曲线积分与曲面积分习题及答案

更新时间:2024-03-25 07:02:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第十章 曲线积分与曲面积分

(A)

1.计算??x?y?dx,其中L为连接?1,0?及?0,1?两点的连直线段。

L2.计算?Lx2?y2ds,其中L为圆周x2?y2?ax。

3.计算??x2?y2?ds,其中L为曲线x?a?cost?tsint?,y?a?sint?tcost?,

L?0?t?2??。

4.计算?eLx2?y2ds,其中L为圆周x2?y2?a2,直线y?x及x轴在第一

角限内所围成的扇形的整个边界。

4?4????33??5.计算??x?y?ds,其中L为内摆线x?acos3t,y?asin3t?0?t??L2????在第一象限内的一段弧。

6.计算

?Lz2ds,其中L为螺线x?acots,y?asint,22x?yz?at?0?t?2??。

7.计算?xydx,其中L为抛物线y2?x上从点A?1,?1?到点B?1,1?的一段弧。

L8.计算?x3dx?3zy2dy?x2ydz,其中L是从点A?3,2,1?到点B?0,0,0?的直线

L段AB。

9.计算?xdx?ydy??x?y?1?dz,其中L是从点?1,1,1?到点?2,3,4?的一段直

L线。

10.计算??2a?y?dx??a?y?dy,其中L为摆线x?a?t?sint?,y?a?1?cost?L的一拱(对应于由t从0变到2?的一段弧):

11.计算??x?y?dx??y?x?dy,其中L是:

L1)抛物线y2?x上从点?1,1?到点?4,2?的一段弧;

2)曲线x?2t2?t?1,y?t2?1从点?1,1?到?4,2?的一段弧。

1

12.把对坐标的曲线积分?P?x,y?dx?Q?x,y?dy化成对弧和的曲经积分,其

L中L为:

1)在xoy平面内沿直线从点?0,0?到?3,4?; 2)沿抛物线y?x2从点?0,0?到点?4,2?; 3)沿上半圆周x2?y??2x从点?0,0?到点?1,1?。 13.计算

??eLxsiny?mydx?excosy?mxdy其中L为x?a?t?sint?,

???y?a?1?cost?,0?t??,且t从大的方向为积分路径的方向。

14.确定?的值,使曲线积分????x4?4xy?dx?6x??1y2?5y4dy与积分路径

???无关,并求A?0,0?,B?1,2?时的积分值。

15.计算积分??2xy?x2?dx??x?y2?dy,其中L是由抛物线y?x2和y2?xL所围成区域的正向边界曲线,并验证格林公式的正确性。

16.利用曲线积分求星形线x?acos3t,y?asin3t所围成的图形的面积。 17.证明曲线积分??3,4??1,2?6xy?2?y3dx?6x2y?3xy2dx在整个xoy平面内与路

???径无关,并计算积分值。

18.利用格林公式计算曲线积分

??xyL2其中L为正向星形cosx?2xysinx?y2exdx?x2sinx?2yexdy,

???线x?y?a232323?a?0?。

L19.利用格林公式,计算曲线积分??2x?y?4?dx??5y?3x?6?dy,其中L为三顶点分别为?0,0?、?3,0?和?3,2?的三角形正向边界。

20.验证下列P?x,y?dx?Q?x,y?dy在整个xoy平面内是某函数u?x,y?的全微分,并求这样的一个u?x,y?,3x2y?8xy2dx?x3?8x2y?12yeydy。

21.计算曲面积分??x2?y2dx,其中?为抛物面z?2?x2?y2在xoy平

????????? 2

面上方的部分。

22.计算面面积分??2xy?2x2?x?zds,其中?为平面和三坐标闰面所围

???立体的整个表面。

24.求抛物面壳z?12x?y22???0?z?1?的质量,壳的度为t?z。

25.求平面z?x介于平面x?y?1,y?0和x?0之间部分的重心坐标。 26.当?为xoy平面内的一个闭区域时,曲面积分??R?x,y,z?dxdy与二重积

?分有什么关系?

27.计算曲面积分??zdxdy?xdydz?ydzdx其中?为柱面x2?y2?1被平面

?z?0及z?3所截的在第一卦限部分的前侧。

28.计算

222222式中为球壳 ????xdydz?ydxdz?zdxdyx?a?y?b??????z?c??R2的外表面。

29.反对坐标的曲面积分化成对面积的曲面积

??P?x,y,z?dydz?Q?x,y,z?dzdx?R?x,y,z?dxdy化成对面积的曲面积分,其中?是

?平面3x?2y?23z?6在第一卦限的部分的上侧。

30.利用高斯公式计算曲面积:

1)??x2dydz?y2dzdx?z2dxdy,其中?为平面x?0,y?0,z?0,x?a,

?y?a,z?a所围成的立体的表面和外侧。

2)???x?y?dxdy??y?z?xdydz,其中?为柱面x2?y2?1与平面z?0,z?3?所围立体的外表面。

?31.计算向理?穿过曲面?流向指定侧的通量:

3

???221)???2x?z?i?xyj?xzk,?为立体0?x?a,0?y?a,0?z?a,

?流向外侧;

???2)???x?y?z?i??y?z?x?j??z?x?y??k,?为椭球面

?x2y2z2???1,流向外侧。 a2b2c2???232.求向理场??ai?cos?xy?j?cosxzk的散度。

?xy???33.利用斯托克斯公式计算曲经积分?ydx?zdy?xdz其中?为圆周,

x2?y2?z2?a2,x?y?z?0,若从x轴正向看去,这圆周取逆时针方向。

34.证明?y2dx?xydy?xzdz?0,其中?为圆柱面x2?y2?2y与y?z的交

?线。

????3235.求向量场a??x?y?i?x?yzj?3xyk,其中?为圆周

????z?2?x2?y2,z?0。

??36.求向量场???z?siny?i??z?xcosy?j的旋度。

?37.计算

x?y?z???y?2?z2dx?z2?x2dy?x2?y2dz,其中?为用平面

?????3切立方体0?x?a,0?y?a,0?x?a的表面所得切痕,若从ox轴2的下向看去与逆时针方向。

(B)

1.计算?yds,其中L为抛物线y2?2px由?0,0?到?x0,y0?的一段。

L2.计算

?Ly2ds,其中L为摆线x?a?t?sint?,y?a?r?cost?一拱

?0?t?2??。

4

3.求半径为a,中心角为24的均匀圆弧(线心度??1)的重心。 4.计算?zds,其中L为螺线x?tcost,y?tsint,z?t?0?t?2??。

L5.计算?L1ttL,其中为空间曲线,dsx??costy??sint,222x?y?zz??t上相应于t从0变到2的这段弧。

6.设螺旋线弹簧一圈的方程为x?acost,y?asint,z?kt?0?t?2??,它的线心度为??x,y,yz??x2?y2?z2,求:

1)它关于z轴的转动惯量Iz; 2)它的垂心。

7.设L为曲线x?t,y?t2,z?t3上相应于t从0变到1的曲线弧,把对坐标的曲线积分?Pdx?Qdy?Rdz化成对弧长的曲线积分。

L8.计算?行)。

L?x?y?dx??x?y?dy,其中L为圆周x2?y2?a2(按逆时针方向绕

x2?y29.计算?ydx?zdy?xdz,其中L为曲线x?acost,y?asint,z?bt,

L从t?0到t?2?的一段。

10.计算??x2?y2?dx??x2?y2?dy,其中L为y?1?|x|?0?x?2?方向为xL增大的方向。

11.验证曲线积分?值。

?2,1??1,0?2xe?y?ydx?x2ey?x?2ydy与路径无关并计算积分

??? 5

∴?eLx2?y2ds??exdx??0a2a20?e2x2dx??4eaadt

0a ?ex|0?e4343432x2a20?aea?????ea?2?a??2 44??5.解:x?y?acos4t?sin4t ds?x?2?y?2dt?????3acostsint???3asint?cots?2222

?9a2sin2tcos2tdt?3asintcostd t47??4?33?32cos4t?sin4tsintcostdt ∴??x?yds?3a??L?0????16?2?1 ?3a??co6st?sint??4a3

6?6?06.解:ds?x?2?y?2?z?2dt?∴?73?7??asint?2??acost?2?a2dt?2adt?2a?2?02adt

L2?z2a2t2ds??220x?y?acost?2??asint?2t2dt

12?8?2at3|0?2a?3。

337.解:?xydx??yyyL?112??2?1dy?2?ydy?2y5?15141??14 58.解:直线段AB的方程为

xyz??,化成参数方程为 321 x?3t,y?2t,z?t,t从1变到0 故?x3dx?3xy2dy?x2ydz

L ??01??3t??3?3t?2t?3012?2??3t??2tdt

2? ?87?t3dt??87 49.解:直线的参数方程为

x?1?t,y?1?2t,z?1?3t(0?t?1)

?

Lxdx?ydy??x?y?1?dz

11

????1?t??2?1?2t??3?1?t?1?2t?1??dt

01 ???6?14t?dt?13

0110.解:??2a?y?dx??9?y?dy

L ??2?0??2a?a?1?cots??a?1?cots???a?a?1?cots??asint?dt

2?02?0 ?a2? ?a2??1?cost?cotssint?dt?a?222?01?1???1?co2st?sin2tdt ??2?2?1dt?a2? 22111.解:1)原式?? ??21??y2?y2y?y?y2dy

2?????1134?1?2y3?y2?ydy??y4?y3?yh2??

323?2?1?2)原式??010???2t??t?1?t2?1?4t?1??t2?1?2t2?t?12tdt

??????????? ??10t3?5t2?9t?2dt

5959131?10??10? ??t4?t2?t?2?dt??t4?t2?t2?2t??

3232?4??4?01211??12.解:1)L的方向余弦cos?34,cos? 554?3?????????Px,ydx?Qx,ydy?Px,y?Qx,yds ?L?L??5?5?2)ds?1??2x?dx,cos??2dx1 ?2dx1?4xcos??sin??1?12x ?221?4x1?4xP?x,y??2xQ?x,y?ds 21?4x2x?x2

故?P?x,y?dx?Q?x,y?dy??L3)ds?2dx?1?x??1?dx,cos??2x?x2dscos??sin??1?2x?x2?1?x

12

故?P?x,y?dx?Q?x,y?dy??LL?2x?xP?x,y???1?x?Q?x,y??ds

213.解:因为

?P?Q??excosy?m ?y?x 故原积分与路径无关,于是

原式?OB??BA

?a0??0dx??0?a?e?acosy?m?ady

?2a?2?ma2。 ?e?asin14.解:P?x4?4xy?,Q?6x??1y2?5y4,由

?P?Q?,得 ?y?x4?xy??1?6???1?x??2y2,解得??3 故当??3时,所给积分与路径无关

????x0,0?1,2?4?4xy3dx?6x2y2?5y4dy

??? ??x4?4x?0dx??6?1?y2?5y4dy?001??2??79 5取AC?CB计算,其中A?0,0?,C?1,0?,B?1,2? 15.解:原式?10L1??L2

??2x3?x2?x?x42xdx ??1001????????2y3?y42y?y2?y2dy

???? ??2x5?2x3?x2dx ????2y5?4y4?2y2?dy?10??

1 301y??Q?P?1? 又??? ?????dxdy?1?2xdx?dy1?2xdx???????x?y?0y230?D?D ∴

??Q?P??????x??y??dxdy??LPdx?Qdy

?D??Q?P?1可得面积 ??1,?x?y16.解取P??y,Q?x,

13

A1???dxdy?D1xdy?ydx ?L2设A1为在第I象限部分的面积,由图形的对称性所求面积

A?4A1?4?1xdy?ydx 2?3222 ?2?20?acost?3asintcots?asint?3acost??sint??dt

?20 ?ba2?32sintco2stdt??a2

8DLL注:还可利用??dxdy??xdy??ydx 17.解:P?6xy2?y3,Q?6x2y?3xy2

?Q?P?12xy?3y2 ?12xy?3y2,?x?y 因为

?Q?P?,所以积分与路径无关 ?x?y 取路径?1,2???3,2???3,4?

原式???24x?8?dx??54y?9y2dy?236

1234??18.解:

?Q?P?2xsinx?x2cosy?2yex,?x2cosx?2xsinx?2yex ?x?y??Q?P? 原式??????x??y??dxdy?0。

?D?19.解:

?Q?P?3,??1 ?x?y??Q?P? 原式??????x??y??dxdy????3???1??dxdy???4dxdy

?D?DD ??dx?032x304dy??8xdx?12 03320.解:1)

?Q?P?2x?,故2xydx?x2dy是某个u?x,y?的全微分。 ?x?y14

u?x,y????x,4??0,0?2xydx?xdy??0dx??x?dy?x2y

002xy?x,y??Q?P2)?3x2?16x?,u?x,y???3x2y?8xy2dx?x3?8x2y?12yeydy

?0,0??x?y???? ??0dx??x3?8x2y?12yeydy

00xy?? ?x3y?4x2y2?12yey?ey?12

22?zydxdy?1?4x2?4y2dxdy 21.解:Dxy:x2?y2?2,dx?1?zx??故原式?Dxy???x2?02?02?y21?4x2?4y2dxdy

2020? ?? ??

r2?ud??d??20??rco?s?9??rsin???1?4?rco?s?222?4?rsin??rdr

2r21?4r2rdr?2?149? 301222r1?4rd?rh2? ?02??u1?4udu?22.解:原式?Dxy??|x||y|?x2??y2?1?z?x?zydxdy

?4??xyx2?y21?4x2?y2dxdy

DxyI????这里DxyI为Dxy在第一象限部分

?20?4?d??rsin?cos?1?4rrdr?4?01?422011sin2?d??741?4r2rdr

02??r0141?4rdr???21?4r2?t132?15?t4?2t2?1t2dt?2?1255?1 42023.解:z?6?2x?2y,ds?1???2?dxdy?3dxdy

15

原式?Dxy???2xy?2x33?x002?x?6?2x?2y?3dxdy

?3?dx? ??27 4?6?3x?2x2?2xy?2ydy

?24.解:M???zds????12x?y21?x2?y2dxdy 2Dxy?? ??2?0d??20122?r1?r27dr?63?1 215??

25.解:平面z?x这部分的面积

22?S???1?z??zxydxdy???2dxdy

DD?2?dx?011?x0dy?2 2因而x?1?x1211 xds?xdx2dy????00S?321?x1211 y???yds?dxy2dy??00S?32 z?121 zds?xds????S?32?

?111?故重心坐标为?,,?

?333?26.解:因为曲面积分?有向曲面,所以??R?x,y,z?dxdy????R?x,y,0?dxdy?Dxy当积分曲面取在?的上侧时为正号,取在下侧时为负号

?27,解:Dxy?AB,面积为0,??zdxdy?0

?Dyz???0,y,z?|x?0,0?y?1,0?z?3?,

16

Dzx???x,0,z?|0?x?1,y?0,0?z?3? 原式?Dyz??301?y2dydz???1?x2dzdx

Dzx??dz?101?ydy??dz?023101?x2dx

113?y??2??1?yh2?arcsiny???。

2?2?0228.解:根据轮换对称,只要计算??z2dxdy

?

Dxy:?x?a???y?b??R2

22 注意到:z?e??R2??x?a???y?b?,再利用极坐标可得

22 ???z2dxdy???c?R2??x?a?2??y?b?2?dxdy? ??????Dxy ????c?R2??x?a???y?b???D2xy2?dxdy

?? ?4e??R2??x?a???y?b?dxdy

22Dxy ?4e?2?0d??R0 R2?r2rdr?1 ?8?e??R2?r2?3??32?83??Re ?3?0R?于是原式??R3?a?b?c?

329.解:原式????Pcos??Qcos??Rcos??ds,这里cos?,cos?,cos?是

??的法向理n的方向余弦而?是平面3x?2y?23z?6在第一卦限部分的上侧?cos??0,取n?3,2,23。

cos??332?22?23?????2?2323,cos??,cos??

555?3223?R?Q?R?dx。 故原式?????5?55???

17

30.解:1)

?P?Q?R???2x?2y?2z ?x?y?z??P?Q?R? 原式???????x??y??z??dxdydz?2????x?y?z?dxdydz

???? ?2?dx?dy??x?y?z?dz?2?000aaaa0?a2?dx??ax?ay???dy 0?2??a?2a3a3?4?ax??dx?3a ?2?? ?0?22??a20P??y?z?x,Q?0,R?x?y

?P?Q?R???y?z ?x?y?z2?0139d??rdr??xsin??z?dz???。

002故原式?????y,z?dxdydz???31.解:????Pdydz?Qdzdx?Rdxdy

???P?Q?R? ???????x??y??z??dxdydz

??? ?????2?x?2xz?dxdydz??dx?dy??2?x2?2xz?dz

2aaa?000 ?a?a0??a2?2a?ax?axdx?a??2?6??

??22?3??2)?????ds????x?y?z?dydz??y?z?x?dzdx??z?x?y?dxdy

S?4 ?????1?1?1?dxdydz?3??bc?4?abc。

3?32.解:P?exy,Q?cos?xy?,R?cosxz2

?P?R?Q?yexy,??2xzsinxz2 ??xsin?xy?,?x?z?y??????P?Q?R???yexy?xsin?xy??2xzsin?xz2? 故div???x?y?z 18

33.解:取?为平面x?y?z?0,被所围成的部分的上侧,?的面积为?a2,

?的单位法向量为

?111??n??cos?,cos?,cos????,,?

?333?1原式????13??yy13?1?11?ds????????ds ???z333???z3??xx33 ??2。 ds??3?a???1???134.证:平面y?z的单位法向理n??cos?,cos?,cos????0,,??

22??由斯托克斯公式得

左边????cos???xy2cos???yxycos??1?y?z?ds ds????z2?xz ?1?y?z?dxdy?0 ??2Dxy35.解:闭曲线?是xoy平面上的圆周x2?y2?4(逆时针方向),它的参数方程为x?2cos?,y?2sin?,z?0?0???2??,故环流量为

??Rdx?Qdy?Rdz???x?z?dx?x3?yzdy?3xy2dz

?????2?0?2cos???2sin???8cos?2cos??d?

32?0??4?sin?cos?d??16?2?0cos??d??0?12??12?.

???ijk??????36.解:rot???i?j。

?x?y?zz?siny??z?xcosy?0 19

37.解:证平面x?y?z?3a合科立方体内的部分为?,它在oxy平面上23?111?的射影为Dxy,面积为a2,取平面的上侧,单位法向量?,于是由,,???4?333?斯托克斯公式得

1原式????13??yz2?x213?1ds??4???x?y?z?dx ?z3?22x?y3??xy2?z2 ??6a???139ds??6a??dxd?y?6aa2??a3。

423Dxy(B)

12?x?t?1.解:L的参数方程?2p,则

?y?t??1?1222?ds?x?2?y?2dt??t?1dt?t?pdt ?p?p??2所以?yds??Ly0012112tt?p2dt?t?p2pp3??3y0201?22?y?p03p????32??p3?

?2.解:ds?x?2?y?2dt?a2?1?cost??a2sin2tdt

2??t2t?? ?a2?1?cots??12?1??1?2sin???2asin

2??2??所以?yds??L22?0t2a2?1?cost?2asindt

22??ttt?tsindt?8a3??1?co2s?sindt

0222?2? ?8a3?2?04sint2t1? ??16a3?cos?cos3?cos52325?t?2563a ??2?0152?3.解:取坐标系如图,设重心坐标为G?x,y?,由扇形的对称性可知y?0,

20

?xds?1?又x??24a?ds?LL4?4acos?ad?

?aasin? sin?|4??424?

4.解:

ds?x?2?y?2?z?2??cost?tsint???sint?tcost2??1dt

?2?t2dt 所以?zds??Lt001t2?t2dt?2?t23??3t0201?2??2?t03???32??22?

?5.解x2?y2?z2?etcost?etsint?et ds?x?2?y?2?z?2dt ????2???2t2?2e2t

?etcost?etsint??2?esint?etcost?et???22dt

?3e2tdt?3et 所以?1Lx2?y2?z22ds??102e2t223et

?33?t?tedt??e2?02L?031?e?2 2??6.解:M????x,y,z?ds ??2?0?a2cos2t?a2sin2t?k2t2?a2sin2t?a2cos2t?k2dt

? 1)Iz??x2?y2??x,y,z?ds??L??2?0?x2?y2x2?y2?z2ds

??? ??2a2?k2dt??a2a2?k23a2?4?2k2

03112?x??x,y,z?ds?acosta2?k2t2a2?k2dt 2)x???MLM02?a2a2?k2t2??????6ak2 ?2

3a?4?2k2 21

1y?M1??y?x,y,zds??LM?2?0asinta2?k2t2??a2?k2dt

?6?ak2 ?2

3a?4?2k21z?M1??z?x,y,zds??LM?2?0kta2?k2t2??a2?k2dt

3?ka2?2?2kh2 ?

3a2?4?2k2??7.解:由x?t,y?t2,z?t3得

dx?dt,dy?2tdt?2xdt,dz?3t2dt?3ydt

ds?1?4x2?9y2dt

故cos??dx1 ?22ds1?4x?9ydy2x ?22ds1?4x?9ydz3y ?22ds1?4x?9yP?2xQ?3yRL co?s? co?s?故?Pdx?Qdy?Rdz??L1?4x?9y22ds

8.解:圆周的参数方程为x?acost,y?asint?0?t?2?? 故?L?x?y?dx??x?y?dy

x2?y21?2a1?2a???acost?asint???asint???acost?asint??acost??dt

02??2?0?a2dt??2?

2?0L9.解:?ydx?zdy?xdz?? ??2?0?asint??asint??bt?acost???acost?b?dt

??a22sint?abtcots?abcotsdt???a2

?10.解:如图C?OA?OB,

OA:y?x,AB:y?z?x

22

故原式??x2?x2dx??x2??2?x?dx

2011??2?? ??x2??2?x?d?2?x??212??4 3

11.解:由于P?2xey?y,Q?x2y?x?2y 又

?P?Q??2xey?1,故曲线积分与路径无关,?y?x2110

取折线?1,0???2,0???2,1?,则原式??2xdx??4ey?2?2ydy?4e。 12.解:由于P???x?x2?y232?,Q?y?x2?y232?,

?P?Q???3xyx2?yh2?y?x???52故当路径不过原点时,该曲线积分与路

径无关,取折线?1,1???2,1???2,2?,得 原式?21xdx?x2?1?32??21ydy?4?y?232?2 413.解:取参数方程x?acost,y?sint?0?t?2??

112?面积A??xdy?ydx??abcos2t?sin2tdt??ab

2L20??14.解:L不是闭曲线,要用格林公式,先得补添路径,使其封闭,如图

?L????ABBO??P?P????????x??y??dxdy,

?D?因为

?P?P??0?1???1??0 ?x?yABBO故?????LLAB?0,所以

1171???1?sin2ydy??x2dx???sin2 0064

原式?????BO??15.解:作代换y?tx,得曲线的参数方程

3at3at23a1?2t33at2?t3 x?,y?,由于dx?dt,dy?dt

32321?t31?t31?t1?t???????? 23

从而xdy?ydx?9a2t2?1?t?32dt,故面积

19a2 S??xdy?ydx?2L2??1?t?0??t2323a2?1?32dt??a ???32?1?t?02??16.解:由于x?y?0时,被积函数无意义,故L所包围的区域不满足格林公式的条件,作一小圆挖去原点?0,0?,作逆时针方向的圆周l:

x?rcos?,y?rsin?,0???2?

使l全部补L所包围,在L和l为边界的区域D内,根据格要公式,有

??Q?P?ydx?xdyydx?xdy ???dxdy????????x?y?L2x2?y2l2x2?y2?D1??????Px2?y2?Q∵ ,故上式为零 ??222?y?xx?y??22222??rsin??rcos?ydx?xdyydx?xdy∴?????d? 2L2x2?y2l2x2?yh202r??????12?d????。 ?0222?zydxdy?1?4x2?4y2dxdy 17.解:Dxy:x2?y2?2,ds?1?zx 原式?Dxy2232?x?y??????1?4x22?4yh2dxdy

111? 16 ?3?2?0d??20?2?r?1?4r2rdr?18.解:Dxy:x2?y2?2ax,z?x2?y2

x2y2?1?2?2dxdy?2dxdy ds?1?z?zdxdy 22x?yx?y2x2y 原式?2??xy??x?y?x2?y2dxdy

Dxy??? ?2?2?d???22aco?s0?r2sin?co?s?r2?sin??co?s?rd?

? 24

?2?2??sin?cos??sin??cos???2?1642acos4?d??2a4。 415??19.解:半球壳?的方程为z?a2?x2?y2 Dxy:x2?y2?ah2

22 ds?1?zx?zyds?aa?x?y222dxd y Iz????x?y??0ds??0??22?Dxyax2?y222??2a?x?ydxdy

?a?0?2?0d??a0r2a2?r2rdr?4?0?a4。 32?a?20.解:质量为M????0ds?2?0??dxdy?2?0????2??x2?y2?ax2?a2?0 4从而垂心的坐标为

1x?M8 ?2?a42?0??xdxdy?2?ax2?y2?ax8xax?xdx??0?a2a2?a0xdx?ax?x2ax?x2dy

2?a2a?2?a??a?2??t????xdt ?2??2?82?a?a2?tdt? ? ???0?a2?2?1y?M1z?M?22?0?dx?0aax?x2?ax?x2ydy?0

?acos?042?0??zdxdy?2?ax2?y2?ax?2??d??28ardr?3?2??20cos3?d??16a 9??a16a?即重心坐标为?,0,?。

?29??21.解:由于曲面z?x2?y2得x2?y2?z2?a2分成上下两部分,记成S上,

2222?x?y?z?a? S下,又由?2??z?x?yh2 25

解得:z?a2,x2?y2?a2,所以

I????x2?y2?ds???0ds

S上S下 ???x2?y2Dxy??aa?x?yar3a?r22222dxdy

? ??2?0ad??20dr?2?a4?40sin?d??2?a46?8?52?

yoz,22.解:证z在xoy,在x?y?z?1?2,?3,zox平面上的部分分别为?1,

面上的部分为?4。

??xzdxdy?xydydz?yzdzdx???xzdxdy????x?0dxdy?0

?1?1Dxy??xzdxdy?xydydz?yzdzdx???xydydz????0?ydydz?0

?2?2Dyz??xzdxdy?xydydz?3?4?yzdzdx???yzdzdx????0?zdzdx?0

?2Dzx故原式???xzdxdy?xydydz?yzdzdx

?3??xzdxdy?3??x?1?x?y?dxdy?3?dx??4Dxy011?x0?1?x?y?dy?1

8 (另解:可求得??xzdxdy??11,由对称性可得原式?也可用高斯公式)

824x2y2x2y223.解:Dxy:2?2?1,z??c1?2?2由轮换对称,只要计算积分

abab1dxdy再利用广义极坐标可得 ??z?1dxdy?????2?Dxy1c1?xy?a2b222dxdy???Dxy?1c1?xy?a2b222dxdy

26

2???cDxy12ab2?rdxdy?d?dr ??00222cxy1?r1?2?2ab14?ab??1?r2c??10?4?ab c?bcacab?4?22于是原式?4??????bc?a2c2?a2b2。

bc?abc?a??24.解:证?1,?2分别为锥面的底面和侧面而cos?,cos?,cos?为锥面外法线的方向余弦Dxy:x2?y2?h2,则

???y?z?dydz??z?x?dxdy??x?y?dxdy

?1 ?Dxy2??x?ydxdy?d?r???0?0?cos??sin??dr?0

2?h又对?2上的任一点?x,y,z?有

cos?cos?cos??? xy?r故ds在各坐标平面上射影分别为

xxyycos?dx??cos?ds?dxdy,cos?ds??cos?ds?dxdy cos?ds??dxdy,

z2zz于是???y?z?dydz??z?xdxdy???x?y?dxdy

?2

????y?z?cos???z?x?cos???x?y?cos??ds

S2 ?y?x???????y?z?z?x?x?ydxd y???2?z?Dxy? ??2???x?y?dxdy?0

Dxy故原式?0?0?0

25.证:由格林第一公式得

???u?vdxdydz???u????u?v?u?v?u?v??v?dx?????????dxdydz ?n?x?x?y?y?z?z???同理

27

???v?udxdydz???u????u?v?u?v?u?v??u?dx???????dxdydz ???n?x?x?y?y?z?z???两式相减得:

?v???v??u?v?v?udxdydz?u?v??ds。 ?????????n?n?26.解:设c???BA,其中BA为从B到A的直线段,则c为封闭曲线,由斯托克斯公式得

?cPdx?Qdy?Rdz????dydz??x2x?yzdzdxdxdy??,其中?是以c为边界且

?y?z22y?xzz?xy与c构成右手系的任曲面。

??h0?L??C??BA??c??AB??AB

?h3z?ak0dz?

32??u??u??u?i?j?k 27.证:gradu??x?y?z?i? ro?tgrad??u?x?u?x?j??y?u?y?k??2u?2u????2u?2u????????i???j ?????z??z?y?y?z???z?x?x?z??u?z??2u?2u?? ????y?x??x?y??k?0

??(C)

a2a4?1.解:ds?1?2a?xh24a2?x2??3a2?2x2dx?dx,|x0|?0 22a2?x2??于是当x0?0时,有

S??x003a2?x2aa?x0dx?ln?x0?|z0|?|x0| 224a?x02a?x?? 28

当x0?0时,有

3a2?2x2aa?x0S??dx?ln?x0?|z0|?|x0|

x02a2?x24a?x00??故当|x0|?a时,有S?|Z0|?|x0|

xx2.解:ds?1?sin2dx?chdx,于是

aa?x?d?sh???11???a?ds?dx? 2??????xxaya2ch21?sh2aaxcha??

?L1??x? ?arctan?sh??

a?a???a3.解:ds?e2t?cost?sint??e2t?sint?cost??e2tdt?3etdt

22 质量为M??0??3etdt?3

于是垂心坐标为

01??2cots?sint2t x0??etcots3etdt??e2tcotsdt?e????m5010t2sint?cots2tt y0??ecots3edt??e2tsintdt?e??m??500???2 5??1??

5 z0?010tt1t2tee3edt?edt? ??????m2 4.解:∵

但??C?BA??C??BA, ∴ ?C??C?BA??AB

AB??0dx?0,又

?RR???Q?P?2y2y??4????Pdx?Qdy??dxdy???C?BA????x?y??R2?x2R2?x2?D?D???dxdy ?? ?4??dxdy?4D?2R2?2?R2

∴原式?2?R2

29

x1?y2f?xy?5.解:P?,Q?2y2f?xy??1

yy???Py2yf?xy??y2f??xy?x?1?y2f?xy?y2f?xy??xy3f??xy??1 ??22?yyy?Q1y2f?xy??xy3f??xy??122 ?2yf?xy??1?xyf??xy?y??xyy2??????故当y?0时,

?P?Q,因此只要路径不过x轴,点A到点B的曲线积分??y?x?2??2?与路径无关,取路径A?3,??C?1,??B?1,2?,有

?3??3?1?49?2?f?x??3?dx?21y2f?y??1dy ?23y223原式??13?? ?2213121?2???dx?fxdx?fydy?dy ??222????3323?3?33y231 ??1?3???3f?y?dy??2f?y?dy?22y322??4

23yyyy2y6.解:x?0时,有P?1?2cos,Q?sin?cos

xxxxx?P2yyy2y ??2cos?2sin

?yxxxx?Qyyy2yyy2yyy2y??2cos?2cos?3sin?2cos?3sin ?xxxxxxxxxxx 改右半平面????x,y?\\x?0?,由于?是单连通区域,且在其上

?Q?P?,故在?上的是某函数u?x,y?的全微分,且可取 ?x?yu?x,y???x1y?y2y????1?x2cosx?dx????siny?ycosy?dy ?? 30

x ???x?y?x???ysiny|yysiny?ysin??x?1?x 1?2,??于是原式????x?1?ysiny?x?????1 ?1,??7.解:P?x?xysinx,Q?f?x?2

?P?Q?y?xsinx,?x?xf??x??f?x?xh2 即f'?x??1f?x??x2xsinx 解此一阶线性微分方程得

1f?x??e?xdx???x2sinxe??1xdxdx?C??

?? ?x?sinx?xcosxe?

由f?????2???0得e??1,故所求函数为

f?x??x?sinx?xcosx?1? 8.解:所求的功W???2,4?xdx?ydy?1,1??x2?y2?32,P?x?x2?y2?32,

?P3?Q3?xy?y??2xy2?x2?y2?32,

?y??2?x2?y2?32

当x2?y2?0时,此积分与路径无关

故W??2x1?x2?y2?32dx??4y1?4?y2?23dy

4 ?121?x2?1?1114?y212?25

9.解:由格林公式各

I????3?3x2?3y2?dxdy??2?D0d??R?3?3x20?xdx

31

Q?y?x2?y2?32

?R2R4?R2?2??6???2?4???3?R??1?2?? ????1)当R?0(舍去),R?2时,I?0

2)由IR?6?R?6?R3?0,得R?0(舍去),r?1

???6??18?R2,I??|R?1??12??0 IR3故当R?1时,I取最大值,I?1???

210.解:补上?1:x2?y2?1,z?1,上侧由高斯公式

I????3dxdydz???x?1?x2z?dydz?y?1?x2z?dzdx?z?1?x2z?dxdy

??11 ?3???12?1???1?x2dxdy

3x2?y2?1?? ??????2?02d??xx2cos?d??01?4

11.解:由对称性可知

原式?8??xyzds,?1:x?y?z?1

?122?zydxdy 而??xyzds???xy?1?xy?1?zx?1D ?3?dx?011?x0?y2y3?xy?1?x?y?dy?3???1?x?x?x?dx

023?0?11?x1x1?x3x333? ?3???1?x???1?x??dx?3??1?x?dx?

00261203?? 故原式?833 ?1201512.解:取?1:x?1,y2?z2?1方向与x轴同上,则 I????1??2?1?x?dydz???2?1?x?dydz?1?2???dxdydz???4dydz

??1 ?2?2?0d??rdr?2dx?4??4??r?r3dr????3?

0r0111?? 13.解:利用格林公式 原式

32

???y?2xy?dx??x2?2x?y?dy???y?2xy?dx??x2?2x?y2?dy L?OAOAD?????2x?2???1?2x?dxdy??0???dxdy?4?

D14.解:P?3y?x?x?y?3,

?P6?x?y?y?3x?Q6?x?y?,, ?Q??434?y?x?y??y?x?y??x?y? 当x?y?0时,有

?2,3?1,0??P?Q,积分与路径无关 ??y?x

???3y?x?dx??y?3x?dy?2?xdx?3y?6dy

?1x3?0?2?y?3?x?y?3233111??dy?8 ??0?y?2?3dy 0x1?y?2?21?11??11?26 ????????4????

2?52??254?2515.解:Iz????x2?y2?ds?SDxy???x2?y2?2dxdy

??2?0d??h02r3dr?24?h 216.解:P?x,y??y2?2xy?ax2?x?2?y22?,Q?x,y???x2?2xy?by2?x2?y22?

?P2y?2x4yy2?2xy?ax2 , ??232222?yx?yx?y???Q??2y?2x?4y?x?2xy?by? ???x?x?y??x?y?22222223??? 令

?P?Q?,得 ?y?x x3?x2y?xy2?y3?x3?y3???b?xy2??2?a?x2y 比较系数得,a??1,b??1 ∴du?y2?2xy?x2?x2?y22?dx?x2?2xy?y2?x2?y22?dy

33

∴u?x,y????x,y??1,1?x1y2?2xy?x2x2?2xy?y2dx?dy 222222x?y1x?y?? ??1?2x?x222?1?x??x?y?d?1?x?dxdx ???2???1?x?1?x??1?x?1?22x2xx1221221dx??yx2?2xy?y2dy

2

?? ?y1y?x?y?dydy ?2x222?122x?yx?y??x?11xyxx?y ?????222222221?xh2x?yx?11?xx?yx?yx?y?l

x2?y2故u?x,y?的形式

22z?1z?2???17.解:,其中,,分别是在,,???z?x?y?213??????????1?2?3上的曲面块。

???????1D1ex2?y2e222dxdy?lim????02?0d??edr??2?e

?1 ???????2D2x?ydxdy?lim????02?0d??212?e2dr?22?e2

???????3D32ex2?y222x?ydxdy???2?0d??2erdr??2?e?2?e

?∴???e2x?y22dxdy??2?e?22?e?2?e2?2?e

?2?e??2?1

????18.证:设??Pi?Qj?Rk,且P,Q,R具有二阶连续导数 ?i??∵?????xP?j??yQ?k??R?Q????P?R????Q?P???????y??z??i???z??x?j????x??y??k ?z??????R 34

?∴?????????i??x?P?Q??y?z?j??y?P?R??z?x?k??z?Q?P??x?y

??2Q?2P?2P?2Q????2R?2Q?2Q?2P?? ????x?y??y2??z2??x?y??i????y?z??z2??x2??y?x??j

??????2P?2Q?2R?2R?? ????z?x??x2??y2??x?y??k

????2P?2Q?2R????2P?2P?2P????2P?2Q?2R?? ????x2??x?y??x?z??i????x2??y2??z2??i????y?z??y2??y?z??i

????????2P?2Q?2R????2Q?2Q?2Q????2P?2Q?2R??????y?z??y2??y?z??j????x2??y2??z2??j????z?x??z?y??z2??k ????????2R?2R?2R??????x2??y2??z2??k ???????P?Q?R??????P?Q?R??22??????i??Pi???j??Qj ?????x??x?y?z??y??x?y?z?????P?Q?R??2? ?????k??Rk ?z??x?y?z????????????2?

35

本文来源:https://www.bwwdw.com/article/ai38.html

Top