第21章 一元二次方程单元自主检测(含答案)
更新时间:2023-06-02 19:10:01 阅读量: 实用文档 文档下载
- 第21章我们都会讨回来的推荐度:
- 相关推荐
第21章 一元二次方程单元自主检测
(满分:120分 时间:100分钟)
一、选择题(本大题共10小题,每小题3分,共30分)
1.关于x的一元二次方程(a2-1)x2+x-2=0是一元二次方程,则a满足( )
A.a≠1 B.a≠-1 C.a≠±1 D.为任意实数
2.用配方法解方程x2-2x-5=0时,原方程应变形为( )
A.(x+1)2=6 B.(x-1)2=6 C.(x+2)2=9 D.(x-2)2=9
3.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是( )
A.k>-1 B.k>-1且k≠0 C.k<1 D.k<1且k≠0
4.若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是( )
A.2018 B.2008 C.2014 D. 2012
5.方程x2-9+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( )
A.12 B.12或15 C.15 D.不能确定
6.对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为( )
A.有两个相等的实数根 B.没有实数根
C.有两个不相等的实数根 D.无法确定
7.已知函数y=kx+b的图象如图21-1,则一元二次方程x2+x+k-1=0根的存在情况是
( )
A.没有实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.无法确定
ba8.已知实数a,b分别满足a2-6a+4=0,b2-6b+4=0,且a≠b( ) ab
A.7 B.-7 C.11 D.-
11
图21-1 图21-2 图21-3
9.如图21-2,在长为100 m,宽为80 m的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644 m2,则道路的宽应为多少米?设道路的宽为x m,则可列方程为( )
A.100×80-100x-80x=7644 B.(100-x)(80-x)+x2=7644
C.(100-x)(80-x)=7644 D.100x+80x=356
10.图21-3是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数
(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( )
A.32 B.126 C.135 D.144
二、填空题(本大题共6小题,每小题4分,共24分)
11.一元二次方程x2-3=0的解为________________.
12.把一元二次方程(x-3)2=4化为一般形式为:________________,二次项为:________,
一次项系数为:________,常数项为:________.
13.已知2是关于x的一元二次方程x2+4x-p=0的一个根,则该方程的另一个根是
__________.
1114.已知x1,x2是方程x2-2x-1=0的两个根,则__________. x1x2
15.若|b-1|+a-4=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围
是________.
16.一个长100 m,宽60 m的游泳池扩建成一个周长为600 m的大型水上游乐场,把游泳
池的长增加x m,那么x等于多少时,水上游乐场的面积为20 000 m2?列出方程__________________________.
三、解答题(一)(本大题共3小题,每小题6分,共18分)
17.用公式法解方程:2x2-4x-5=0.
18.用配方法解方程:x2-4x+1=0.
19.用因式分解法解方程:(y-1)2+2y(1-y)=0.
四、解答题(二)(本大题共3小题,每小题7分,共21分)
20.若a,b,c是△ABC的三条边,且a2-6a+b2-10c+c2=8b-50,判断此三角形的形
状.
21.如图21-4,在宽为20 m,长为32 m的矩形耕地上,修筑同样宽的三条道路(互相垂直),
把耕地分成大小不等的六块试验田,要使试验田的面积为570 m2,道路应为多宽?
22.在实数范围内定义一种新运算“”,其规则为:ab=a2-b2,根据这个规则:
(1)求43的值;
(2)求(x+2)5=0中x的值.
五、解答题(三)(本大题共3小题,每小题9分,共27分)
23.已知:关于x的方程x2-2(m+1)x+m2=0.
(1)当m取何值时,方程有两个实数根?
(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.
24.已知下列n(n为正整数)个关于x的一元二次方程:
x2-1=0,
x2+x-2=0,
x2+2x-3=0,
x2+(n-1)x-n=0.
(1)请解上述4个一元二次方程;
(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.
25.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经
市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
参考答案
1.C 2.B 3.B 4.A 5.C 6.C 7.C 8.A 9.C 10.D
11.x=3 12.x2-6x+5=0 x2 -6 5 13.-6
14.-2 15.k≤4,且k≠0
16.(x+100)(200-x)=20 000
17.解:∵a=2,b=-4,c=-5,
∴b2-4ac=(-4)2-4×2×(-5)=56>0.
564±2 14∴x==. 42×2
2+14214∴x1=x2=. 22
18.解:∵x2-4x+1=0,
∴x2-4x+4=4-1,即(x-2)2=3.
∴x1=2+3,x2=23.
19.解:∵(y-1)2+2y(1-y)=0,
∴(y-1)2-2y(y-1)=0.∴(y-1)(y-1-2y)=0.
∴y-1=0或y-1-2y=0.∴y1=1,y2=-1.
20.解:将a2-6a+b2-10c+c2=8b-50变形为a2-6a+9+b2-8b+16+c2-10c+25=0,
∴(a-3)2+(b-4)2+(c-5)2=0.
∴a-3=0,b-4=0,c-5=0.∴a=3,b=4,c=5.
∵32+42=52,∴△ABC为直角三角形.
21.解:设道路宽为x m,
(32-2x)(20-x)=570,
640-32x-40x+2x2=570,
x2-36x+35=0,
(x-1)(x-35)=0,
x1=1,x2=35(舍去).
答:道路应宽1 m.
22.解:(1)4△3=42-32=16-9=7.
(2)∵(x+2)△5=0,即(x+2)2-52=0,
∴x1=-7,x2=3.
23.解:(1)当Δ≥0时,方程有两个实数根,
1∴[-2(m+1)]2-4m2=8m+4≥0.∴m≥-2
(2)取m=0时,原方程可化为x2-2x=0,
解得x1=0,x2=2.(答案不唯一)
24.解:(1)x2-1=(x+1)(x-1)=0,∴x1=-1,x2=1.
x2+x-2=(x+2)(x-1)=0,∴x1=-2,x2=1.
x2+2x-3=(x+3)(x-1)=0,∴x1=-3,x2=1.
x2+(n-1)x-n=(x+n)(x-1)=0,∴x1=-n,x2=1.
(2)共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根;两根之和等于一次项系数的相反数.
25.解:(1)设每千克应涨价x元,
则(10+x)(500-20x)=6000.
解得x=5或x=10.
为了使顾客得到实惠,所以x=5.
(2)设涨价x元时总利润为y,则
y=(10+x)(500-20x)
=-20x2+300x+5000=-20(x-7.5)2+6125
当x=7.5时,取得最大值,最大值为6125.
答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元.
(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.
正在阅读:
班组长管理培训11-30
材料员模拟试题3及答案08-18
三年级音乐新教材教案上册07-09
宁波继续教育-《中华人民共和国招标投标法实施条例》解读03-18
浅谈网络文学的基本特征06-06
学会感恩11-03
土壤酶活性测定的实验步骤03-17
安装OTRS工单管理系统05-28
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 一元二次方程
- 单元
- 自主
- 答案
- 检测
- BIM技术在工程造价管理中运用及实施方法
- 移动互联网时代电信运营商产业生态系统建设面临的挑战与对策
- 腔肠动物和扁形动物
- 9的乘法口诀教学设计
- 过渡金属配合物的18_16电子规则及其应用
- (更新到2016年6月)catics_1-14届_3D-CAD竞赛试题
- TDSCDMA系统联合检测技术的研究及实现
- 学习教育法律法规心得体会
- 学好英语的20个经典要诀
- 2012年公务员考试申论热点
- 医疗侵权诉讼的举证责任问题.
- 2013高考文化生活归类(第四单元)
- 叶绿体的结构及功能
- 【转贴】一个包工头头脑中的重要数据
- 2015年12月四级真题(第1套)
- 让每一朵花儿尽情绽放
- 《计算机应用基础》第06章在线测试
- 硫酸灌泄漏应急预案
- 刑事诉讼法学案例题及答案分析第二部分002 (1)
- 国际交流英语视听说4 U2 听力原文及翻译