A characterization of Dirac morphisms
更新时间:2023-05-13 04:44:01 阅读量: 实用文档 文档下载
- 阿根廷推荐度:
- 相关推荐
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
8
2
ay
M
5
]
G
D.
h
t
a
m
[
1
v
1
9
5
.
5
8
:0v
i
X
r
aACHARACTERIZATIONOFDIRACMORPHISMSE.LOUBEAUANDR.SLOBODEANUAbstract.RelatingtheDiracoperatorsonthetotalspaceandonthebasemanifoldofahorizontallyconformalsubmersion,wecharacterizeDiracmorphisms,i.e.mapswhichpullback(local)harmonicspinor eldsonto(local)harmonicspinor elds.1.IntroductionIntroducedbyJacobi[10]in1848,harmonicmorphismsaremapswhichpullbacklocalharmonicfunctionsontoharmonicfunctionsand,morerecently,theywerecharacterizedbyFuglede[6]andIshihara[9]ashorizontallyweaklyconformalharmonicmaps.Theirdualnatureofanalyticalandgeometricalobjectshasledtoarichtheory(cf.[2])whichhasencouragedthestudyofvariousothermorphisms,thatismapspreservinggermsofcertaindi erentialoperators.ThecentralroleoftheDiracoperatorindi erentialgeometryandmathematicalphysicscalledforthisapproachtobeappliedtoharmonicspinors.Unlikepreviouscases,the rsthurdleistomakesenseofanotionofpull-backofspinorsbyamap.Thisrequirestheidenti cationofthespinorbundlesinvolved,necessarilyrestrictingourinvestigationtohorizontallyconformalmapsbetweenRiemannianmanifolds(cf.Sec-
tion2).CombiningachainrulefortheDiracoperatorandalocalexistencelemma,weshowthatahorizontallyconformalsubmersionbetweenspinmanifoldsisaDiracmorphismifandonlyifitshori-zontaldistributionisintegrableandthemeancurvatureofthe bres
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
2E.LOUBEAUANDR.SLOBODEANU
isrelatedtothedilationfactor,inamannerreminiscentofthefun-damentalequationforharmonicmorphisms.WeconcludewithsomesimpleexamplesbetweenEuclideanspacesandexplicitourresultsintheset-upof[12],whichinspiredinitiallyourconstruction.
2.Pull-backofaspinor
Let(Mm,g)beaspinRiemannianmanifold,thetwo-sheetedcov-eringSpin(m) ρ→SO(m)inducesadoublecoverχ:PSpin(m)M →PSO(m)MofthebundleofpositivelyorientedorthonormalframesbytheprincipalSpin(m)-bundleoverM,suchthatχ(s·g)=χ(s)·ρ(g), s∈PSpin(m)M,g∈Spin(m).TheassociatedbundleCl(M)=PSO(m)M×clmClmistheCli ordbundle,whereClmistheCli ordalgebraandclmtherepresentationofSO(m)intoAut(Cl(Rm)),andthespinorbun-dleisSM=PSpin(m)M×γSm,withγthespinorialrepresentationofSpin(m)ontheCli ordmoduleS[m/2]
m=C2(cf.[11]).
Aspinor eldisa(smooth)sectionofSM,Ψ:U M →SM,Ψ(x)=[sx,ψ(x)],wheresx∈PSpin(m)Misaspinorialframeatx∈Mandψ:U →Sm,theequivalenceclassbeingde nedby
[s,ψ]=[s·g 1,γ(g)ψ],
forallg∈Spin(m).Thecovariantderivative
ejΨ= iss,dψ(ej)+1
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
ACHARACTERIZATIONOFDIRACMORPHISMS3
E′⊕E′′overM,achoiceofspin-structureonanytwoofthemuniquelydeterminesaspinstructureonthethird([11]).De nition1.Asmoothmapπ:(Mm,g)→(Nn,h)betweenRie-mannianmanifoldsisahorizontallyconformalmapif,atanypointx∈M,dπxmapsthehorizontalspaceHx=(kerdπx)⊥conformallyontoTπ(x)N,i.e.dπxissurjectiveandthereexistsanumberλ(x)=0suchthat 2(πh)x =λ(x)gx .Hx×HxHx×Hx
ThefunctionλisthedilationofπandtheorthogonalcomplementofHxistheverticaldistributionVx=kerdπx.
ThemeancurvaturesofthedistributionsHandVaredenotedµHandµVandIHistheintegrabilitytensorofH.
a=1,...,m nAframe{Va,Xi }iofTMwillbecalledadaptedifVa∈V,a==1,...,n
1,...,m nand{Xi }i=1,...,nisthehorizontalliftbyπofanorthonormalframe{Xi}i=1,...,nonN.
Notethatλ≡1correspondstoRiemanniansubmersions.
Wecallthemapπ:(Mm,g1)→(Nn,h),whereg1=π h+gV,theassociatedRiemanniansubmersionofπ:(Mm,g)→(Nn,h).
Sinceageneralsubmersionπ:(Mm,g)→(Nn,h),betweenspinRiemannianmanifolds,splitsthetangentbundleTMintoH⊕V,ifHadmitsaspinstructure,sodoesVand
(1) Cl(V).Cl(M)=Cl(H)
ThespinstructuresPSpin(n)HandPSpin(m n)VinduceaspinstructurePSpin(m)MbyprolongationoftheprincipalbundlePSpin(n)×Spin(m n)M(cf.[8]).Generalpropertiesofassociatedbundlesofreducedprincipalbundles([8,Theorem3.1])togetherwithadimensioncountyieldthefollowingisomorphismsof(associated)vectorbundles
(2)S+M=SH SV
whenmisevenandnodd,and
(3)
fortheremainingcases.SM=SH SV
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
4E.LOUBEAUANDR.SLOBODEANU
Foranymapπ:M→Nintoaspinmanifold,considerthepull-backspinorbundle
π 1SN={(x,[s,ψ])∈M×SN| S([s,ψ])=π(x)},
where SistheprojectionmapofSN.
IfπisaRiemanniansubmersion,thentheisomorphismπ 1SN=SH,duetotheidenti cationoforthonormalframes,simpli es(2)and(3)into(cf.[4])
(4)S+M=π 1SN SVSM=π 1SN SV.
Remark1.WhenπisaRiemanniansubmersionwithtotallygeodesic bres,Hiscomplete,Nconnectedandthe bresareisometrictoaRiemannianmanifoldF.IfNandFarespinmanifolds,consideronMtheinducedspinstructureand,viatheisomorphismπ 1SN=SH,
(2)and(3)read(see[12])
S+M=π 1SN SF,SM=π 1SN SF.
Remark2.Ifniseven,theCli ordalgebraClnpossessesanirre-duciblecomplexmoduleSnofcomplexdimension2n/2,thecomplexspinormodule.WhenrestrictedtoCl0nthespinormoduledecomposes
+ intoSn=Sn⊕Sn,thesubmodulesofspinorsofpositiveandnegative
chirality,characterizedbytheactionofthevolumeelement,onceanorientationisgiven.Inparticular,thespingroupSpin(n) Cl0nacts
+ onSnandonSn(thespinorrepresentations).
0Ifnisodd,thenClnhastwoinequivalentirreduciblemodulesSnand
1Sn,bothofcomplexdimension2(n 1)/2(againdistinguishedbytheac-tionofthevolumeelement).WhenrestrictedtoCl0nthetwomodules
0becomeequivalentandwesimplywriteSn=Snandthespinorrepre-
sentationγ:Spin0(n)→Aut(Sn)becomesirreducible.
Ifniseven,thenSn+1pullsbacktoSnunderthealgebraisomorphismCln=Cl0n+1.Inotherwords,wecanregardSn+1asthespinorrep-resentationofCln,providedwede netheactionofClnonSn+1byv σ→e0·v·σ.
Similarly,ifnisodd,thentheactionofthevolumeformshowsthat+ 01Sn+1pullsbacktoSnwhileSn+1pullsbacktoSn.
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
ACHARACTERIZATIONOFDIRACMORPHISMS5
Whenπ:(Mn+1,g)→(Nn,h)isaRiemanniansubmersionwithone-dimensional bresintoaspinmanifoldNn,themanifoldMn+1inheritsanaturalspinstructure,cf[13].Moreover,ifniseven,thenSM=π 1SNand,whennisodd,thenS+M=π 1SN.
Theseidenti cationsjustifythefollowingde nition.
De nition2(Riemanniansubmersions).Letπ:(Mm,g)→(Nn,h)beaRiemanniansubmersionbetweenspinmanifoldsandendowtheverticalbundlewiththeinducedspinstructure(ifm=n+1,weconsideronMthenaturalspinstructureinheritedfromN).LetΨ=
[s,ψ]bea(local)spinor eldonN.Sincealocalspinframes={Xi}i=1,...,nonNliftstoanadaptedspinframeonM
s ={X
i,Va}a=1,...,m ni=1,...,n∈PSpin(n)×Z2Spin(m n)M|π 1U,
whereX iisthehorizontalliftofXiand{Va}a=1,...,m nisanorthonor-malframeofV,wede nethepull-backΨ
Ifm 1=n,thesectionΨ =[ s ofΨtobe,ψ π]ofthebundleπ 1SN,identi edwithSM,whenniseven,andwithS+M,whennisodd.
Ifm n≥2,thesectionΨ =[s ,ψ =(ψ π) α]inπ 1SN SV,αbeingasectionofSV,identi edwithS+M,whennisoddandmeven,andwithSMotherwise.
Remark3.NotethatCli ordmultiplicationwiththiskindofspinor eldsisgivenby
X ·ψ =X ·ψ;V·ψ =i
ψ π) V·α,
whenm n≥2,whereX isthehorizontalliftofthevector eldX∈Γ(TN)and
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
6E.LOUBEAUANDR.SLOBODEANU
(cf.[11])
ξγ:SM1→SM
ξγ([s,ψ])=[ξ(s),ψ],
whereξ(s)={Ei=λEi1,Va}ifs={Ei1,Va},thebundleisometryinducedbytheSpin-equivariantmap
ξ:PSpin(n)×Z2Spin(m n)M1→PSpin(n)×Z2Spin(m n)M
givenbythenaturalcorrespondencebetweenadaptedorthogonalframeswithrespecttothetwometrics:E1
i1=λ Ei,Va1=Va.
TheCli ordmultiplicationwillbegivenby
Ei·Ψ=ξγ Ei1·Ψ1 ,Va·Ψ=ξγ(Va·Ψ1),
whereΨ=ξγ Ψ1.
De nition3(Horizontallyconformalsubmersions).Letπ:(Mm,g)→(Nn,h)beahorizontallyconformalsubmersionbetweenspinmani-foldsandendowtheverticalbundlewiththeinducedspinstructure.LetΨ=[s,ψ]bea(local)spinor eldonN.Thepull-backofΨisΨ =ξγ Ψ 1,whereΨ 1isthepull-backofΨbytheassociatedRiemanniansubmersionπ:(Mm,g1)→(Nn,h)andξγthebundleisometrybetweenSM1andSM.
3.Diracmorphismswithhighdimensionalfibres
Throughoutthissectionπhas bresofdimensionatleasttwo.
De nition4.Ahorizontallyconformalsubmersionπ:(Mm,g)→(Nn,h)betweenspinmanifoldsiscalledaDiracmorphismifforanylocalharmonicspinorΨde nedonU N,suchthatπ 1(U)= andthereexistsasectionα∈Γ(SV) V-parallelinhorizontaldirectionsandwithDVα n
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
ACHARACTERIZATIONOFDIRACMORPHISMS7
We rstneedsomelemmas.
Lemma1(Chainrule).Letπ:(Mm,g)→(Nn,h)beahorizontallyconformalsubmersionofdilationλ(m n≥2)andψa(local)spinor
isthepull-backofΨbyπ,withrespecttosomesection eldonN.IfΨ
α∈Γ(SV),then
(5)Nψ =λDDMψ14 IH·ψ
+(2µ·α,H
where{Ei}i=1...,nisalocalorthonormalhorizontalframeonMand
H denotes nIH·ψi<j=1Ei·Ej·I(Ei,Ej)·ψ(thestandardactionof
vector-valued2-formsonspinor elds).
Proof.Letπbeahorizontallyconformalsubmersionofdilationλ.Let
a=1,...,m n{Xi}i=1,...,nbeanorthonormalframeon(N,h)and{Va,Xi }i=1,...,n
anorthonormaladaptedframeon(M,g1),whereg1=πh+gV.With
a=1,...,m nrespecttothemetricg,{Va,λXi }iisanorthonormaladapted=1,...,n
frame.Denoteby and 1the(spinorial)connectionscorrespondingtogandg1,andnoteEi1=Xi ,Ei=λXi .
],forthepull-backspinor eldψ =[ AsDMΨs,DMψ
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
8E.LOUBEAUANDR.SLOBODEANU
=DMψ
=i=1n i=1
1n Ei·Ei((ψ π) α) +Ei· Eiψm n a=1 Va· Vaψ(H0)+
n,m n
2
i,j,a=1
+1 Ei·g( EiEj,Va)Ej·Va·ψ(H2)
n,m n
4
i,j,a=1
+1 Va·g( VaEi,Ej)Ei·Ej·ψ(V1)
4
a,b,c=1
Notethat
1m n Va·g( VaVb,Vc)Vb·Vc·ψ(V3).Nψ=ξ(DNψ) Dγ 1 =ξγ(Xi·Xi(ψ π)+g1( Xi Xj,Xk)Xi·Xj·Xk·(ψ π)) α,
Nwhereg1( 1 Xj,Xk)=h( XXj,Xk).Xii
Thecomputationbreaksdowninto vesteps:
Step1:
Nψ (H0)+(H1)+(H3)=λDn 1
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
ACHARACTERIZATIONOFDIRACMORPHISMS9
As
(H0)+(H1)=n i=1Ei·[Ei(ψ π) α+(ψ π) Ei(α)]
+1
4
i,j,k=1
Thelasttermcanberewritten
1n j k 1Xk(λ)δi Xj(λ)δiXi·Xj·Xk·ψ2 .
and,sincegradH(λ)=λ2gradH1(λ),itbecomes
n 1
2 1,gradH1(λ)·ψ
= n 1 λgradH1(λ)·ψ
2
µV·ψ.
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
10E.LOUBEAUANDR.SLOBODEANU
Asg( VaEj,Vb)= g(Ej, VaVb)andVisintegrable
(V2)= 1
m n m n
22Va·( VaVb)H·Vb+Va·[Va,Vb]H·Vb a<b=1a>b=1m n Va·( VaVb)H·Vb 2a<b=1
Step3:
(8) µV·ψ.(V0)+(V3)=( ·ψm n ·ψ1
ψ π) Va·Va(α)+
ψ π) Va· V
Vaα.
Step4:
(9)(H2)=11
AsforStep2,wehave
(H2)=1H µ·ψ.2
2
i<j=1n Ei·Ej·IH(Ei,Ej)·ψn
H I·ψ,4
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
ACHARACTERIZATIONOFDIRACMORPHISMS11
since
(V1)=1
n,m n
4
i,j,a=1
=1 [g([Va,Ei],Ej) g( EiEj,Va)]Va·Ei·Ej·ψ2
Va(λ)(H2). Butg([Va,Ei],Ej)=g([Va,λXi ],λXj)=
m n a=1
44
4H µ·ψ 4
Summingupthese vestepsyieldsthechainrule. IH·ψ. gradV(lnλ)·ψ1 Va(lnλ)Va·ψ11 Ageneralizationof[1,Proposition2.4]tovector-valuedfunctionsyieldslocalexistenceofharmonicspinorswithprescribedvalue.Lemma2(Localexistence).Foranypointp∈Mandψ0∈SpM,thereexistsanopenneighbourhoodUofpandaharmonicspinorψ:U→SMsuchthatψ(p)=ψ0.
Theorem1(Characterizationforhorizontallyconformalsubmersions).Ahorizontallyconformalsubmersionπ:(M,g) →(N,h)betweenspinmanifoldsisaDiracmorphismifandonlyifitshorizontaldistri-butionisintegrableand
(11)(m n)µV+(n 1)gradH(lnλ)=0,
whereµVisthemeancurvatureofthe bres.
Proof.Letπbeahorizontallyconformalsubmersionwithintegrablehorizontaldistributionandsuchthat(11)issatis ed.Inthiscase,the
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
12E.LOUBEAUANDR.SLOBODEANU
Chainrule(5)simpli estoNψ+ =λDDψMn
i=1Ei·(ψ π) VEiα+(2µ·α.H
Letψbealocalharmonicspinorsuchthatthereexistsasectionα∈Γ(SV) V-parallelinhorizontaldirectionsandwithDVα n
2µH·α=0,wehave,accordingto(5)
n 0= 1
4 Xi ·Xj·(ψ π) IH(Xi ,Xj)·α.
i<j=1
PuttingX=(m n)µV+(n 1)gradH(lnλ)andVij=IH(Xi ,Xj),
(12)becomes
0= 1
4
i<j=1
ButsinceVijisvertical,XandXi ·Xj·Vijhavedi erentdegrees,
necessarilyX=0andVij=0.Therefore,ifahorizontallyconformalsubmersionisDiracmorphism,itmustsatisfyEquation(11)andhaveintegrablehorizontaldistribution. atp∈Mcanbeprescribed,theaboveequationAsthevalueofψimpliesn 0= 1Xi ·Xj·Vij.4i<j=1n Xi ·Xj·Vij·ψ.Remark5.(1)NotetheanalogybetweenEquation(11)andthe
fundamentalequationforharmonicmorphismsin[2].
(2)CompareFormula(5)with[4,(4.26)]and[12,1.1.1].
(3)Ifthe bresaretotallygeodesic,theintegrabilityofthehor-
izontaldistributionmakesthesectionα“basictransversallyharmonic”,asintroducedin[7].
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
ACHARACTERIZATIONOFDIRACMORPHISMS13
Corollary1.ARiemanniansubmersionπ:(Mm,g)→(Nn,h)be-tweenspinmanifoldsisaDiracmorphismifandonlyifits bresareminimalanditshorizontaldistributionisintegrable.
RecallthatifπisaRiemanniansubmersionthenµH=0.
Remark6.Ifthedilationfunctionλisaprojectablefunction(i.e.V(λ)=0),theconformalinvarianceoftheDiracoperator([11])allowsacorrespondencebetweenharmonicspinorsofthespacesinvolvedinthecommutativediagrambelow.
(M,λ2π h+gV)1M-(M,π h+gV)
π
?π1N 2h)(N,λ(N,h)
4.Diracmorphismswithone-dimensionalfibres
Inthissectionm=n+1.
De nition5.Ahorizontallyconformalsubmersionπ:(Mn+1,g)→(Nn,h)betweenspinmanifoldsiscalledaDiracmorphismifforanylocalharmonicspinorΨde nedonU N,suchthatπ 1(U)= and
=ξγ Ψ 1isaharmonicspinoronπ 1(U) M,wherethepullbackΨ
1isthepullbackofΨbytheassociatedRiemanniansubmersion.Ψ
Lemma3.(Chainrule).Letπ:(Mn+1,g)→(Nn,h)beahorizon-tallyconformalsubmersionofdilationλandψa(local)spinor eldonN,then
1Nψ =λDDMψ IH·ψ.(13)4
Proof.Take{Xi}i=1,...,nanorthonormalframeon(Nn,h)and{V,Ei=λXi }i=1,...,nanadaptedframeon(Mm,g).LetΨbea(local)spinor
itspullbackbyπ.Theproofissimilartotheproofof eldonNandΨ
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
14E.LOUBEAUANDR.SLOBODEANU
Lemma1,exceptthat(H0)=π),(V0)=0andtheterms(H3),(V3)donotappear. Ei·Ei(ψ
NotethatµH·ψ =i µH 2 ψ.
Theorem2.Ahorizontallyconformalsubmersionπ:(Mn+1,g)→(Nn,h)betweenspinmanifoldsisaDiracmorphismifandonlyifitshorizontaldistributionisintegrableandminimal,and
µV+(n 1)gradH(lnλ)=0,
whereµVisthemeancurvatureofthe bres.
Proof.TheargumentissimilartotheoneofTheorem1,exceptthat
X=µV+(n 1)gradH(lnλ)+nµH.
ObservethatX=0ifandonlyifµV+(n 1)gradH(lnλ)=0andµH=0,astheybelongtoorthogonaldistributions. Corollary2.ARiemanniansubmersionπ:(Mn+1,g)→(Nn,h)betweenspinmanifoldsisaDiracmorphismifandonlyifitshorizontaldistributionisintegrableandthe bresareminimal.
Remark7.SupposethatπisaRiemanniansubmersion.
(1)TheChainRule(13)givesustheformulaof[13](wherethe bresareminimal)
(14)DMΨ =D NΨ 1
4i n
X
j·AX jV·j=1
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
ACHARACTERIZATIONOFDIRACMORPHISMS15
ψ ,inaglobalspinframe(e=1ψ
theDiracoperatoronR2
02=DR=γ(e1) y2 ψ= + y2)onR2,and
representation,theDiracoperatoronRis
DR3 x13, x3},andwiththePauli=iσk x3
x1 i x1
x1= π2 x2= π2 x3= π2
Letπ:R4 →R2beaRiemanniansubmersionandψ:R2 →C2a
ofψis(ψ π) α:spinor eldon(R2, , standard).Thenthepull-backψ = xk 00 x0 x200 x2 x0 x0 x2 x20000 x0 .
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
16E.LOUBEAUANDR.SLOBODEANU
R4 →C4.Withrespectto{e
1,e2,v,w},v,w∈Kerdπ,assumingH
integrableandchoosingaframe{
x3, x1},
=ψ +ψ
ψ = ψα
ψ α
ψ+α
ψ α+++ .
Theconditionsofharmonicityandparallelismmakeα:R2→C2aharmonicspinor eldwithrespecttothevariablesx0,x1(i.e.α+isholomorphicandα anti-holomorphic).Takeaharmonicspinorψon
+R2(i.e.ψ+isaholomorphicfunction),onecandirectlycheckthatψ
isharmonic,foranyα,ifandonlyifπsatis es
π1
x1 π2 x1 π1 x3 π1 x2==0,,.
merelyintroducesadi erentsign.Again,Thesamequestionforψ
thisforcesπtobeharmonic,i.e.its bresareminimal.
Example3(Moroianu’sprojectablespinors).In[12],Moroianucon-sidersaprincipal brebundleπ:(Mm,g) →Nwithcompactstruc-turalgroupG,overacompactspinmanifold(Nn,h),suchthatπisaRiemanniansubmersionwithtotallygeodesic bresandthehorizontaldistributionHisaprincipalconnection.
Sinceitstangentspaceistrivial,Gadmitsacanonicalspinstructure,andaspinor(ψ π) αiscalledprojectableifα:G →Sm nisaconstantfunctionwithrespecttothecanonicalframeofleft-invariantvector elds.TohaveaDM-invariantnotionofprojectablespinor,itisnecessaryandsu cienttosupposeGcommutative([12])
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
ACHARACTERIZATIONOFDIRACMORPHISMS17
LetX bethehorizontalliftofavector eldXonNand,using
[V,X ]=0forV∈V,sinceHisaprincipalconnection,wehave
V
X α=X(α)+1
m
2X ,Vc)Vb·Vc·α
b<c ng( Vb=1
=X (α) 1
m n
4Va·g( VaVb,Vc)Vb·Vc·α
a,b,c=1
m
= n
Va·Va(α)+3
a=1
Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.
18E.LOUBEAUANDR.SLOBODEANU
[3]C.B¨ar,P.Gauduchon,A.Moroianu.Generalizedcylindersinsemi-
RiemannianandSpingeometry,Math.Zeit.249(2005),545–580.
[4]J.-M.Bismut,J.Cheeger.η-invariantsandtheiradiabaticlimits,J.Amer.
Math.Soc.2(1989),33–70.
[5]J.-P.Bourguignon,P.Gauduchon.Spineurs,op´erateursdeDiracetvariations
dem´etriques,Comm.Math.Phys.144(1992),581–599.
[6]B.Fuglede.HarmonicmorphismsbetweenRiemannianmanifolds,Ann.Inst.
Fourier(Grenoble),28(1978)107–144.
[7]J.F.Glazebrook,F.Kamber.TransversalDiracfamiliesinRiemannianfolia-
tions,Comm.Math.Phys.140(1991),217–240.
[8]D.Husemoller.FibreBundles,Springer-Verlag,1994.
[9]T.Ishihara.AmappingofRiemannianmanifoldswhichpreservesharmonic
functions,J.Math.KyotoUniv.,19(1979)215–229.
¨[10]C.G.J.Jacobi.UbereineL¨osungderpartiellenDi erentialgleichung (V)=0,
J.ReineAngew.Math.36(1848),113–134.
[11]wson,M.-L.Michelsohn.SpinGeometry,PrincetonUniversityPress,
1989.
[12]A.Moroianu.Op´erateurdeDiracetsubmersionsriemanniennes,Th`esede
Doctorat,EcolePolytechnique,1996.
[13]premi`erevaleurpropredel’op´erateurdeDiracsurlesvari´et´es
k¨ahl´eriennescompactes,Comm.Math.Phys.169(1995),373–384.
D´epartementdeMath´ematiques,Universit´edeBretagneOcciden-tale,6,AvenueVictorLeGorgeu,CS93837,29238BrestCedex3,France
E-mailaddress:loubeau@univ-brest.fr
FacultyofPhysics,BucharestUniversity,405Atomis¸tilorStr.,CPMg-11,RO-077125Bucharest,Romania.
E-mailaddress:radualexandru.slobodeanu@g.unibuc.ro
正在阅读:
A characterization of Dirac morphisms05-13
关于对2012届普通本科优秀毕业设计论文评选结果-郑州大学科研03-08
全国铁路机车乘务员技师资格考试复习题 - 共性规章类(有答案)06-02
防雷与接地专项施工方案 - 图文04-04
空间句法09-14
外墙抹灰技术交底18# - 图文05-24
工程测量试卷04-15
党支部书记、校长党风廉政建述责述廉报告09-27
毕业设计-密码锁PLC控制设计07-07
- 1Joint Temporal Density Measurements for Two-Photon State Characterization
- 2Dirac operator and Ising model on a compact 2D random lattice
- 3Characterization of a heat-shock-inducible hsp70 gene of the
- 4Integrated-hydroacoustic-flares-and-geomechanical-characterization-reveal-potential-hydrocarbon
- 5Critical points of 2d disordered Dirac fermions the Quantum Hall Transitions revisited
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- characterization
- morphisms
- Dirac
- 2012高考作文分析
- 实验报告:混沌同步控制与图像加密
- 90-1B磁力搅拌器和磁力搅拌器价格
- 荆各庄矿电气焊工安全技术措施
- 种子贮藏与加工复习资料
- 【2018最新】201X鸡年公司元旦晚会主持稿-word范文 (2页)
- 高一历史必修二第四课农耕时代的手工业
- 七年级美术上学期教学工作总结
- 房地产开发有限公司薪酬设计方案
- 【高层报告】2010中央经济工作会议解读:我国宏观经济形势和政策取向
- 常州市一年级上册语文汉语拼音《aoe》同步练习B卷
- Feynman motives of banana graphs
- 贵州省遵义航天高级中学2015-2016学年高二上学期第三次月考政治试卷
- 黄冈八模理综(三)答题卷
- ch01 Web开发技术概述
- 老年男性原发性高血压患者体内维生_省略_D与骨代谢指标的水平及相关性分析_马燕
- 2010全球500强中文名单及中国上榜企业名单
- 浅谈宝宝一岁到一岁半发育养育指标
- 急性腰扭伤&183;幻灯片(稿)
- 2016年上海市地方志网络知识竞赛试题库