattheCRISPRlocus,theCsmandCmrcomplexesinsteadcheckforcomplementaritybetweentherepeat-derivedregionofthecrRNAwiththetargetanddonotcleaveifafullmatchisdetected(Marraf?niandSontheimer,2010;Samaietal.,2015;Staalsetal.,2014;Tamulaitisetal.,2014).Thespeci?cityofTypeIIIeffectorcomplexesforsingle-strandedtargetsmightprovidearationalefortheirdistinctmodeoftargetauthentication.ForTypeIandTypeIIeffectorcomplexes,whichtargetdsDNA,PAMrecognitionallowsforaninitialbindingeventtofacilitatesubsequentunwindingofthetargettoprobeforcomplemen-taritytothecrRNA(Hochstrasseretal.,2014;Rollinsetal.,2015;Sternbergetal.,2014;Szczelkunetal.,2014;Westraetal.,2012).TypeIIIcomplexescanimmediatelyprobeapoten-tialsingle-strandedtargetforcomplementaritytotheirboundcrRNAwithoutaneedtolicenseinitialunwinding,andtheexposednatureofasingle-strandedtargetfacilitatesthecheckforcomplementaritytotherepeat-derivedregionoftheguide.TypeVInterference

TypeVsystemshaveonlyrecentlybeenclassi?ed,butinitialworkdemonstratedthatthesesystemsarefunctionalforinter-ference(Makarovaetal.,2015;Zetscheetal.,2015a).Thesys-temsappearmostsimilartoTypeIIsystems,possessingonlytheacquisitionmachineryandasingleadditionalprotein(Makar-ovaetal.,2015;Schunderetal.,2013;Vestergaardetal.,2014).ThreesubtypesofClassVsystemshavebeenidenti?edwithwidelyvaryinginterferenceproteins(Shmakovetal.,2015).TypeV-A,V-B,andV-CarecharacterizedbythepresenceofCpf1,C2c1,andC2c3,respectively(Shmakovetal.,2015).Allthreeproteinsareevolvedfromthesamefamilyoftransposon-associatedTpnBproteinsasCas9andhaveaC-terminalRuvCdomainandarginine-richbridgehelix(Shmakovetal.,2015).However,theproteinsshowlittlesimilaritytoeachother,andthephylogeneticgroupingoftheassociatedcas1geneswithvariousbranchesofTypeIandTypeIIIcas1genessuggeststhateachofthesesubtypesoriginatedfromdistinctrecombinationeventsbetweenCRISPRsystemsandtpnBgenes(Shmakovetal.,2015).

WhilesomeTypeV-Bsystemshaveanidenti?abletracrRNAnecessaryforactivity,TypeV-AandV-CsystemslackbothatracrRNAandCas6orCas5-likeendonuclease,makingitun-clearhowthecrRNAisprocessed(Makarovaetal.,2015;Shma-kovetal.,2015).ThecrRNAofTypeV-Asystemshasaconservedstem-loopandcanbeprocessedtoafunctionalformwhentranscribedinE.coliinthepresenceofCpf1(Zetscheetal.,2015a).WhetherCpf1isalsorequiredforprocessingandthepotentialinvolvementhostfactorsremainsunknown.TheCpf1fromFrancisellanovicidacansuccessfullyinterferewithtransformedplasmidsandrecognizesa50-TTN-30PAMatthe50endoftheprotospacersequence,similartothePAMlocationofTypeIsystemsandincontrasttothe30PAMobservedinTypeIIsystems.Theenzymemakesadouble-strandbreak,re-sultingin?ve-nucleotide50overhangsdistaltothePAMsite(Figure4B).MutationofcatalyticresiduesintheRuvCactivesitepreventscleavageofeitherstrand(Zetscheetal.,2015a).

TheauthorsproposethatCpf1mightactasadimer,witheachmonomerprovidingaRuvCactivesitebutonlyonerecognizingthetarget.Ifthisisthecase,whetheroneorbothmonomershasaboundcrRNAisunclear.Alternatively,anas-of-yetundiscov-eredactivesitemightbepresentintheprotein,inwhichcaseitsactivitymustbetightlycoupledtothatofRuvCtoexplainthephenotypeobservedfortheRuvCmutant.AC2c1,whichalsohasonlyoneidenti?ablenucleasedomain,hasalsobeenshowntobeactiveforcleavageinvivoandinvitro,whereitrec-ognizesa50-TTN-30PAMandrequiresatracrRNA(Shmakovetal.,2015).Manymechanismsinthesenewlydiscoveredsys-tems,bothTypeVandtheessentiallyuncharacterizedTypeVI,remainunknownandopenforfuturestudy.

InterferenceComplexesasGenomeEditingTools

MosttooldevelopmentofCasproteinshasfocusedonexploit-ingtheprogrammablesequence-speci?cDNArecognitionofinterferencecomplexes.Cas9fromS.pyogenesinparticularhasprovenenormouslyusefulforgenomeengineering.TheabilitytorenderCas9atwo-componentsystembyfusingthecrRNAandtracrRNAintoasingleguideRNA(sgRNA)hasal-lowedforitseasyuseforgenomeediting,transcriptionalcon-trol,RNAtargeting,andimaging(forrecentreviews,seeJiangandMarraf?ni,2015;SternbergandDoudna,2015).Cas9hasbeenusedinvariouscelltypesandorganismsrangingfrommiceandmonkeystoprimaryhumanTcellsandstemcells,aswellasplants,bacteria,andfungi(JiangandMarraf?ni,2015;SternbergandDoudna,2015).Recentworkhasfocusedondevelopingvariouschemical-andlight-inducibleCas9con-structstoallowforgreaterspatiotemporalcontrolandonem-ployingCas9orthologswithdifferentPAMsequencesandsmallersizes,allowingforeasierpackaginginadeno-associ-atedvirusvectors(Davisetal.,2015;Nihongakietal.,2015;PolsteinandGersbach,2015;Ranetal.,2015;Zetscheetal.,2015b).

Otherinterferencecomplexeshavealreadybeenusedorhavethepotentialtobeusefulforgenomemanipulationaswell.Althoughthemulti-subunitcompositionofCascademakesitlesstractableforgenomeengineeringcomparedtoCas9,itslargesizeandstablebindinghasbeenusedfortran-scriptionalsilencinginE.coli(Rathetal.,2015).NopublishedworkhasshowntheapplicationofCsmorCmrcomplexes,buteithercouldlikelybeusedforvariousRNAmodulationap-plicationsincells.TwoCpf1homologs,outof16thatweretested,havebeenshowntofacilitategenomeeditinginhumancells(Zetscheetal.,2015a).ThealternatePAMspeci?cityofCpf1mayproveusefulfortargetingsiteswithoutanappro-priatePAMforCas9,andthestaggeredcutsmightprovetofavordistinctpathwaysofDNArepair.However,athoroughinvestigationoftheef?ciencyandoff-targeteditingofCpf1willbeneededtodetermineifthisproteinwillseesigni?cantusealongsideCas9.

WhileCas9hasalreadyseenextensiveuseintheresearchsetting,challengesremainforitsapplicationintheclinic.Whilemakingprogrammedcutshasbecomelargelytrivial,biasingDNArepairtowardhomology-directedrepairratherthannon-ho-mologousendjoiningremainsachallenge(Chuetal.,2015;Mar-uyamaetal.,2015).DeliveryofCas9,eitherasanRNPoronaplasmidorviralvector,toparticulartissuesinwholeorganisms

isanotherchallengethatmustbeaddressedtoenableclinicalapplications(D’Astolfoetal.,2015;Gorietal.,2015;HowesandScho?eld,2015;Linetal.,2014;Zurisetal.,2015).Asthe?eldcontinuestoadvancerapidly,clinicaltrialsmayoccurwithinafewyears,withtherapiespossiblyfollowingwithinadecade.EngineeringofcropplantswithCas9isalreadyunderway;regu-latoryrulingshavesofarconsideredknockoutplantsnottobegeneticallymodi?edorganisms,buttheregulatoryfateofothermodi?cationsiscurrentlybeingconsidered(Servick,2015).ConcludingRemarks

Despitetherapidprogressofthe?eldsincethe?rstdemonstra-tionofCRISPRimmunityin2007,manymechanisticquestionsremainunanswered.Fundamentalaspectsofacquisition,suchashowsubstratesforCas1-Cas2-mediatedintegrationaregener-atedandthemechanismandextentofself-versusnon-self-discriminationindifferentCRISPRsubtypes,arestillamystery.WhilecrRNAbiogenesisandinterferencearereasonablywellun-derstoodforcertainmodelsubtypes(TypeI-E,TypeII-A),thesheerdiversityofCRISPRsystemsmeansthatmanysubtypeswithpotentiallydistinctmechanismsremainunexplored.TypeVandVIsystemshaveonlybeguntobeanalyzed,andTypeIVsys-tems,bearingsomefamiliarcasgenesbutnoidenti?ableCRISPRlocus,haveyettobecharacterizedexperimentallyandalmostcertainlyrelyonmechanismsdistinctfromthoseoftraditionalCRISPRsystems(MakarovaandKoonin,2015).

OtheraspectsofCRISPR-CassystemsliebeyondthescopeofthisReview.Wehavenotdiscussedthenon-immunefunc-tionsofCRISPR-Cassystems,someofwhichappeartohaveevolvedtoserveregulatoryratherthandefenseroles(forre-views,seeWestraetal.,2014,andRatneretal.,2015).PhageevasionofCRISPRimmunityisanotheractiveareaofresearch,withidenti?edmechanismsincludingDNAmodi?cation,special-izedanti-CRISPRproteins,andmutationalescape(Bondy-Den-omyetal.,2013;Bondy-Denomyetal.,2015;Brysonetal.,2015;Deveauetal.,2008;Paez-Espinoetal.,2015;Pawluketal.,2014).Thecontext-dependentregulationofCRISPR-Cassys-temsinresponsetophageinfectionandstresssignalshasalsobeenexploredbutrequiresfurtherstudy(Bondy-DenomyandDavidson,2014;Garrettetal.,2015;Kenchappaetal.,2013;Pattersonetal.,2015;Puletal.,2010).Therapiddevelop-mentoftechnologyderivedfromCRISPR-Cassystems,mostnotablyCas9butalsoCas6f/Csy4,Cascade,andCpf1,hasfu-eledintenseinterestinthe?eld.Thearmsracebetweenbacteriaandbacteriophagehasgeneratedpowerfulmolecularbiologytools,fromrestrictionenzymesthatenabledrecombinantDNAtechnologytoCas9,whichstartedthe‘‘CRISPRrevolution’’inmoderngenomeengineering.CRISPRsystemshavenproventobebothfascinatingandenormouslyuseful.Furtherstudyofbacterialimmunesystems,bothCRISPRsystemsandthoseyetundiscovered,promisestoyieldfurtherunforeseendiscov-eriesandexcitingnewtechnologies.

ACKNOWLEDGMENTS

ThisworkwasfundedbyUSNationalScienceFoundationgrantnumber1244557toJ.A.D.A.V.W.andJ.K.N.areNSFGraduateResearchFellows.MeganHochstrasserprovidedvaluableinputonthemanuscript.

Cell164,January14,2016a2016ElsevierInc.39

REFERENCES

Anders,C.,Niewoehner,O.,Duerst,A.,andJinek,M.(2014).StructuralbasisofPAM-dependenttargetDNArecognitionbytheCas9endonuclease.Nature513,569–573.

Arslan,Z.,Wurm,R.,Brener,O.,Ellinger,P.,Nagel-Steger,L.,Oesterhelt,F.,Schmitt,L.,Willbold,D.,Wagner,R.,Gohlke,H.,etal.(2013).Double-strandDNAend-bindingandslidingofthetoroidalCRISPR-associatedproteinCsn2.NucleicAcidsRes.41,6347–6359.

Arslan,Z.,Hermanns,V.,Wurm,R.,Wagner,R.,andPul,U

¨.(2014).DetectionandcharacterizationofspacerintegrationintermediatesintypeI-ECRISPR-Cassystem.NucleicAcidsRes.42,7884–7893.

Barrangou,R.,Fremaux,C.,Deveau,H.,Richards,M.,Boyaval,P.,Moineau,S.,Romero,D.A.,andHorvath,P.(2007).CRISPRprovidesacquiredresis-tanceagainstvirusesinprokaryotes.Science315,1709–1712.

Blackwood,J.K.,Rzechorzek,N.J.,Bray,S.M.,Maman,J.D.,Pellegrini,L.,andRobinson,N.P.(2013).End-resectionatDNAdouble-strandbreaksinthethreedomainsoflife.Biochem.Soc.Trans.41,314–320.

Blosser,T.R.,Loeff,L.,Westra,E.R.,Vlot,M.,Ku

¨nne,T.,Sobota,M.,Dekker,C.,Brouns,S.J.,andJoo,C.(2015).TwodistinctDNAbindingmodesguidedualrolesofaCRISPR-Casproteincomplex.Mol.Cell58,60–70.

Blundell,J.R.,andLevy,S.F.(2014).Beyondgenomesequencing:Lineagetrackingwithbarcodestostudythedynamicsofevolution,infection,andcancer.Genomics104,417–430.

Bolotin,A.,Quinquis,B.,Sorokin,A.,andEhrlich,S.D.(2005).Clusteredregu-larlyinterspacedshortpalindromerepeats(CRISPRs)havespacersofextra-chromosomalorigin.Microbiology151,2551–2561.

Bondy-Denomy,J.,andDavidson,A.R.(2014).Toacquireorresist:thecom-plexbiologicaleffectsofCRISPR-Cassystems.TrendsMicrobiol.22,218–225.

Bondy-Denomy,J.,Pawluk,A.,Maxwell,K.L.,andDavidson,A.R.(2013).BacteriophagegenesthatinactivatetheCRISPR/Casbacterialimmunesys-tem.Nature493,429–432.

Bondy-Denomy,J.,Garcia,B.,Strum,S.,Du,M.,Rollins,M.F.,Hidalgo-Reyes,Y.,Wiedenheft,B.,Maxwell,K.L.,andDavidson,A.R.(2015).MultiplemechanismsforCRISPR-Casinhibitionbyanti-CRISPRproteins.Nature526,136–139.

Borchardt,E.K.,Vandoros,L.A.,Huang,M.,Lackey,P.E.,Marzluff,W.F.,andAsokan,A.(2015).ControllingmRNAstabilityandtranslationwiththeCRISPRendoribonucleaseCsy4.RNA21,1921–1930.

Brendel,J.,Stoll,B.,Lange,S.J.,Sharma,K.,Lenz,C.,Stachler,A.E.,Maier,L.K.,Richter,H.,Nickel,L.,Schmitz,R.A.,etal.(2014).AcomplexofCasproteins5,6,and7isrequiredforthebiogenesisandstabilityofclusteredregularlyinterspacedshortpalindromicrepeats(crispr)-derivedrnas(crrnas)inHaloferaxvolcanii.J.Biol.Chem.289,7164–7177.

Briner,A.E.,Donohoue,P.D.,Gomaa,A.A.,Selle,K.,Slorach,E.M.,Nye,C.H.,Haurwitz,R.E.,Beisel,C.L.,May,A.P.,andBarrangou,R.(2014).GuideRNAfunctionalmodulesdirectCas9activityandorthogonality.Mol.Cell56,333–339.

Brouns,S.J.,Jore,M.M.,Lundgren,M.,Westra,E.R.,Slijkhuis,R.J.,Snijders,A.P.,Dickman,M.J.,Makarova,K.S.,Koonin,E.V.,andvanderOost,J.(2008).SmallCRISPRRNAsguideantiviraldefenseinprokaryotes.Science321,960–964.

Bryson,A.L.,Hwang,Y.,Sherrill-Mix,S.,Wu,G.D.,Lewis,J.D.,Black,L.,Clark,T.A.,andBushman,F.D.(2015).CovalentModi?cationofBacterio-phageT4DNAInhibitsCRISPR-Cas9.MBio6,e00648.

Carte,J.,Wang,R.,Li,H.,Terns,R.M.,andTerns,M.P.(2008).Cas6isanen-doribonucleasethatgeneratesguideRNAsforinvaderdefenseinprokaryotes.GenesDev.22,3489–3496.

Charpentier,E.,Richter,H.,vanderOost,J.,andWhite,M.F.(2015).Biogen-esispathwaysofRNAguidesinarchaealandbacterialCRISPR-Casadaptiveimmunity.FEMSMicrobiol.Rev.39,428–441.

40Cell164,January14,2016a2016ElsevierInc.

Chow,S.A.,Vincent,K.A.,Ellison,V.,andBrown,P.O.(1992).Reversalofinte-grationandDNAsplicingmediatedbyintegraseofhumanimmunode?ciencyvirus.Science255,723–726.

Chu,V.T.,Weber,T.,Wefers,B.,Wurst,W.,Sander,S.,Rajewsky,K.,andKu

¨hn,R.(2015).Increasingtheef?ciencyofhomology-directedrepairforCRISPR-Cas9-inducedprecisegeneeditinginmammaliancells.Nat.Bio-technol.33,543–548.

Chylinski,K.,Makarova,K.S.,Charpentier,E.,andKoonin,E.V.(2014).Classi-?cationandevolutionoftypeIICRISPR-Cassystems.NucleicAcidsRes.42,6091–6105.

Cong,L.,Ran,F.A.,Cox,D.,Lin,S.,Barretto,R.,Habib,N.,Hsu,P.D.,Wu,X.,Jiang,W.,Marraf?ni,L.A.,andZhang,F.(2013).MultiplexgenomeengineeringusingCRISPR/Cassystems.Science339,819–823.

D’Astolfo,D.S.,Pagliero,R.J.,Pras,A.,Karthaus,W.R.,Clevers,H.,Prasad,V.,Lebbink,R.J.,Rehmann,H.,andGeijsen,N.(2015).Ef?cientintracellulardeliveryofnativeproteins.Cell161,674–690.

Datsenko,K.A.,Pougach,K.,Tikhonov,A.,Wanner,B.L.,Severinov,K.,andSemenova,E.(2012).MolecularmemoryofpriorinfectionsactivatestheCRISPR/Casadaptivebacterialimmunitysystem.Nat.Commun.3,945.Davis,K.M.,Pattanayak,V.,Thompson,D.B.,Zuris,J.A.,andLiu,D.R.(2015).Smallmolecule-triggeredCas9proteinwithimprovedgenome-editingspeci-?city.Nat.Chem.Biol.11,316–318.

Deltcheva,E.,Chylinski,K.,Sharma,C.M.,Gonzales,K.,Chao,Y.,Pirzada,Z.A.,Eckert,M.R.,Vogel,J.,andCharpentier,E.(2011).CRISPRRNAmatura-tionbytrans-encodedsmallRNAandhostfactorRNaseIII.Nature471,602–607.

Deng,L.,Garrett,R.A.,Shah,S.A.,Peng,X.,andShe,Q.(2013).Anovelinter-ferencemechanismbyatypeIIIBCRISPR-CmrmoduleinSulfolobus.Mol.Microbiol.87,1088–1099.

Deveau,H.,Barrangou,R.,Garneau,J.E.,Labonte

′,J.,Fremaux,C.,Boyaval,P.,Romero,D.A.,Horvath,P.,andMoineau,S.(2008).PhageresponsetoCRISPR-encodedresistanceinStreptococcusthermophilus.J.Bacteriol.190,1390–1400.

D?

′ez-Villasen?or,C.,Guzma′n,N.M.,Almendros,C.,Garc?′a-Mart?′nez,J.,andMojica,F.J.(2013).CRISPR-spacerintegrationreporterplasmidsrevealdistinctgenuineacquisitionspeci?citiesamongCRISPR-CasI-EvariantsofEscherichiacoli.RNABiol.10,792–802.

Dillingham,M.S.,andKowalczykowski,S.C.(2008).RecBCDenzymeandtherepairofdouble-strandedDNAbreaks.Microbiol.Mol.Biol.Rev.72,642–671.Du,P.,Miao,C.,Lou,Q.,Wang,Z.,andLou,C.(2015).Engineeringtransla-tionalactivatorswithCRISPR-Cassystem.ACSSynth.Biol.http://dx.doi.org/10.1021/acssynbio.5b00130.

Dugar,G.,Herbig,A.,Fo

¨rstner,K.U.,Heidrich,N.,Reinhardt,R.,Nieselt,K.,andSharma,C.M.(2013).High-resolutiontranscriptomemapsrevealstrain-speci?cregulatoryfeaturesofmultipleCampylobacterjejuniisolates.PLoSGenet.9,e1003495.

Ellinger,P.,Arslan,Z.,Wurm,R.,Tschapek,B.,MacKenzie,C.,Pfeffer,K.,Panjikar,S.,Wagner,R.,Schmitt,L.,Gohlke,H.,etal.(2012).Thecrystalstruc-tureoftheCRISPR-associatedproteinCsn2fromStreptococcusagalactiae.J.Struct.Biol.178,350–362.

Engelman,A.,Mizuuchi,K.,andCraigie,R.(1991).HIV-1DNAintegration:mechanismofviralDNAcleavageandDNAstrandtransfer.Cell67,1211–1221.

Garrett,R.A.,Shah,S.A.,Erdmann,S.,Liu,G.,Mousaei,M.,Leo

′n-Sobrino,C.,Peng,W.,Gudbergsdottir,S.,Deng,L.,Vestergaard,G.,etal.(2015).CRISPR-CasAdaptiveImmuneSystemsoftheSulfolobales:UnravellingTheirComplexityandDiversity.Life(Basel)5,783–817.

Garside,E.L.,Schellenberg,M.J.,Gesner,E.M.,Bonanno,J.B.,Sauder,J.M.,Burley,S.K.,Almo,S.C.,Mehta,G.,andMacMillan,A.M.(2012).Cas5dprocessespre-crRNAandisamemberofalargerfamilyofCRISPRRNAen-donucleases.RNA18,2020–2028.

Gasiunas,G.,Barrangou,R.,Horvath,P.,andSiksnys,V.(2012).Cas9-crRNAribonucleoproteincomplexmediatesspeci?cDNAcleavageforadaptiveim-munityinbacteria.Proc.Natl.Acad.Sci.USA109,E2579–E2586.

Gesner,E.M.,Schellenberg,M.J.,Garside,E.L.,George,M.M.,andMacmil-lan,A.M.(2011).RecognitionandmaturationofeffectorRNAsinaCRISPRinterferencepathway.Nat.Struct.Mol.Biol.18,688–692.

Goldberg,G.W.,Jiang,W.,Bikard,D.,andMarraf?ni,L.A.(2014).Conditionaltoleranceoftemperatephagesviatranscription-dependentCRISPR-Castar-geting.Nature514,633–637.

Gong,B.,Shin,M.,Sun,J.,Jung,C.-H.,Bolt,E.L.,vanderOost,J.,andKim,J.-S.(2014).MolecularinsightsintoDNAinterferencebyCRISPR-associatednuclease-helicaseCas3.Proc.Natl.Acad.Sci.USA111,16359–16364.Gori,J.L.,Hsu,P.D.,Maeder,M.L.,Shen,S.,Welstead,G.G.,andBumcrot,D.(2015).DeliveryandSpeci?cityofCRISPR-Cas9GenomeEditingTechnolo-giesforHumanGeneTherapy.Hum.GeneTher.26,443–451.

Hale,C.,Kleppe,K.,Terns,R.M.,andTerns,M.P.(2008).Prokaryoticsilencing(psi)RNAsinPyrococcusfuriosus.RNA14,2572–2579.

Hale,C.R.,Zhao,P.,Olson,S.,Duff,M.O.,Graveley,B.R.,Wells,L.,Terns,R.M.,andTerns,M.P.(2009).RNA-guidedRNAcleavagebyaCRISPRRNA-Casproteincomplex.Cell139,945–956.

Haurwitz,R.E.,Jinek,M.,Wiedenheft,B.,Zhou,K.,andDoudna,J.A.(2010).Sequence-andstructure-speci?cRNAprocessingbyaCRISPRendonu-clease.Science329,1355–1358.

Heler,R.,Samai,P.,Modell,J.W.,Weiner,C.,Goldberg,G.W.,Bikard,D.,andMarraf?ni,L.A.(2015).Cas9speci?esfunctionalviraltargetsduringCRISPR-Casadaptation.Nature519,199–202.

Hochstrasser,M.L.,andDoudna,J.A.(2015).Cuttingitclose:CRISPR-asso-ciatedendoribonucleasestructureandfunction.TrendsBiochem.Sci.40,58–66.

Hochstrasser,M.L.,Taylor,D.W.,Bhat,P.,Guegler,C.K.,Sternberg,S.H.,No-gales,E.,andDoudna,J.A.(2014).CasAmediatesCas3-catalyzedtargetdegradationduringCRISPRRNA-guidedinterference.Proc.Natl.Acad.Sci.USA111,6618–6623.

Hooton,S.P.,andConnerton,I.F.(2014).Campylobacterjejuniacquirenewhost-derivedCRISPRspacerswheninassociationwithbacteriophagesharboringaCRISPR-likeCas4protein.FrontMicrobiol5,744.

Howes,R.,andScho?eld,C.(2015).GenomeengineeringusingAdeno-Asso-ciatedVirus(AAV).MethodsMol.Biol.1239,75–103.

Huo,Y.,Nam,K.H.,Ding,F.,Lee,H.,Wu,L.,Xiao,Y.,Farchione,M.D.,Jr.,Zhou,S.,Rajashankar,K.,Kurinov,I.,etal.(2014).StructuresofCRISPRCas3offermechanisticinsightsintoCascade-activatedDNAunwindinganddegradation.Nat.Struct.Mol.Biol.21,771–777.

Hynes,A.P.,Villion,M.,andMoineau,S.(2014).AdaptationinbacterialCRISPR-Casimmunitycanbedrivenbydefectivephages.Nat.Commun.5,4399.

Ishino,Y.,Shinagawa,H.,Makino,K.,Amemura,M.,andNakata,A.(1987).Nucleotidesequenceoftheiapgene,responsibleforalkalinephosphataseisozymeconversioninEscherichiacoli,andidenti?cationofthegeneproduct.J.Bacteriol.169,5429–5433.

Jackson,R.N.,andWiedenheft,B.(2015).AConservedStructuralChassisforMountingVersatileCRISPRRNA-GuidedImmuneResponses.Mol.Cell58,722–728.

Jackson,R.N.,Golden,S.M.,vanErp,P.B.,Carter,J.,Westra,E.R.,Brouns,S.J.,vanderOost,J.,Terwilliger,T.C.,Read,R.J.,andWiedenheft,B.(2014).Structuralbiology.CrystalstructureoftheCRISPRRNA-guidedsur-veillancecomplexfromEscherichiacoli.Science345,1473–1479.

Jansen,R.,Embden,J.D.,Gaastra,W.,andSchouls,L.M.(2002).Identi?ca-tionofgenesthatareassociatedwithDNArepeatsinprokaryotes.Mol.Micro-biol.43,1565–1575.

Jiang,W.,andMarraf?ni,L.A.(2015).CRISPR-Cas:NewToolsforGeneticManipulationsfromBacterialImmunitySystems.Annu.Rev.Microbiol.69,209–228.

Jiang,W.,Bikard,D.,Cox,D.,Zhang,F.,andMarraf?ni,L.A.(2013).RNA-guidededitingofbacterialgenomesusingCRISPR-Cassystems.Nat.Bio-technol.31,233–239.

Jiang,F.,Zhou,K.,Ma,L.,Gressel,S.,andDoudna,J.A.(2015).STRUCTURALBIOLOGY.ACas9-guideRNAcomplexpreorganizedfortargetDNArecogni-tion.Science348,1477–1481.

Jinek,M.,Chylinski,K.,Fonfara,I.,Hauer,M.,Doudna,J.A.,andCharpentier,E.(2012).Aprogrammabledual-RNA-guidedDNAendonucleaseinadaptivebacterialimmunity.Science337,816–821.

Jinek,M.,Jiang,F.,Taylor,D.W.,Sternberg,S.H.,Kaya,E.,Ma,E.,Anders,C.,Hauer,M.,Zhou,K.,Lin,S.,etal.(2014).StructuresofCas9endonucleasesrevealRNA-mediatedconformationalactivation.Science343,1247997.Jore,M.M.,Lundgren,M.,vanDuijn,E.,Bultema,J.B.,Westra,E.R.,Wagh-mare,S.P.,Wiedenheft,B.,Pul,U.,Wurm,R.,Wagner,R.,etal.(2011).Struc-turalbasisforCRISPRRNA-guidedDNArecognitionbyCascade.Nat.Struct.Mol.Biol.18,529–536.

Juranek,S.,Eban,T.,Altuvia,Y.,Brown,M.,Morozov,P.,Tuschl,T.,andMar-galit,H.(2012).Agenome-wideviewoftheexpressionandprocessingpat-ternsofThermusthermophilusHB8CRISPRRNAs.RNA18,783–794.Kenchappa,C.S.,Heidarsson,P.O.,Kragelund,B.B.,Garrett,R.A.,andPoul-sen,F.M.(2013).SolutionpropertiesofthearchaealCRISPRDNArepeat-bindinghomeodomainproteinCbp2.NucleicAcidsRes.41,3424–3435.Koo,Y.,Jung,D.K.,andBae,E.(2012).CrystalstructureofStreptococcuspyogenesCsn2revealscalcium-dependentconformationalchangesinitster-tiaryandquaternarystructure.PLoSONE7,e33401.

Kuhn,C.-D.,andJoshua-Tor,L.(2013).EukaryoticArgonautescomeintofocus.TrendsBiochem.Sci.38,263–271.

Kunin,V.,Sorek,R.,andHugenholtz,P.(2007).EvolutionaryconservationofsequenceandsecondarystructuresinCRISPRrepeats.GenomeBiol.8,R61.Labrie,S.J.,Samson,J.E.,andMoineau,S.(2010).Bacteriophageresistancemechanisms.Nat.Rev.Microbiol.8,317–327.

Lee,K.-H.,Lee,S.-G.,EunLee,K.,Jeon,H.,Robinson,H.,andOh,B.-H.(2012).Identi?cation,structural,andbiochemicalcharacterizationofagroupoflargeCsn2proteinsinvolvedinCRISPR-mediatedbacterialimmunity.Pro-teins80,2573–2582.

Lee,H.Y.,Haurwitz,R.E.,Apffel,A.,Zhou,K.,Smart,B.,Wenger,C.D.,Lader-man,S.,Bruhn,L.,andDoudna,J.A.(2013).RNA-proteinanalysisusingaconditionalCRISPRnuclease.Proc.Natl.Acad.Sci.USA110,5416–5421.Lemak,S.,Beloglazova,N.,Nocek,B.,Skarina,T.,Flick,R.,Brown,G.,Po-povic,A.,Joachimiak,A.,Savchenko,A.,andYakunin,A.F.(2013).ToroidalstructureandDNAcleavagebytheCRISPR-associated[4Fe-4S]clustercon-tainingCas4nucleaseSSO0001fromSulfolobussolfataricus.J.Am.Chem.Soc.135,17476–17487.

Levy,A.,Goren,M.G.,Yosef,I.,Auster,O.,Manor,M.,Amitai,G.,Edgar,R.,Qimron,U.,andSorek,R.(2015).CRISPRadaptationbiasesexplainprefer-enceforacquisitionofforeignDNA.Nature520,505–510.

Li,M.,Wang,R.,Zhao,D.,andXiang,H.(2014).AdaptationoftheHaloarculahispanicaCRISPR-Cassystemtoapuri?edvirusstrictlyrequiresaprimingprocess.NucleicAcidsRes.42,2483–2492.

Lin,S.,Staahl,B.T.,Alla,R.K.,andDoudna,J.A.(2014).Enhancedhomology-directedhumangenomeengineeringbycontrolledtimingofCRISPR/Cas9de-livery.eLife3,e04766.

Lintner,N.G.,Kerou,M.,Brum?eld,S.K.,Graham,S.,Liu,H.,Naismith,J.H.,

Sdano,M.,Peng,N.,She,Q.,Copie

′,V.,etal.(2011).Structuralandfunctionalcharacterizationofanarchaealclusteredregularlyinterspacedshortpalin-dromicrepeat(CRISPR)-associatedcomplexforantiviraldefense(CASCADE).J.Biol.Chem.286,21643–21656.

Ma,E.,Harrington,L.B.,O’Connell,M.R.,Zhou,K.,andDoudna,J.A.(2015).Single-strandedDNAcleavagebydivergentCRISPR-Cas9enzymes.Mol.Cell60,398–407.

Makarova,K.S.,andKoonin,E.V.(2015).AnnotationandClassi?cationofCRISPR-CasSystems.MethodsMol.Biol.1311,47–75.

Cell164,January14,2016a2016ElsevierInc.41

Makarova,K.S.,Aravind,L.,Wolf,Y.I.,andKoonin,E.V.(2011a).Uni?cationofCasproteinfamiliesandasimplescenariofortheoriginandevolutionofCRISPR-Cassystems.Biol.Direct6,38.

Makarova,K.S.,Haft,D.H.,Barrangou,R.,Brouns,S.J.,Charpentier,E.,Hor-vath,P.,Moineau,S.,Mojica,F.J.,Wolf,Y.I.,Yakunin,A.F.,etal.(2011b).Evo-lutionandclassi?cationoftheCRISPR-Cassystems.Nat.Rev.Microbiol.9,467–477.

Makarova,K.S.,Wolf,Y.I.,andKoonin,E.V.(2013).ThebasicbuildingblocksandevolutionofCRISPR-CASsystems.Biochem.Soc.Trans.41,1392–1400.Makarova,K.S.,Wolf,Y.I.,Alkhnbashi,O.S.,Costa,F.,Shah,S.A.,Saunders,S.J.,Barrangou,R.,Brouns,S.J.J.,Charpentier,E.,Haft,D.H.,etal.(2015).Anupdatedevolutionaryclassi?cationofCRISPR-Cassystems.Nat.Rev.Micro-biol.13,722–736.

Marraf?ni,L.A.,andSontheimer,E.J.(2008).CRISPRinterferencelimitshori-zontalgenetransferinstaphylococcibytargetingDNA.Science322,1843–1845.

Marraf?ni,L.A.,andSontheimer,E.J.(2010).Selfversusnon-selfdiscrimina-tionduringCRISPRRNA-directedimmunity.Nature463,568–571.

Maruyama,T.,Dougan,S.K.,Truttmann,M.C.,Bilate,A.M.,Ingram,J.R.,andPloegh,H.L.(2015).Increasingtheef?ciencyofprecisegenomeeditingwithCRISPR-Cas9byinhibitionofnonhomologousendjoining.Nat.Biotechnol.33,538–542.

Mizuuchi,K.,andAdzuma,K.(1991).InversionofthephosphatechiralityatthetargetsiteofMuDNAstrandtransfer:evidenceforaone-steptransesteri?ca-tionmechanism.Cell66,129–140.

Mojica,F.J.,D?

′ez-Villasen?or,C.,Garc?′a-Mart?′nez,J.,andSoria,E.(2005).Interveningsequencesofregularlyspacedprokaryoticrepeatsderivefromforeigngeneticelements.J.Mol.Evol.60,174–182.

Mojica,F.J.,D?

′ez-Villasen?or,C.,Garc?′a-Mart?′nez,J.,andAlmendros,C.(2009).ShortmotifsequencesdeterminethetargetsoftheprokaryoticCRISPRdefencesystem.Microbiology155,733–740.

Mulepati,S.,andBailey,S.(2011).Structuralandbiochemicalanalysisofnucleasedomainofclusteredregularlyinterspacedshortpalindromicrepeat(CRISPR)-associatedprotein3(Cas3).J.Biol.Chem.286,31896–31903.Mulepati,S.,andBailey,S.(2013).InvitroreconstitutionofanEscherichiacoliRNA-guidedimmunesystemrevealsunidirectional,ATP-dependentdegrada-tionofDNAtarget.J.Biol.Chem.288,22184–22192.

Mulepati,S.,He

′roux,A.,andBailey,S.(2014).Structuralbiology.CrystalstructureofaCRISPRRNA-guidedsurveillancecomplexboundtoassDNAtarget.Science345,1479–1484.

Nam,K.H.,Haitjema,C.,Liu,X.,Ding,F.,Wang,H.,DeLisa,M.P.,andKe,A.(2012b).Cas5dproteinprocessespre-crRNAandassemblesintoacascade-likeinterferencecomplexinsubtypeI-C/DvulgCRISPR-Cassystem.Structure20,1574–1584.

Nihongaki,Y.,Kawano,F.,Nakajima,T.,andSato,M.(2015).PhotoactivatableCRISPR-Cas9foroptogeneticgenomeediting.Nat.Biotechnol.33,755–760.Nishimasu,H.,Ran,F.A.,Hsu,P.D.,Konermann,S.,Shehata,S.I.,Dohmae,N.,Ishitani,R.,Zhang,F.,andNureki,O.(2014).CrystalstructureofCas9incomplexwithguideRNAandtargetDNA.Cell156,935–949.

Nishimasu,H.,Cong,L.,Yan,W.X.,Ran,F.A.,Zetsche,B.,Li,Y.,Kurabayashi,A.,Ishitani,R.,Zhang,F.,andNureki,O.(2015).CrystalStructureofStaphylo-coccusaureusCas9.Cell162,1113–1126.

Nissim,L.,Perli,S.D.,Fridkin,A.,Perez-Pinera,P.,andLu,T.K.(2014).Multi-plexedandprogrammableregulationofgenenetworkswithanintegratedRNAandCRISPR/Castoolkitinhumancells.Mol.Cell54,698–710.

Nun

?ez,J.K.,Kranzusch,P.J.,Noeske,J.,Wright,A.V.,Davies,C.W.,andDoudna,J.A.(2014).Cas1-Cas2complexformationmediatesspaceracquisi-tionduringCRISPR-Casadaptiveimmunity.Nat.Struct.Mol.Biol.21,528–534.

Nun

?ez,J.K.,Lee,A.S.,Engelman,A.,andDoudna,J.A.(2015a).Integrase-mediatedspaceracquisitionduringCRISPR-Casadaptiveimmunity.Nature519,193–198.

42Cell164,January14,2016a2016ElsevierInc.

Nun

?ez,J.K.,Harrington,L.B.,Kranzusch,P.J.,Engelman,A.N.,andDoudna,J.A.(2015b).ForeignDNAcaptureduringCRISPR-Casadaptiveimmunity.Nature527,535–538.http://dx.doi.org/10.1038/nature15760.

Osawa,T.,Inanaga,H.,Sato,C.,andNumata,T.(2015).CrystalstructureoftheCRISPR-CasRNAsilencingCmrcomplexboundtoatargetanalog.Mol.Cell58,418–430.

Paez-Espino,D.,Morovic,W.,Sun,C.L.,Thomas,B.C.,Ueda,K.,Stahl,B.,Barrangou,R.,andBan?eld,J.F.(2013).StrongbiasinthebacterialCRISPRelementsthatconferimmunitytophage.Nat.Commun.4,1430–1437.Paez-Espino,D.,Sharon,I.,Morovic,W.,Stahl,B.,Thomas,B.C.,Barrangou,R.,andBan?eld,J.F.(2015).CRISPRimmunitydrivesrapidphagegenomeevolutioninStreptococcusthermophilus.MBio6,e00262–e00215.

Patterson,A.G.,Chang,J.T.,Taylor,C.,andFineran,P.C.(2015).RegulationoftheTypeI-FCRISPR-CassystembyCRP-cAMPandGalMcontrolsspaceracquisitionandinterference.NucleicAcidsRes.43,6038–6048.

Pawluk,A.,Bondy-Denomy,J.,Cheung,V.H.W.,Maxwell,K.L.,andDavidson,A.R.(2014).Anewgroupofphageanti-CRISPRgenesinhibitsthetypeI-ECRISPR-CassystemofPseudomonasaeruginosa.mBio.5,e00896-14.Plagens,A.,Tjaden,B.,Hagemann,A.,Randau,L.,andHensel,R.(2012).CharacterizationoftheCRISPR/CassubtypeI-Asystemofthehyperthermo-philiccrenarchaeonThermoproteustenax.J.Bacteriol.194,2491–2500.Plagens,A.,Tripp,V.,Daume,M.,Sharma,K.,Klingl,A.,Hrle,A.,Conti,E.,Ur-laub,H.,andRandau,L.(2014).InvitroassemblyandactivityofanarchaealCRISPR-CastypeI-ACascadeinterferencecomplex.NucleicAcidsRes.42,5125–5138.

Plagens,A.,Richter,H.,Charpentier,E.,andRandau,L.(2015).DNAandRNAinterferencemechanismsbyCRISPR-Cassurveillancecomplexes.FEMSMicrobiol.Rev.39,442–463.

Polstein,L.R.,andGersbach,C.A.(2015).Alight-inducibleCRISPR-Cas9sys-temforcontrolofendogenousgeneactivation.Nat.Chem.Biol.11,198–200.Pourcel,C.,Salvignol,G.,andVergnaud,G.(2005).CRISPRelementsinYer-siniapestisacquirenewrepeatsbypreferentialuptakeofbacteriophageDNA,andprovideadditionaltoolsforevolutionarystudies.Microbiology151,653–663.

Pul,U.,Wurm,R.,Arslan,Z.,Geissen,R.,Hofmann,N.,andWagner,R.(2010).Identi?cationandcharacterizationofE.coliCRISPR-caspromotersandtheirsilencingbyH-NS.Mol.Microbiol.75,1495–1512.

Ran,F.A.,Cong,L.,Yan,W.X.,Scott,D.A.,Gootenberg,J.S.,Kriz,A.J.,Zet-sche,B.,Shalem,O.,Wu,X.,Makarova,K.S.,etal.(2015).Invivogenomeed-itingusingStaphylococcusaureusCas9.Nature520,186–191.

Rath,D.,Amlinger,L.,Hoekzema,M.,Devulapally,P.R.,andLundgren,M.(2015).Ef?cientprogrammablegenesilencingbyCascade.NucleicAcidsRes.43,237–246.

Ratner,H.K.,Sampson,T.R.,andWeiss,D.S.(2015).IcanseeCRISPRnow,evenwhenphagearegone:aviewonalternativeCRISPR-Casfunctionsfromtheprokaryoticenvelope.Curr.Opin.Infect.Dis.28,267–274.

Redding,S.,Sternberg,S.H.,Marshall,M.,Gibb,B.,Bhat,P.,Guegler,C.K.,Wiedenheft,B.,Doudna,J.A.,andGreene,E.C.(2015).Surveillanceandpro-cessingofforeignDNAbytheEscherichiacoliCRISPR-Cassystem.Cell163,854–865.

Richter,C.,andFineran,P.C.(2013).ThesubtypeI-FCRISPR-Cassystemin-?uencespathogenicityislandretentioninPectobacteriumatrosepticumviacrRNAgenerationandCsycomplexformation.Biochem.Soc.Trans.41,1468–1474.

Richter,C.,Gristwood,T.,Clulow,J.S.,andFineran,P.C.(2012).InvivoproteininteractionsandcomplexformationinthePectobacteriumatrosepticumsub-typeI-FCRISPR/CasSystem.PLoSONE7,e49549.

Richter,C.,Dy,R.L.,McKenzie,R.E.,Watson,B.N.,Taylor,C.,Chang,J.T.,McNeil,M.B.,Staals,R.H.,andFineran,P.C.(2014).PrimingintheTypeI-FCRISPR-Cassystemtriggersstrand-independentspaceracquisition,bi-di-rectionallyfromtheprimedprotospacer.NucleicAcidsRes.42,8516–8526.

Rollie,C.,Schneider,S.,Brinkmann,A.S.,Bolt,E.L.,andWhite,M.F.(2015).Intrinsicsequencespeci?cityoftheCas1integrasedirectsnewspaceracqui-sition.eLife4,4.

Rollins,M.F.,Schuman,J.T.,Paulus,K.,Bukhari,H.S.,andWiedenheft,B.(2015).MechanismofforeignDNArecognitionbyaCRISPRRNA-guidedsur-veillancecomplexfromPseudomonasaeruginosa.NucleicAcidsRes.43,2216–2222.

Rutkauskas,M.,Sinkunas,T.,Songailiene,I.,Tikhomirova,M.S.,Siksnys,V.,andSeidel,R.(2015).DirectionalR-LoopFormationbytheCRISPR-CasSur-veillanceComplexCascadeProvidesEf?cientOff-TargetSiteRejection.CellRep.10,1534–1543.

Salvail-Lacoste,A.,DiTomasso,G.,Piette,B.L.,andLegault,P.(2013).Af?nitypuri?cationofT7RNAtranscriptswithhomogeneousendsusingARiBoandCRISPRtags.RNA19,1003–1014.

Samai,P.,Pyenson,N.,Jiang,W.,Goldberg,G.W.,Hatoum-Aslan,A.,andMarraf?ni,L.A.(2015).Co-transcriptionalDNAandRNACleavageduringTypeIIICRISPR-CasImmunity.Cell161,1164–1174.

Sashital,D.G.,Jinek,M.,andDoudna,J.A.(2011).AnRNA-inducedconforma-tionalchangerequiredforCRISPRRNAcleavagebytheendoribonucleaseCse3.Nat.Struct.Mol.Biol.18,680–687.

Sashital,D.G.,Wiedenheft,B.,andDoudna,J.A.(2012).MechanismofforeignDNAselectioninabacterialadaptiveimmunesystem.Mol.Cell46,606–615.Savitskaya,E.,Semenova,E.,Dedkov,V.,Metlitskaya,A.,andSeverinov,K.(2013).High-throughputanalysisoftypeI-ECRISPR/CasspaceracquisitioninE.coli.RNABiol.10,716–725.

Schunder,E.,Rydzewski,K.,Grunow,R.,andHeuner,K.(2013).Firstindica-tionforafunctionalCRISPR/CassysteminFrancisellatularensis.Int.J.Med.Microbiol.303,51–60.

Semenova,E.,Jore,M.M.,Datsenko,K.A.,Semenova,A.,Westra,E.R.,Wanner,B.,vanderOost,J.,Brouns,S.J.,andSeverinov,K.(2011).Interfer-encebyclusteredregularlyinterspacedshortpalindromicrepeat(CRISPR)RNAisgovernedbyaseedsequence.Proc.Natl.Acad.Sci.USA108,10098–10103.

Servick,K.(2015).SCIENCEPOLICY.U.S.toreviewagriculturalbiotechreg-ulations.Science349,131.

Shao,Y.,andLi,H.(2013).RecognitionandcleavageofanonstructuredCRISPRRNAbyitsprocessingendoribonucleaseCas6.Structure21,385–393.

Shmakov,S.,Savitskaya,E.,Semenova,E.,Logacheva,M.D.,Datsenko,K.A.,andSeverinov,K.(2014).PervasivegenerationofoppositelyorientedspacersduringCRISPRadaptation.NucleicAcidsRes.42,5907–5916.

Shmakov,S.,Abudayyeh,O.O.,Makarova,K.S.,Wolf,Y.I.,Gootenberg,J.S.,Semenova,E.,Minakhin,L.,Joung,J.,Konermann,S.,Severinov,K.,etal.(2015).DiscoveryandfunctionalcharacterizationofdiverseClass2CRISPR-Cassystems.Mol.Cell60,385–397.

Sinkunas,T.,Gasiunas,G.,Fremaux,C.,Barrangou,R.,Horvath,P.,andSiksnys,V.(2011).Cas3isasingle-strandedDNAnucleaseandATP-depen-denthelicaseintheCRISPR/Casimmunesystem.EMBOJ.30,1335–1342.Sinkunas,T.,Gasiunas,G.,Waghmare,S.P.,Dickman,M.J.,Barrangou,R.,Horvath,P.,andSiksnys,V.(2013).InvitroreconstitutionofCascade-medi-atedCRISPRimmunityinStreptococcusthermophilus.EMBOJ.32,385–394.Sokolowski,R.D.,Graham,S.,andWhite,M.F.(2014).Cas6speci?cityandCRISPRRNAloadinginacomplexCRISPR-Cassystem.NucleicAcidsRes.42,6532–6541.

Staals,R.H.J.,Zhu,Y.,Taylor,D.W.,Kornfeld,J.E.,Sharma,K.,Barendregt,A.,Koehorst,J.J.,Vlot,M.,Neupane,N.,Varossieau,K.,etal.(2014).RNAtar-getingbythetypeIII-ACRISPR-CasCsmcomplexofThermusthermophilus.Mol.Cell56,518–530.

Sternberg,S.H.,andDoudna,J.A.(2015).ExpandingtheBiologist’sToolkitwithCRISPR-Cas9.Mol.Cell58,568–574.

Sternberg,S.H.,Haurwitz,R.E.,andDoudna,J.A.(2012).Mechanismofsubstrateselectionbyahighlyspeci?cCRISPRendoribonuclease.RNA18,661–672.

Sternberg,S.H.,Redding,S.,Jinek,M.,Greene,E.C.,andDoudna,J.A.(2014).DNAinterrogationbytheCRISPRRNA-guidedendonucleaseCas9.Nature507,62–67.

Sternberg,S.H.,LaFrance,B.,Kaplan,M.,andDoudna,J.A.(2015).Confor-mationalcontrolofDNAtargetcleavagebyCRISPR-Cas9.Nature527,110–113.

Swarts,D.C.,Mosterd,C.,vanPassel,M.W.,andBrouns,S.J.(2012).CRISPRinterferencedirectsstrandspeci?cspaceracquisition.PLoSONE7,e35888.Szczelkun,M.D.,Tikhomirova,M.S.,Sinkunas,T.,Gasiunas,G.,Karvelis,T.,Pschera,P.,Siksnys,V.,andSeidel,R.(2014).DirectobservationofR-loopformationbysingleRNA-guidedCas9andCascadeeffectorcomplexes.Proc.Natl.Acad.Sci.USA111,9798–9803.

Tamulaitis,G.,Kazlauskiene,M.,Manakova,E.,Venclovas,C.,

??Nwokeoji,A.O.,Dickman,M.J.,Horvath,P.,andSiksnys,V.(2014).Programmable

RNAshreddingbythetypeIII-ACRISPR-CassystemofStreptococcusther-mophilus.Mol.Cell56,506–517.

Taylor,D.W.,Zhu,Y.,Staals,R.H.J.,Kornfeld,J.E.,Shinkai,A.,vanderOost,J.,Nogales,E.,andDoudna,J.A.(2015).Structuralbiology.StructuresoftheCRISPR-CmrcomplexrevealmodeofRNAtargetpositioning.Science348,581–585.

Tsai,S.Q.,Wyvekens,N.,Khayter,C.,Foden,J.A.,Thapar,V.,Reyon,D.,Goodwin,M.J.,Aryee,M.J.,andJoung,J.K.(2014).DimericCRISPRRNA-guidedFokInucleasesforhighlyspeci?cgenomeediting.Nat.Biotechnol.32,569–576.

Tsui,T.K.M.,andLi,H.(2015).StructurePrinciplesofCRISPR-CasSurveil-lanceandEffectorComplexes.Annu.Rev.Biophys.44,229–255.

vanderOost,J.,Jore,M.M.,Westra,E.R.,Lundgren,M.,andBrouns,S.J.(2009).CRISPR-basedadaptiveandheritableimmunityinprokaryotes.TrendsBiochem.Sci.34,401–407.

vanderOost,J.,Westra,E.R.,Jackson,R.N.,andWiedenheft,B.(2014).Un-ravellingthestructuralandmechanisticbasisofCRISPR-Cassystems.Nat.Rev.Microbiol.12,479–492.

vanErp,P.B.G.,Jackson,R.N.,Carter,J.,Golden,S.M.,Bailey,S.,andWie-denheft,B.(2015).MechanismofCRISPR-RNAguidedrecognitionofDNAtar-getsinEscherichiacoli.NucleicAcidsRes.43,8381–8391.

Vestergaard,G.,Garrett,R.A.,andShah,S.A.(2014).CRISPRadaptiveim-munesystemsofArchaea.RNABiol.11,156–167.

Wang,J.,Li,J.,Zhao,H.,Sheng,G.,Wang,M.,Yin,M.,andWang,Y.(2015).StructuralandmechanisticbasisofPAM-dependentspaceracquisitioninCRISPR-Cassystems.Cell163,840–853.

Wei,Y.,Chesne,M.T.,Terns,R.M.,andTerns,M.P.(2015a).Sequencesspan-ningtheleader-repeatjunctionmediateCRISPRadaptationtophageinStrep-tococcusthermophilus.NucleicAcidsRes.43,1749–1758.

Wei,Y.,Terns,R.M.,andTerns,M.P.(2015b).Cas9functionandhostgenomesamplinginTypeII-ACRISPR-Casadaptation.GenesDev.29,356–361.Westra,E.R.,vanErp,P.B.G.,Ku

¨nne,T.,Wong,S.P.,Staals,R.H.J.,Seegers,C.L.C.,Bollen,S.,Jore,M.M.,Semenova,E.,Severinov,K.,etal.(2012).CRISPRimmunityreliesontheconsecutivebindinganddegradationofnega-tivelysupercoiledinvaderDNAbyCascadeandCas3.Mol.Cell46,595–605.Westra,E.R.,Buckling,A.,andFineran,P.C.(2014).CRISPR-Cassystems:beyondadaptiveimmunity.Nat.Rev.Microbiol.12,317–326.

Wiedenheft,B.,Lander,G.C.,Zhou,K.,Jore,M.M.,Brouns,S.J.,vanderOost,J.,Doudna,J.A.,andNogales,E.(2011a).StructuresoftheRNA-guidedsur-veillancecomplexfromabacterialimmunesystem.Nature477,486–489.Wiedenheft,B.,vanDuijn,E.,Bultema,J.B.,Waghmare,S.P.,Zhou,K.,Bare-ndregt,A.,Westphal,W.,Heck,A.J.,Boekema,E.J.,Dickman,M.J.,andDoudna,J.A.(2011b).RNA-guidedcomplexfromabacterialimmunesystemenhancestargetrecognitionthroughseedsequenceinteractions.Proc.Natl.Acad.Sci.USA108,10092–10097.

Wright,A.V.,Sternberg,S.H.,Taylor,D.W.,Staahl,B.T.,Bardales,J.A.,Korn-feld,J.E.,andDoudna,J.A.(2015).Rationaldesignofasplit-Cas9enzymecomplex.Proc.Natl.Acad.Sci.USA112,2984–2989.

Cell164,January14,2016a2016ElsevierInc.43

Yosef,I.,Goren,M.G.,andQimron,U.(2012).ProteinsandDNAelementsessentialfortheCRISPRadaptationprocessinEscherichiacoli.NucleicAcidsRes.40,5569–5576.

Yosef,I.,Shitrit,D.,Goren,M.G.,Burstein,D.,Pupko,T.,andQimron,U.(2013).DNAmotifsdeterminingtheef?ciencyofadaptationintotheEscheri-chiacoliCRISPRarray.Proc.Natl.Acad.Sci.USA110,14396–14401.Zetsche,B.,Gootenberg,J.S.,Abudayyeh,O.O.,Slaymaker,I.M.,Makarova,K.S.,Essletzbichler,P.,Volz,S.E.,Joung,J.,vanderOost,J.,Regev,A.,etal.(2015a).Cpf1IsaSingleRNA-GuidedEndonucleaseofaClass2CRISPR-CasSystem.Cell163,759–771.

Zetsche,B.,Volz,S.E.,andZhang,F.(2015b).Asplit-Cas9architectureforinduciblegenomeeditingandtranscriptionmodulation.Nat.Biotechnol.33,139–142.

44Cell164,January14,2016a2016ElsevierInc.

Zhang,Y.,Heidrich,N.,Ampattu,B.J.,Gunderson,C.W.,Seifert,H.S.,Schoen,C.,Vogel,J.,andSontheimer,E.J.(2013).Processing-independentCRISPRRNAslimitnaturaltransformationinNeisseriameningitidis.Mol.Cell50,488–503.

Zhang,Y.,Rajan,R.,Seifert,H.S.,Mondrago

′n,A.,andSontheimer,E.J.(2015).DNaseHActivityofNeisseriameningitidisCas9.Mol.Cell60,242–255.Zhao,H.,Sheng,G.,Wang,J.,Wang,M.,Bunkoczi,G.,Gong,W.,Wei,Z.,andWang,Y.(2014).CrystalstructureoftheRNA-guidedimmunesurveillanceCascadecomplexinEscherichiacoli.Nature515,147–150.

Zuris,J.A.,Thompson,D.B.,Shu,Y.,Guilinger,J.P.,Bessen,J.L.,Hu,J.H.,Maeder,M.L.,Joung,J.K.,Chen,Z.Y.,andLiu,D.R.(2015).Cationiclipid-mediateddeliveryofproteinsenablesef?cientprotein-basedgenomeeditinginvitroandinvivo.Nat.Biotechnol.33,73–80.

本文来源:https://www.bwwdw.com/article/b3kx.html

Top