2012年朝阳中考一模数学试题及答案
更新时间:2023-03-13 16:51:01 阅读量: 教育文库 文档下载
官方网站:www.jerryschool.com 咨询电话 010-82121556
北京市朝阳区九年级综合练习(一)
数 学 试 卷 2012.5
学校 姓名 准考证号 1.本试卷共6页,共五道大题,25道小题,满分120分. 考试时间120分钟. 考2.在试卷和答题卡上准确填写学校名称、班级、姓名和准考证号. 生3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 须4.在答题卡上,选择题、作图题用2B铅笔作答,其它试题用黑色字迹签字笔作答. 知 5.考试结束,将本试卷、答题卡和草稿纸一并交回.
一、选择题(本题共32分,每小题4分)
下面各题均有四个选项,其中只有一个是符合题意的. ..1.
1的相反数是 211A.? B. C.2 D.-2
222.据报道,2011年北京市户籍人口中,60岁以上的老人有2460000人,预计未来五年北京人口“老龄化”还将提速.将
2460000用科学记数法表示为 A.0.25×106 B.24.6×105 C.2.46×105 D.2.46×106 3.在△ABC中,?A?2?B?80,则?C等于 A. 40° B. 60°
C. 80° D. 120°
?x2?94.若分式的值为零,则x的取值为
x?3A. x?3 B. x??3 C. x?3 D. x??3 5.下列图形中,既是中心对称图形又是轴对称图形的是
A.角 B.等边三角形 C. 平行四边形 D. 圆
6.在一个不透明的袋子中装有2个红球、1个黄球和1个黑球,这些球的形状、大小、质地等完全相同,若随机从袋子里
摸出1个球,则摸出黄球的概率是 A.
1113 B. C. D. 42347.在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:
成绩 人数 这此测试成绩的中位数和众数分别为
A. 47, 49 B. 47.5, 49 C. 48, 49 D. 48, 50 8.已知关于
45 1 46 2 47 4 48 2 49 5 50 1 x的一元二次方程x2?mx?n?0的两个实数根分别为x1?a,x2?b(a?b),则二次函数
3T教育社区--杰睿教育旗下的学生和家长交流平台 社区网址:www.3tedu.com
官方网站:www.jerryschool.com 咨询电话 010-82121556
y?x2?mx?n中,当y?0时,x的取值范围是
A.x?a B.x?b C.a?x?b D.x?a或x?b
二、填空题(本题共16分,每小题4分) 9.函数y?x?4中,自变量x的取值范围是___.
2210.分解因式:5ma?5mb=___.
11.如图,CD是⊙O的直径,A、B是⊙O上的两点,若∠B=20°,则∠ADC的度数为 .
ACOBDADFBEC(第11题) (第12题)
12.如图,在正方形ABCD中,AB=1,E、F分别是BC、CD边上点,(1)若CE=
分的面积是 ;(2)若CE=数).
三、解答题(本题共30分,每小题5分) 13.计算:27?6sin60?()?(2?2).
2x?1)?3<5x,并把它的解集在数轴上表示出来. 14.解不等式(
[来源学+科+网]11CB,CF=CD,则图中阴影部2211CB,CF=CD,则图中阴影部分的面积是 (用含n的式子表示,n是正整nn?12?10-2-1012ABDCE
15.已知:如图,C是AE的中点,∠B=∠D,BC∥DE. 求证:AB=CD
216.已知x?3x?1?0,求4x(x?2)?(x?1)2?3(x2?1)的值.
3T教育社区--杰睿教育旗下的学生和家长交流平台 社区网址:www.3tedu.com
官方网站:www.jerryschool.com 咨询电话 010-82121556
k
(x>0)的图象上的一点,PN垂直x轴于点N,PM x
17.如图,P是反比例函数y?
垂直y轴于点M,矩形OMPN的面积为2,且ON=1,一次函数y?x?b的图象经过点P. (1)求该反比例函数和一次函数的解析式;
(2)设直线y?x?b与x轴的交点为A,点Q在y轴上,当
△QOA的面积等于矩形OMPN的面积的点Q的坐标.
18.如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是
等边三角形,若AC=8,AB=5,求ED的长.
1时,直接写出 4xE
CD
O
BA
四、解答题(本题共21分,第19、20、21题每小题5分,第22题6分) 19.列方程解应用题:
为提高运输效率、保障高峰时段人们的顺利出行,地铁公司在保证安全运行的前提下,缩短了发车间隔,从而提高了运送乘客的数量. 缩短发车间隔后比缩短发车间隔前平均每分钟多运送乘客50人,使得缩短发车间隔后运送14400人的时间与缩短发车间隔前运送12800人的时间相同,那么缩短发车间隔前平均每分钟运送乘客多少人?
20.如图,在△ABC中,点D在AC上,DA=DB,∠C=∠DBC,以AB为直径的⊙O交AC于点E,F是⊙O上的
点,且AF=BF.
A(1)求证:BC是⊙O的切线; (2)若sinC=
3,AE=32,求sinF的值和AF的长. 5[来源学科网]EFOBDC 3T教育社区--杰睿教育旗下的学生和家长交流平台 社区网址:www.3tedu.com
官方网站:www.jerryschool.com 咨询电话 010-82121556
21. 为了了解北京市的绿化进程,小红同学查询了首都园林绿化政务网,根据网站发布的近几年北京市城市绿化资源
情况的相关数据,绘制了如下统计图(不完整):
北京市2007-2011年
人均公共绿地面积年增长率统计图
年增长率(%)109876543210北京市2007-2011年 人均公共绿地面积统计图
人均公共绿地面积(m2)181513.614.515.37.96.65.03.42.012963012.620072008200920102011年份20072008200920102011年份(1)请根据以上信息解答下列问题:
① 2010年北京市人均公共绿地面积是多少平方米(精确到0.1)? ② 补全条形统计图;
(2)小红同学还了解到自己身边的许多同学都树立起了绿色文明理念,从自身做起,多种树,为提高北京市人
均公共绿地面积做贡献. 她对所在班级的40名同学2011年参与植树的情况做了调查,并根据调查情况绘制出如下统计表: 种树棵数(棵) 人数
[来源学科网ZXXK]0 10 1 5 2 6 3 9 4 4 5 6 如果按照小红的统计数据,请你通过计算估计,她所在学校的300名同学在2011年共植树多少棵.
22. 根据对北京市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的
甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1?kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2?ax?bx的图象如图②所示. (1)分别求出y1、y2与x之间的函数关系式;
(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的销售利
润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少?
2 3T教育社区--杰睿教育旗下的学生和家长交流平台 社区网址:www.3tedu.com
官方网站:www.jerryschool.com 咨询电话 010-82121556
y(万元)y(千元) yy(万元)(千元) 3O 5x(吨)O(吨)图① 图② 五、解答题(本题共21分,第23题6分,第24题8分,第25题7分) 23. 阅读下面材料:
问题:如图①,在△ABC中, D是BC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的长. 小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题 得到解决.
(1)请你回答:图中BD的长为 ;
(2)参考小明的思路,探究并解答问题:如图②,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=30°,
DC=2,求BD和AB的长.
A
A BDCBDC
图① 图②
24. 在平面直角坐标系xOy中,抛物线y?ax?bx?3经过点N(2,-5),过点N作x轴的平行线交此抛物线左侧
于点M,MN=6.
(1)求此抛物线的解析式;
(2)点P(x,y)为此抛物线上一动点,连接MP交此抛物线的对称轴于点D,当△DMN为直角三角形时,求点P的
坐标;
(3)设此抛物线与y轴交于点C,在此抛物线上是否存在点Q,使∠QMN=∠CNM ?若存在,求出点Q的坐标;若不存在,
说明理由.
[来源:Zxxk.Com]2y87654321-8-7-6-5-4-3-2-1O-1-2-3-4-5-6-7-8-9-1012345678x
3T教育社区--杰睿教育旗下的学生和家长交流平台 社区网址:www.3tedu.com
官方网站:www.jerryschool.com 咨询电话 010-82121556
25. 在矩形ABCD中,点P在AD上,AB=2,AP=1,将三角板的直角顶点放在点P处,三角板的两直角边分别能与
AB、BC边相交于点E、F,连接EF.
(1)如图,当点E与点B重合时,点F恰好与点C重合,求此时PC的长;
(2)将三角板从(1)中的位置开始,绕点P顺时针旋转,当点E与点A重合时停止,在这个过程中,请你观察、
探究并解答:
① ∠PEF的大小是否发生变化?请说明理由;
② 直接写出从开始到停止,线段EF的中点所经过的路线长.
15.北京市朝阳区九年级综合练习(一)
APDAEPDB(E)C(F)B备用图
FC数学试卷参考答案及评分标准
2012.5
一、选择题(本题共32分,每小题4分)
题号 答案
1 A
2 D
3 B
4 D
5 D
6 A
7 C
8 C
二、填空题 (本题共16分,每小题4分,) 9. x≥4 10. 5m(a?b)(a?b) 11. 70° 12. 三、解答题(本题共30分,每小题5分) 13. 解:原式?33?6?2n,(每空2分) 3n?13?2?1 ????????????????????4分 2 ?1. ????????????????????????????5分 14. 解:2x?2?3?5x. ?????????????????????????2分
?3x??1. ??????????????????????????3分
∴x?1. ??????????????????????????4分 3 ????????5分
这个不等式的解集在数轴上表示为:
3T教育社区--杰睿教育旗下的学生和家长交流平台 社区网址:www.3tedu.com
官方网站:www.jerryschool.com 咨询电话 010-82121556
15. 证明:∵C是AE的中点,
∴AC=CE. ????????????????????????????1分 ∵BC∥DE,
∴∠ACB=∠E. ??????????????????????????2分 在△ABC和△CDE中,
??B??D???ACB??E, ?AC?CE?∴△ABC≌△CDE. ????????????????????????4分 ∴ AB=CD. ???????????????????????????5分
16. 解: 4x(x?2)?(x?1)2?3(x2?1)
?4x2?8x?x2?2x?1?3x2?3
?2x2?6x?4 ???????????????????????????3分
?2(x2?3x)?4.
∵x2?3x?1?0,
∴x?3x?1. ????????????????????????????4分 ∴原式=6. ?????????????????????????????5分
17. 解:(1)∵PN垂直x轴于点N,PM垂直y轴于点M,矩形
OMPN的面积为2 ,且ON=1, ∴PN=2.
∴点P的坐标为(1,2). ?????????1分 ∵反比例函数y?
2k
(x>0)的图象、一次函数 x
y?x?b的图象都经过点P,
由2?
k
,2?1?b得k?2,b?1. 1
2,?????????????????????2分 x一次函数为y?x?1. ?????????????????????3分
∴反比例函数为y?(2)Q1(0,1),Q2(0,-1). ????????????????????5分
18. 解:∵四边形ABCD是平行四边形,
∴AO?CO?1AC?4,DO?BO. 2∵△EAC是等边三角形,
∴EA?AC?8,EO⊥AC. ?????????????????????2分 在Rt△ABO中,BO?AB2?AO2?3.
∴DO=BO=3. ???????????????????????????3分
3T教育社区--杰睿教育旗下的学生和家长交流平台 社区网址:www.3tedu.com
官方网站:www.jerryschool.com 咨询电话 010-82121556
EA2?AO2?43. ?????????????4分
在Rt△EAO中,EO?∴ED?EO?DO?43?3. ????????????????????5分
四、解答题(本题共21分,第19、20、21题每小题5分,第22题6分)
19. 解:设缩短发车间隔前平均每分钟运送乘客x人. ??????????????1分
根据题意,得
1440012800?, ?????????????????????????3分
x?50x解得x?400. ???????????????????????????4分 经检验,x?400是原方程的解. ???????????????????5分
答:缩短发车间隔前平均每分钟运送乘客400人.
20. (1)证明:∵DA=DB,
∴∠DAB=∠DBA. 又∵∠C=∠DBC,
∴∠DBA﹢∠DBC=
1?180??90?. 2∴AB⊥BC.
又∵AB是⊙O的直径,
∴BC是⊙O的切线. ?????????????????????2分
(2)解:如图,连接BE,
∵AB是⊙O的直径, ∴∠AEB=90°. A∴∠EBC+∠C=90°.
E∵∠ABC=90°, DFO∴∠ABE+∠EBC=90°.
∴∠C=∠ABE.
BC又∵∠AFE=∠ABE,
∴∠AFE=∠C.
∴sin∠AFE=sin∠ABE=sinC.
∴sin∠AFE=
3. ?????????????????????????3分 5连接BF,
∴?AFB?90?. 在Rt△ABE中,AB?AE?52. ??????????????4分
sin?ABE∵AF=BF,
∴AF?BF?5. ?????????????????????????5分
21. 解:(1)① 14.5?(1?3.4%)?15.0, ??????????????????2分
即2010年北京市人均绿地面积约为15.0平方米.
②
人均公共绿地面积(m2)181512.61213.615.314.515.0 9育3T教社区--杰睿教育旗下的学生和家长交流平台 社区网址:www.3tedu.com
官方网站:www.jerryschool.com 咨询电话 010-82121556
??????????????3分
(2)
0?10?1?5?2?6?3?9?4?4?5?6?300?675. ???????5分
40估计她所在学校的300名同学在2011年共植树675棵.
22. 解:(1)y1?0.6x. ???????????????????????????1分
y2??0.2x2?2.2x.???????????????????????3分
(2)W?0.6(10?t)?(?0.2t2?2.2t),
W??0.2t2?1.6t?6.??????????????????????4分
即W??0.2(t?4)?9.2.
所以甲种蔬菜进货量为6吨,乙种蔬菜进货量为4吨时,获得的销售利润之和最大,最大利润是9200元. ???????????????????6分
五、解答题(本题共21分,第23题6分,第24题8分,第25题7分)
23. 解:(1)BD?22. ??????????????????????????2分
(2)把△ADC沿AC翻折,得△AEC,连接DE,
∴△ADC≌△AEC.
∴∠DAC=∠EAC,∠DCA=∠ECA, DC=EC. ∵∠BAD=∠BCA=2∠DAC=30°, ∴∠BAD=∠DAE=30°,∠DCE=60°.
∴△CDE为等边三角形. ????????3分 ∴DC=DE.
在AE上截取AF=AB,连接DF,∴△ABD≌△AFD. ∴BD=DF.
在△ABD中,∠ADB=∠DAC+∠DCA=45°, ∴∠ADE=∠AED =75°,∠ABD =105°. ∴∠AFD =105°. ∴∠DFE=75°.
[来源:Zxxk.Com]2AFGBDCE
3T教育社区--杰睿教育旗下的学生和家长交流平台 社区网址:www.3tedu.com
官方网站:www.jerryschool.com 咨询电话 010-82121556
∴∠DFE=∠DEF. ∴DF=DE.
∴BD=DC=2. ?????????????????????????4分 作BG⊥AD于点G, ∴在Rt△BDG中, BG?
24. 解:(1)∵y?ax2?bx?3过点M、N(2,-5),MN?6,
由题意,得M(?4,?5). ∴?2. ?????????????????5分
∴在Rt△ABG中,AB?22. ?????????????????6分
?4a?2b?3??5,
?16a?4b?3??5.?a??1,
?b??2.2解得 ?∴此抛物线的解析式为y??x?2x?3. ?????????????2分 (2)设抛物线的对称轴x??1交MN于点G,
若△DMN为直角三角形,则GD1?GD2?1MN?3. 2y∴D1(?1,?2),D2(?1,?8). ???????????????4分 直线MD1为y?x?1,直线MD2为y??x?9. 将P(x,?x?2x?3)分别代入直线MD1,
2COP1xNMD2的解析式,
得?x?2x?3?x?1①,?x?2x?3??x?9②. 解①得 x1?1,x2??4(舍),
∴P1(1,0). ?????????????5分 解②得 x3?3,x4??4(舍),
∴P2(3,-12). ???????????6分 (3)设存在点Q(x,?x?2x?3),
使得∠QMN=∠CNM.
① 若点Q在MN上方,过点Q作QH⊥MN,
yQCO
222D1MGD2P2QH?tan?CNM?4. 交MN于点H,则MHx3T教育社区--杰睿教育旗下的学生和家长交流平台 社区网址:www.3tedu.com
MNH
2官方网站:www.jerryschool.com 咨询电话 010-82121556
4x?4)即?x?2x?3?5?(.
解得x1??2,x2??4(舍).
∴Q1(?2,3). ???????????7分 ② 若点Q在MN下方,
同理可得Q2(6,?45). ???????8分
25. 解:(1)在矩形ABCD中,?A??D?90?,AP=1,CD=AB=2,
∴PB=
5,?ABP??APB?90?.
∵?BPC?90?,
∴?APB??DPC?90?. ∴?ABP??DPC. ∴ △ABP∽△DPC.
15APPB∴,即?. ?2PCCDPCAPDB(E)C(F)∴PC=25.??????????????????????????2分 (2)① ∠PEF的大小不变.
理由:过点F作FG⊥AD于点G.
PGAD∴四边形ABFG是矩形.
∴?A??AGF?90?. ∴GF=AB=2,?AEP??APE?90?. E∵?EPF?90?,
BCF∴?APE??GPF?90?.
∴?AEP??GPF. ∴ △APE∽△GFP. ??????????????????????4分 PFGF2∴???2. PEAP1∴在Rt△EPF中,tan∠PEF=
PF?2.??????????????5分 PE即tan∠PEF的值不变. ∴∠PEF的大小不变.??????????????????????6分 ②
5. ????????????????????????????7分
3T教育社区--杰睿教育旗下的学生和家长交流平台 社区网址:www.3tedu.com
官方网站:www.jerryschool.com 咨询电话 010-82121556
3T教育社区--杰睿教育旗下的学生和家长交流平台 社区网址:www.3tedu.com
正在阅读:
2012年朝阳中考一模数学试题及答案03-13
3大学物理期末试题及答案10-09
2015事业单位面试备考:面试考试真题解析(三十七)08-19
在遵守廉洁纪律方面存在的问题07-02
制定活动方案格式(共4篇)04-16
小学奥数思维训练-幻方与数阵图扩展通用版02-02
声速测定实验报告03-11
水利工程协会质检员考试题目04-27
交换机练习题10-30
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 数学试题
- 朝阳
- 中考
- 答案
- 2012