低碳钢、铸铁的拉伸试验

更新时间:2023-09-18 10:28:01 阅读量: 幼儿教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

实验一:低碳钢、铸铁拉伸试验

一、实验目的

本试验以低碳钢和铸铁为代表,了解塑性材料在简单拉伸时的机械性质。它是力学性能试验中最基本最常用的一个。一般工厂及工程建设单位都广泛利用该实验结果来检验材料的机械性能。试验提供的 E,ReL,Rm,A和Z等指标,是评定材质和进行强度、刚度计算的重要依据。本试验具体要求为:

1.了解材料拉伸时力与变形的关系,观察试件破坏现象。 2.测定强度数据,如屈服点ReL,抗拉强度Rm。

3.测定塑性材料的塑性指标:拉伸时的伸长率A,截面收缩率Z。 4.比较塑性材料与脆性材料在拉伸时的机械性质。 二、实验仪器与设备:

① 微机控制电液伺服万能试验机 型号SHT5305 最大负荷300kN 1台 ②全数字闭环测控系统 型号DCS-300 1台 ③电子引伸计 1个 ④游标卡尺 0-150mm 最小刻度0.02mm ⑤刻度尺 0-30cm 最小刻度0.5mm

⑥橡皮筋 2条 三、实验原理

进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。一般试验机都设有自动绘图装置,用以记录试样的拉伸图即F-ΔL曲线,形象地体现了材料变形特点以及各阶段受力和变形的关系。但是F-ΔL曲线的定量关系不仅取决于材质而且受试样几何尺寸的影响。因此,拉伸图往往用名义应力、应变曲线(即R-ε曲线)来表示:

R?F/S0——试样的名义应力 ??? L/ L0——试样的名义应变 S0和L0分别代表初始条件下的面积和标距。R-ε曲线与F-ΔL曲线相似,但消除了几何 尺寸的影响。因此,能代表材料的属性。单向拉伸条件下的一些材料的机械性能指标就是在 R-ε曲线上定义的。如果试验能提供一条精确的拉伸图,那么单向拉伸条件下的主要力学性 能指标就可精确地测定。不同性质的材料拉伸过程也不同,其R-ε曲线会存在很大差异。低碳钢和铸铁是性质截然不同的两种典型材料,它们的拉伸曲线在工程材料中十分典型,掌握它们的拉伸过程和破坏特点有助于正确、合理地认识和选用材料。低碳钢具有良好的塑性,由R-ε曲线(图1-1)可以看出,低碳钢断裂前明显地分成四个阶段:弹性阶段(OA):试件的变形是弹性的。在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。习惯上认为材料在弹性范围内服从虎克定律,其应力、应变为正比关系,即

R?E?

比例系数E代表直线OA的斜率,称作材料的弹性模量。

屈服(流动)阶段(BC):R-ε曲线上出现明显的屈服点。这表明材料暂时丧失抵抗继续变形的能力。这时,应力基本上不变化,而变形快速增长。通常把下屈服点(Bˊ)作为材料屈服极限ReL。ReL是材料开始进入塑性的标志。结构、零件的应力一旦超过ReL,材料就会屈服,零件就会因为过量变形而失效。因此强度设计时常以屈服极限ReL作为确定许可应力的基础。从屈服阶段开始,材料的变形包含弹性和塑性两部分。如果试样表面光滑,材料杂质含量少,可以清楚地看到表面有45°方向的滑移线。

图1-1 试件拉伸图

强化阶段(CD):屈服阶段结束后,R-ε曲线又开始上升,材料恢复了对继续变形的抵抗能力,载荷就必须不断增长。如果在这一阶段卸载,弹性变形将随之消失,而塑性变形将永远保留下来。强化阶段的卸载路径与弹性阶段平行。卸载后若重新加载,加载线仍与弹性阶段平行,但重新加载后,材料的弹性阶段加长、屈服强度明显提高,而塑性却相应下降。这种现象称作为形变强化或冷作硬化。冷作硬化是金属材料极为宝贵的性质之一。塑性变形和形变强化二者联合,是强化金属材料的重要手段。例如喷丸,挤压,冷拨等工艺,就是利用材料的冷作硬化来提高材料强度的。强化阶段的塑性变形是沿轴向均匀分布的。随塑性变形的增长,试样表面的滑移线亦愈趋明显。D点是R-ε曲线的最高点,定义为材料的强度极限又称作材料的抗拉强度记作Rm。对低碳钢来说Rm是材料均匀塑性变形的最大抗力,是材料进 入颈缩阶段的标志。

颈缩阶段(DE):应力达到强度极限后,塑性变形开始在局部进行。局部截面急剧收缩,承载面积迅速减少,试样承受的载荷很快下降,直到断裂。断裂时,试样的弹性变形消失,塑性变形则遗留在破断的试样上。材料的塑性通常用试样断裂后的残余变形来衡量,单拉时的塑性指标用断后伸长率A和断面收缩率Z来表示。即

A= [(Lu?L0)/L0] ×100% Z?[(S0?Su)/S0]?100% Lu,Su分别代表试样拉断后的标距和断口的面积。

低碳钢颈缩部分的变形在总变形中占很大比重如图1-2所示。测试断后伸长率时,颈缩局部及其影响区的塑性变形都应包含在Lu之内。这就要求断口位置应在标距的中央附近。若断口落在标距之外则试验无效。工程上通常认为,材料的断后伸长率A>5%属于韧断,A<5%则属于脆断。韧断的特征是断裂前有较大的宏观塑性变形,断口形貌是暗灰色纤维状组织。低碳钢断裂时有很大的塑性变形,断口为杯状周边为45°的剪切唇,断口组织为暗灰色纤维状,因此是一种典型的韧状断口。

铸铁是典型的脆性材料,其拉伸曲线如图1-1(c)所示。其拉伸过程较低碳钢简单,可近似认为是经弹性阶段直接过渡到断裂。其破坏断口沿横截面方向,说明铸铁的断裂是由拉应力引起,其强度指标只有Rm。由拉伸曲线可见,铸铁断后伸长率甚小,所以铸铁常在没有任何预兆的情况下突然发生脆断。因此这类材料若使用不当,极易发生事故。铸铁断口与正应力方向垂直,断面平齐为闪光的结晶状组织,是典型的脆状断口。

多数工程材料的拉伸曲线介于低碳钢和铸铁之间,常常只有两个或三个阶段如图1-3。但强度、塑性指标的

定义和测试方法基本相同。所以,通过拉伸破坏试验,分析比较低碳钢和铸铁的拉伸过程,确定其机械性能,在机械性能试验研究中具有典型意义。

四、试样的制备

试样制备是试验的重要环节。国家标准《金属拉伸试验试样》GB6397-86对此有详规定。通常拉伸试样有比例试件和定标准试件两种。一般拉伸试样由三部分组成,即工作部分,过渡部分和夹持部分(图1-4)。工作部分必须保持光滑均匀以确保材料表面的单向应力状态。均匀部分的有效工作长度L0称做标距。d0、S0分别代表工作部分的直径和面积。过渡部分必须有适当的台肩和圆角,以降低应力集中,保持该处不会断裂。试样两端的夹持部分用以传递载荷,其形状尺寸应与试验机的钳口相匹配。

前已述及,颈缩局部及其影响区的塑性变形在断后伸长率中占很大的比重。虽然,同种材料的断后伸长率不仅取决于材质,而且还取决于试样的标距。试样愈短、局部变形所占比例愈大,A也就愈大。为了便于相互比较,试样的长度应当标准化。按照规定,测试断后伸长率 应当采用比例试样。比例试样的长度有两种规定: 10倍直径圆试样:

L0?10d0, 即L0/√S0?11.3 5倍直径圆试样:

L0?5d0, 即L0/√S0?5.65

按照上述比例,板试样也分长、短两种: 长试样:L0=11.3√S0 短试样:L0=5.65√S0 用10倍直径试样测定的断后伸长率记做Au0,用5倍直径试样测定的断后伸长率记做A5国家标准推荐使用短比例试样。 五:实验步骤: 低碳钢拉伸:

①用游标卡尺在低碳钢试件的两端和中央的三个截面上测量直径,每个截面在互相垂直的两个方向各测一次,取其平均值,并用三个平均值中最小者作为计算截面积的直d0,并计 算出截面积S0值。用刻度尺在低碳钢试件两端间取10d0的距离作为原长度l0,做上标记,并平均分成10格,同样做上标记。 ②打开万能试验机,先把试件安装在试验机的上夹头内,用橡皮筋将电子引伸计固定在试件

标记l0长度内,再移动下夹头,使其达到适当的位置,此时清零电脑记录的所有数据后, 把试件下端夹紧。

③点击电脑中表示“开始”的箭头按钮,开始拉伸试验,此间数据由电脑记录。 ④当电脑提示取下引伸计时,取下引伸计。

⑤拉断试件后,打印电脑记录数据及图像,取下断裂的两截试件。

⑥用游标卡尺测量上下两截断截口处的截面直径,每个截面在互相垂直的两个方向各测一 次,取其平均值,取最小值作为计算截面积的直径d,计算此时截面积S,同时计算断面 收缩率 ?=【(S0-S)/S0】×100%

⑦将试件两截拼合后用刻度尺测量拉伸后试件长度,测量三次取平均值为l,同时计算伸长 率

?=【(L0-L)/S0】×100% ⑧实验结束,收拾好实验用品。 铸铁拉伸:

①用游标卡尺在铸铁试件的两端和中央的三个截面上测量直径,每个截面在互相垂直的两个方向各测一次,取其平均值,并用三个平均值中最小者作为计算截面积的直径d0,并计算出截面积S0值。

②用刻度尺在铸铁试件两端间取10d0的距离作为原长度l0,做上标记。

③打开万能试验机,先把试件安装在试验机的上夹头内,再移动下夹头,使其达到适当的位置,此时清零电脑记录的所有数据后,把试件下端夹紧。

④点击电脑中表示“开始”的箭头按钮,开始拉伸试验,此间数据由电脑记录。 ⑤拉断试件后,打印电脑记录数据及图像,取下断裂的两截试件。

⑥用游标卡尺测量上下两截断截口处的截面直径,每个截面在互相垂直的两个方向各测一 次,取其平均值,取最小值作为计算截面积的直径d,计算此时截面积S,同时计算断面收缩率

?=【(S0-S)/S0】×100%

⑦将试件两截拼合后用刻度尺测量拉伸后试件长度,测量三次取平均值为l,同时计算伸长 率

?=【(L0-L)/S0】×100% ⑧实验结束,收拾好实验用品。 实验数据与数据处理: 截面直径d0测量

断裂处位于由上至下第5格由下至上第6格 断裂上半截呈凸状下半截呈凹状

六、实验结果的处理 1.强度指标计算

屈服极限R eL? F eL/ S0 强度极限R m= F m/S0

屈服载荷FeL取屈服平台的下限值。Fm取F-ΔL曲线的最大载荷。铸铁不存在屈服阶段故只记Rm。

2.塑性指标的计算 断后伸长率A=【(Lu- L0)/ L0】×100% 断面收缩率Z=【(S0-Su)/S0】×100% 将自动绘图器绘出的图形用光滑曲线联结,并延长直线部分使之交于坐标原点。修正后绘方 格纸上,并注明比例尺,即方格上每一厘米代表若干载荷和伸长。 绘出低碳钢和铸铁试件试验前后的形状图形。 低碳钢:

铸铁:

以上数据均符合实验要求。

低碳钢和铸铁应力应变曲线见最后附表。 低碳钢端口截面图如下:

图1-5(b)拉伸试件断口移中 实验课后思考:

1.实验时如何观察低碳钢的屈服点?测定时为何对加载速度提出要求?

答:在实验中,当应力超过某一点增加到某一值时,应变有非常明显的增大,而应力是先下降,然后作微小的波动,在σ-ε曲线上出现接近水平的小锯齿形折线。像这种应力基本保持不变、而应变显著增加的现象就是屈服。在低碳钢试验时,我们可以边观察电脑屏幕上的σ-ε曲线,当曲线出现以上现象时就代表低碳钢出现了屈服点。

在室温下,以缓慢平稳的加载方式进行试验,称为常温静载试验,是测定材料力学性能的基本实验。在进行荷载加载时,必须缓慢加载才可以达到常温静载试验的要求。假如加载速度过快,则会导致材料的各项数据短时间内发生剧烈变动,导致测量误差过大。 2.为什么低碳钢拉伸时会发生颈缩现象?

答:在σ-ε曲线中,当应变超过某一点,在试样的某一局部范围内,横向尺寸突然急剧缩小,形成颈缩现象。低碳钢是含碳量在0.3%以下的碳素钢,且断面收缩率>5%的塑性材料.其内部结构具有的有序耗散决定其在拉伸时具有屈服和颈缩现象。 3.对低碳钢和铸铁试件拉伸时的断口形状进行描述,并分析破坏原因。

答:低碳钢断口有明显的塑性破坏产生的光亮倾斜面,倾斜面倾角与试样轴线近似成(称杯状断口)45度,这部分材料的断裂是由于切应力造成的,中心部分为粗糙平面,塑性越大对应杯状断口越大,中心粗糙平面的面积越小。而铸铁没有任何的倾斜侧面,断口平齐,并垂直于拉应力,属典型的脆性断口。故当拉应力达到其极限时,就会发生断裂,且断口平齐。

本文来源:https://www.bwwdw.com/article/amah.html

Top