《概率与数理统计》复习材料 - 图文

更新时间:2024-06-30 09:49:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

《概率论与数理统计》复习材料

集美大学诚毅学院 201241073056编 2014.06.02

目 录

一、随机事件 ······································································································································································ - 3 -

1、一些术语 ································································································································································ - 3 - 2、事件间的关系 ························································································································································ - 3 - 3、事件间的运算规律 ················································································································································ - 4 - 4、易混淆的语句 ························································································································································ - 4 - 5、例题 ········································································································································································ - 4 - 二、概率 ·············································································································································································· - 4 -

1、高中基础 之 阶乘、排列、组合 ························································································································ - 4 - 2、概率与频率的区别 ················································································································································ - 5 - 3、概率的性质 ···························································································································································· - 5 - 4、古典概型 ································································································································································ - 5 - 5、加法法则、条件概率、乘法法则 ························································································································ - 5 - 6、一些公式 ································································································································································ - 5 - 7、全概率定理与贝叶斯定理 ···································································································································· - 6 - 8、独立试验概型 ························································································································································ - 6 - 9、贝努里定理 ···························································································································································· - 6 - 10、例题······································································································································································ - 6 - 三、一元随机变量 ···························································································································································· - 13 -

1、表示方法:

?、?、?、X、Y、Z ··············································································································· - 13 -

2、“离散型随机变量”与非离散型随机变量中的“连续型随机变量” ··························································· - 13 - 3、例题 ······································································································································································ - 14 - 四、二元随机变量 ···························································································································································· - 17 -

1、离散型与连续型 ·················································································································································· - 17 - 2、例题 ······································································································································································ - 19 - 五、随机变量的数字特征 ················································································································································ - 25 -

1、数学期望(是确定的一个数,不是变量) ······································································································ - 25 - 2、方差 ······································································································································································ - 26 - 3、标准差 ·································································································································································· - 26 - 4、协方差 ·································································································································································· - 26 - 5、例题 ······································································································································································ - 26 - 六、几种重要的分布 ························································································································································ - 31 -

1、离散型 ·································································································································································· - 31 - 2、连续型 ·································································································································································· - 32 - 3、例题 ······································································································································································ - 34 -

- 1 -

七、大数定律与中心极限定理 ········································································································································ - 40 -

1、大数定律 ······························································································································································ - 40 - 2、中心极限定理 ······················································································································································ - 40 - 3、例题 ······································································································································································ - 42 - 八、样本分布 ···································································································································································· - 46 -

1、一些术语 ······························································································································································ - 46 - 2、样本平均数和样本方差的简算公式 ·················································································································· - 47 - 3、几个常用统计量的分布 ······································································································································ - 47 - 4、例题 ······································································································································································ - 48 - 九、参数估计 ···································································································································································· - 50 -

1、估计量 ·································································································································································· - 50 - 2、评价估计量好坏的三种最常用的标准 ·············································································································· - 50 - 3、获得估计量的方法 ·············································································································································· - 51 - 4、例题 ······································································································································································ - 53 - 十、假设检验 ···································································································································································· - 59 -

1、一些术语 ······························································································································································ - 59 - 2、用置信区间的方法进行检验的基本思想(方便理解)··················································································· - 59 - 3、两类错误 ······························································································································································ - 59 - 4、一个正态总体的假设检验 ·································································································································· - 59 - 5、例题 ······································································································································································ - 61 -

- 2 -

一、随机事件

1、一些术语 基本事件 必然事件 不可能事件 样本空间 样本点

不能分解成其它事件组合的最简单的随机事件 符号为Ω 符号为Φ 随机试验所有可能的结果组成的集合称为样本空间,记为Ω 随机试验的每个可能结果,记为? 2、事件间的关系 用A?B(事件A含于事件B) 或 B?A(事件包含 B包含事件A)表示 对于任何事件A,有Φ?A?Ω 相等 并 (和) 用A?B表示 若A?B且B?A,则A?B 用A?B 或 A?B表示 即“A和B至少有一个发生”,“A发生或B发生” 交 (积) 用AB 或 A?B表示 即“A发生且B发生” 差 互斥事件 (互不相容事件) 对立事件 用A ?B表示 即“A发生且B不发生” A ?B?AB ?A?AB 用AB ?Φ表示 若AB ?Φ,则称A、B相容 若AB?Φ且A?B?Ω,则称AB互为对立事件, 记作A?B,B?A 若事件A1,A2,?,An为两两互不相容的事件,并且 完备事件组 A1?A2???An?Ω,则称A1,A2,?,An构成一个完备事件组

- 3 -

3、事件间的运算规律

注:A?B可简写为AB 交换律 结合律 分配律 德·摩根律 (对偶律)

A?B?B?A,AB?BA (A?B)?C?A?(B?C) , (AB)C?A(BC)(A?B) C?AC?BC (AB) ?C?(A ?C)(B ?C) A?B?A B , AB?A?B 4、易混淆的语句

“都没有”与“没有都”。买三次彩票,“三次都没中”与“没有三次都中”是不一样的

5、例题

1 PPT 2 PPT 利用事件关系和运算 表达以下事件的关系:(1)A ,B ,C 都不发生;(2)A ,B ,C 不都发生 【答案】(1)A B C(或A?B?C ). (2)ABC (或A?B?C) 在图书馆中随意抽取一本书,事件A表示数学书,B表示中文书,C表示平装书,用文字叙述下列事件:①ABC,②C?B 【答案】(1)抽取的是精装中文版数学书. (2)精装书都是中文书 一批产品有合格品和废品,从中有放回地抽取三个产品,设A1,A2,A3分别表示第1,2,3次抽到废品,(1)请用文字叙述下列事件A?A1?A2?A3: ; 3 作业 B?A1 A2 A3: ; C?A1A2A3: . (2)A、B、C中 和 为对立事件. (3)请用A1,A2,A3的运算关系式表示下列事件:第一次抽到合格品: ; 只有第一次抽到合格品 ;只有一次抽到合格品 . 【答案】(1)三次至少有一次抽到废品;三次都没有抽到废品;三次至少有一次抽到合格品. (2)A和B. (3)A1 ; A1 A2 A3 ; A1 A2 A3?A1 A2 A3?A1 A2 A3

二、概率

1、高中基础 之 阶乘、排列、组合

阶乘 排列(有序) 组合(无序)

①N!=1×2×…×N(N为正整数) ②0 ! = 1 ①nm?n! An?n(n?1)(n?2)?(n?m?1) ②AnmnmmAnC ②?nm!①Cnn?m?Cn ③Cn?1 - 4 -

2、概率与频率的区别 频率 在n次重复试验中,若事件A发生了m次,则m称为事件A发生的频率 n在条件不变的情况下,重复进行n次试验,事件A发生的频率稳定地在某一A的概率,记作P(A)?p 概率 常数p附近摆动。且一般说来,n越大,摆动幅度就越小,则称常数p为事件

3、概率的性质

0≤P≤1,P(Ω)?1 , P(Φ)?0

注:不可能事件的概率为0,但概率为0的事件不一定是不可能事件; 必然事件的概率为1,但概率为1的事件不一定是必然事件。

4、古典概型

?1,?2,?,?n?(有限个样本点),且P(?1)?P(?2)???P(?n), 设试验中Ω?? 则有P(A)?

A的有利样本点集所含样本点数

Ω样本点数 5、加法法则、条件概率、乘法法则

(1) 加法法则:当事件A、B互斥(即互不相容)时,P(A+B)=P(A)+P(B)

P(AB)(B是条件)(称作“A对B的条件概率”) P(B)P(AB) ②P(B|A)?(A是条件)(称作“B对A的条件概率”)

P(A)P(B|A)?P(A) · (3) 乘法法则:P(AB)??

P(B) ·P(A|B)? (2) 条件概率:①P(A|B)?P(C|AB)?P(A) ·P(B|A) ·P(C|AB), 注:将AB视为整体,可推出P(ABC)?P(AB) · 依此类推可得P(A1 A2…An) = P(A1)·P (A2 | A1)·P(A3 | A1 A2) … P(An | A1 A2 …An-1 )

6、一些公式

(1) 概率的可列可加性:若事件A1,A2,?,An两两不相容,则 P(A1?A2???An)?P(A1)?P(A2)???P(An) (2) 完备事件组的概率:P(A1?A2???An)?1 (3) 对立事件概率和为1:P(A)+P(A)=1,P(A)=1-P(A) (4) P(B-A) = P(B)-P(AB) (草稿画图)

(5) 当A?B(或B?A)时,显然P(A)≤P(B),此时有P(B-A) = P(B)-P(A) (6) P(A+B) = P(A)+P(B)-P(AB)≤P(A)+P(B) (草稿画图)

(7) P(A+B+C) = P(A) + P(B) + P(C) + P(ABC)-P(AB)-P(AC)-P(BC)

- 5 -

7、全概率定理与贝叶斯定理

(1)全概率定理(又称全概率公式):复杂事件概率没法直接计算,将其分解为若干 个较简单事件,再结合加法法则与乘法法则,计算出复杂事件的概率。把这种思维 一般化,得到公式:P(B)?n?P(A) P(B|A)

iii?a (2)贝叶斯定理(又称贝叶斯概率):若A1,A2,?,An构成一个完备事件组,并且它 们都具有正概率,则对任何一个概率不为0的事件B,有 P(Am|B)? 8、独立试验概型

(1)独立性:若两事件A、B满足P(AB)= P(A)·P(B),则称A、B相互独立,简称 A、B独立

(2)若两事件A、B独立,则

注:非空事件独立必不互斥,互斥必不独立 9、贝努里定理

(1)独立试验序列概型:在同样条件下重复进行试验的数学模型称为独立试验序列概型 (2)贝努里试验:若某种试验只有两个结果,则称这个试验为贝努里试验 (3)n 重贝努里试验:n次独立重复的贝努里试验

(4)贝努里定理:设一次试验中事件A发生的概率为p(0<p<1),则n重贝努里试 验中,事件A恰好发生k次的概率Pn(k)?CnpkkP(Am)P(B|Am)?P(A) P(B|A)iii?an

也相互独立

qn?k (k?0,1,?,n) (q?1?p)

10、例题

1 作业 一个袋中有5个红球,3个黄球,2个白球,计算任取3个球恰为一红一黄一白的概率。 111C5C3C21P?? 【答案】所求事件概率3C104将数字1,2,3,4,5写在5张卡片上,任取三张排成三位数,求这个数为奇数的概率。 2 作业 【答案】个位数为奇数则为奇数,共有13A5?60种排法. 当这个数为奇数时,依次确定1个、十、百位的数字,则个位数有C3种情况,十位数有C4种情况,百位数有C3种情况,111C3C4C33所求事件概率P=?. 3A551两封信随机投入四个邮筒,求前两个邮筒内没有信的概率及第一个邮筒内恰有一封信的概率 3 作业 【答案】设A为前两个邮筒内没有信,B为第一个邮筒内恰有一封信,则 11C2C33C2C21,P(B)??. P(A)??42842411

- 6 -

4 已知P(A)?a,P(B)?b且AB??, 则A与B恰有一个发生的概率为: 作业 【答案】a?b 已知AB??,P(A)?P(B)?P(C)?5 作业 11,P(AC)?P(BC)?,求A,B,C均不发生的概率. 416【答案】P(ABC)?P(A?B?C)?1?P(A?B?C)?1?[P(A)?P(B)?P(C)? 6 作业 113P(ABC)?P(AB)?P(BC)?P(AC)]?1?(·3?·2)?. 4168设A,B 为随机事件,P(A)?0.7,P(B)?0.6,P(AB)?0.3, 求P(AB)和P(B?A). 【答案】?0.3?P(AB)?P(A)?P(AB)?0.7?P(AB),?P(AB)?0.4 ?(1)P(AB)?1?P(AB)?1?0.4?0.6 (2)P(B?A)?P(B)?P(AB)?0.6?0.4?0.2 11已知P(A)?,P(B)?,在下列三种情况下求P(A?B).(1)AB??, (2)A?B, 321(3)P(AB)?. 7 81151作业 【答案】(1)P(A?B)?P(A)?P(B)??? (2)P(A?B)?P(B)? 326211117P(A?B)?P(A)?P(B)?P(AB)????. (3)32824已知P(A)?0.5,P(B)?0.6,P(BA)?0.8, 则P(A?B)?8 【答案】?0.8?P(B|A)?. P(AB)P(AB)?,?P(AB)?0.4,?P(A?B)?P(A)?P(B) 作业 P(A)0.5?P(AB)?0.5?0.6?0.4?0.7 已知P(A)?0.4,P(B)?0.3 (1)当A,B互不相容时,P(A?B)?9 作业 (2)当A,B相互独立时,P(A?B)?(3)当B?A时,P(A?B)?, P(AB)?, P(AB)?, P(AB)?. ; ; 【答案】(1)画图可知0.7,0 (2)A与B相互独立,则A与B也相互独立, P(A?B)?1?P(A?B)?1?P(AB)?1?P(A)P(B)?1?(1?0.4)(1?0.3)?0.58, P(AB)?P(A)P(B)?0.12 (3)画图可知0.4,0.3 某人有一笔资金,他投入基金的概率为0.58,购买股票的概率为0.28,两项同时投资的概率为0.19,(1)已知他已投入基金,则他再购买股票的概率是多少? (2)已知他已购买股票,则他再投入基金的概率是多少? 10 作业 【答案】设A为投入基金,B为购买股票,则P(A)?0.58,P(B)?0.28,P(AB)?0.19 19P(AB)0.1919??,即已知他已投入基金,则他再购买股票的概率是. 58P(A)0.585819P(AB)0.1919??,即已知他已购买股票,则他再投入基金的概率是. (2)P(A|B)?28P(B)0.2828(1)P(B|A)?

- 7 -

人们为了解一支股票未来一定时期内价格的变化, 往往会去分析影响股票价格的基本因素, 比如利率的变化. 现假设人们经分析估计利率下调的概率为60%, 利率不变的概率为40%. 根据经验, 人们估计, 在利率下调的情况下, 该支股票价格上涨的概率为80%,而在利率不11 变的情况下, 其价格上涨的概率为40%, 求该支股票将上涨的概率. 作业 【答案】设A1为利率下调,A2为利率不变,B为股票价格上涨,则P(A1)?0.6,P(A2)?0.4, P(B|A1)?0.8,P(B|A2)?0.4,A1,A2构成一个完备事件组,且都具有正概率. 0.8?0.4·0.4?0.64 由全概率定理可知,P(B)?P(A1)P(B|A1)?P(A2)P(B|A2)?0.6·即该支股票将上涨的概率为0.64 设某一工厂有甲、乙、丙三个车间,它们生产同一种螺丝钉,每个车间的产量分别占该厂生产螺丝钉总产量的25%、35%、40%,每个车间成品中次品的螺丝钉占该车间生产量的百分比分别为5%、4%、2%,如果从全厂总产品中抽取一件产品,取得了次品,求它是乙车间生产的概率. 12 作业 【答案】设A1、A2、A3分别表示产品由甲、乙、丙车间生产,B表示产品是次品,则 P(A1)?0.25,P(A2)?0.35,P(A3)?0.4,P(B|A1)?0.05,P(B|A2)?0.04,P(B|A3)?0.02A1,A2,A3构成一个完备事件组,且都具有正概率. 由贝叶斯定理可知, P(A2|B)?P(A2)P(B|A2) P(A1)P(B|A1)?P(A2)P(B|A2)?P(A3)P(B|A3)?0.35·0.0414??4% 即它是乙车间生产的概率约为4% 0.25·0.05?0.35·0.04?0.4·0.02345箱中有可供使用的三种型号的手电筒,第一种型号的手电筒使用超过100小时的概率为0.7, 第二种型号的手电筒和第三种型号的手电筒的相应概率分别为0.4和0.3,假定箱中有20%第一种型号的手电筒、30%第二种型号的手电筒,50%第三种型号的手电筒,(1)随机取出一个手电筒使用超过100小时的概率为多少? (2)给定的手电筒使用超过100小时,则它是第j(j?1,2,3)种型号的手电筒的概率为多少? 【答案】设A1、A2、A3分别表示取出的手电筒为第一种、第二种、第三种型号,B表示取出的手电筒使用超过100小时,则P(A1)?0.2,P(A2)?0.3,P(A3)?0.5,P(B|A1)?0.7, 13 作业 P(B|A2)?0.4,P(B|A3)?0.3,A1,A2,A3构成一个完备事件组,且都具有正概率. (1)由全概率定理可知,P(B)?P(A1)P(B|A1)?P(A2)P(B|A2)?P(A3)P(B|A3) ?0.2*0.7?0.3*0.4?0.5*0.3?0.41 即随机取出一个手电筒使用超过100小时的概率为0.41 (2)由贝叶斯定理可知,P(Aj|B)?P(Aj)P(B|Aj)?P(A)P(B|A)iii?13,?P(A1|B)?0.2*0.714, ?0.4141?P(A2|B)?即给定的手电筒使用超过100小时,则它是第j(j?1,2,3)种型号的手电筒的概率分别为0.3*0.4120.5*0.315??,?P(A3|B)?. 0.41410.4141141215、、. 414141

- 8 -

某宾馆大楼有4部电梯,通过调查知道在某时刻T各电梯正在运行的概率均为0.75,求:(1)在此刻至少有1台电梯在运行的概率;(2)在此刻恰好有1半电梯在运行的概率;(3)在此刻所有电梯都在运行的概率. 【答案】这是一个4重贝努里试验,设P4(k)表示这4部电梯在此刻恰有k部在运行的概率,则P4(k)?C40.7514 kk1)?1?P4(k?0) (1?.075)4?k,(1)P4(k?1)?1?P4(k<255?0.99609375?0.996 2560?1?P4(0)?1?C40.750(1?.075)4?0?作业 即在此刻至少有1台电梯在运行的概率约为0.996 (2)P4(k2?2)?C40.752(1?.075)4?2?27?0.2109375?0.211 12881?0.31640625?0.316 256即在此刻恰好有1半电梯在运行的概率约为0.211 444?4?(3)P4(k?4)?C40.75(1?.075)即在此刻所有电梯都在运行的概率约为0.316 假若每个人血清中含有肝炎病毒的概率为0.4%,混合100人的血清,求此血清中含有肝炎病毒的概率. 15 【答案】这是一个100重贝努里试验,设P100(k)表示100人中恰有k人的血清含有肝炎kk作业 病毒的概率,则P100(k)?C1000.004(1?0.004)100?k,只有当k=0时此血清才不含有肝炎00病毒,所以此血清中含有肝炎病毒的概率为:1?P100(0)?1?C1000.004 ?0.330217将一枚硬币抛掷三次,(1)设事件(1?0.004)100?0 A1为“恰有一次出现正面”,求P(AA21);(2)设事件为“至少有一次出现正面”,求P(A2). 11,每次出现反面概率都是,“恰有一次出现正2216 1111111113 · ? · · ? · · ? PPT 面”即可能“正反反、反正反、反反正,”所以P(A1)? ·2222222228【答案】(1)因为每次出现正面概率都是(2)与“至少有一次出现正面”相反的是“出现的都是反面”,所以P(A2)?1?P(A2)? 11171? · · ?. 2228 17 PPT

- 9 -

【答案】(1)有放回抽样: (2)不放回抽样: 18 PPT 【答案】 19 PPT 【答案】

- 10 -

【答案】 20 PPT 21 PPT 【答案】 一个袋内装有大小相同的7个球,其中4个白球3个红球,从中一次抽3个,求至少有两22 PPT 个是白球的概率. 【答案】设Ai={抽到的3个球中有i个是白球}(i?(2,3)),显然A2与A3互不相容,且 根据加法法则,所求概率为1/4,23 求A、B、C至少有一个发生的概率. PPT 【答案】=1/8. 24 PPT 10件产品中有7件正品,3件次品,7件正品中有3件一等品,4件二等品. 现从这10件中任取一件,记A={取到一等品},B={取到正品}. 求P(B),P(AB),P(A|B). 【答案】P(B )=7/10,P(AB)=P(A)= 3/10,P(A|B)=P(AB)/P(B )=3/7. 给定甲乙两城市,设A={甲市下雨},B={乙市下雨}.已知 求注: = 1-P(B|A)=1-P(AB)/P(A)=1-0.12/0.2=0.4 25 PPT 【答案】设某种动物由出生算起活到20年以上的概率为0.8,活到25年以上的概率为0.4. 问现年26 20岁的这种动物,它能活到25岁以上的概率是多少? P(B)=0.4=P(AB). P(B|A)=P(AB)/P(A)=0.4/0.8=0.5即它能活到25岁以上的概率是0.5

PPT 【答案】设A={能活20年以上},B={能活25年以上},所求为 P(B|A) .依题意,P(A)=0.8, - 11 -

设袋中有5个红球,3个黑球,2个白球,现在从中不放回地摸球三次,每次摸得一球,求27 PPT 第三次才摸得白球的概率. 【答案】设A={第一次未摸得白球},B={第二次未摸得白球},C={第三次摸得白球}.则事件“第三次才摸得白球”可表示为ABC.P(A)=8/10, P(B|A)=7/9, P(C|AB)=2/8, P(ABC)=P(A)P(B|A)P(C|AB)=7/45. 即求第三次才摸得白球的概率为7/45 市场上供应的灯泡中,70%来自甲厂,30%来自乙厂,已知甲乙两厂产品的合格率分别是95%和80%。(1) 求市场上灯泡的次品率;(2)假如现在从市场上抽出1个次品,试判断它是由甲厂生产的概率。 【答案】设A1)?0.7,P(A2)?0.3, 1,A2分别表示甲乙两厂的产品,B表示产品为次品,则P(AP(B|A1)?0.05,P(B|A2)?0.2,A1,A2构成一个完备事件组,且都具有正概率. PPT (1)由全概率定理可知,P(B)?P(A1)P(B|A1)?P(A2)P(B|A2)?0.7·0.05?0.3·0.2?0.095 即市场上灯泡的次品率为0.095 (2)由贝叶斯定理可知,P(A|B)?10.7·0.057 即它是由甲厂生产的概率为7. ?0.7·0.05?0.3·0.2191928 P(A1)P(B|A1)?P(A)P(B|A)iii?12 ?某一地区患有癌症的人占0.005,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.04,现抽查了一个人,试验反应是阳性,问此人是癌症患者29 PPT 的概率有多大? 【答案】设 C={抽查的人患有癌症},A={试验结果是阳性},则C表示“抽查的人不患癌症”.已知 P(C)=0.005,P(C)=0.995, P(A|C)=0.95, P(A|C)=0.04 即此人是癌症患者的概率为0.1066 从一副不含大小王的扑克牌中任取一张,记 A={抽到K}, B={抽到的牌是黑色的},问事件30 A、B是否独立? 【答案】由于P(A)=4/52, P(B)=26/52, P(AB)=2/52. 可见P(AB)=P(A)P(B),故事件A、B独立.(在实际应用中, 往往根据问题的实际意义去判断两事件是否独立) 下面是一个串并联电路示意图. A、B、C、D、E、F、G、H 都是电路中的元件. 它们下方的数是它们各自正常工作的概率. 求电路正常工作的概率. 31 解 将电路正常工作记为W,由于各元件独立工作,有 ,,代入得P(W)≈0.782 ,

- 12 -

三、一元随机变量

1、表示方法:?、?、?、X、Y、Z

2、“离散型随机变量”与非离散型随机变量中的“连续型随机变量” 概念 一元离散型随机变量 取的值一一列出的随机变量 一元连续型随机变量 值一一列出的随机变量 概率密度函数?(x),记作X~?(x) x可以按一定次序把随机变量可能不可以按一定次序把随机变量可能取的F(x)???(x)dx?P(X?x) ??性质: 分布律/概率密度函数 分布律 ①?(x)≥0(判定一个函数f(x)是否为某随机变量X的概率密度的充要条件) ②??X x1 x2 … xn P p1 p2 … pn ???③P?x1<X?x2??F(x2)?F(x1) ???(x)dx x1x2?(x)dx?1 P?X?xk??pk,k?1,2,? (利用概率密度可确定随机点落在 某个区间内的概率) F?(x)??(x) ④若?(x)在点x处连续,则有 设X是一个随机变量,称F(x)?P(X?x)(??<x<??)为X的分布函数,记作F(x). 如果将X看作数轴上随机点的坐标,那么分布函数 F(x)的值就表示X落在区间(??,x]内的概率. 注:①X是随机变量, x是参变量. ②F(x)是随机变量X取值不大于x的概率.③对任意实数x1<x2,随机点落在区间(x1,x2]内的概率为: 分布函数 P(x1<X?x2)?P(X?x2)?P(X?x1)?F(x2)?F(x1) (共同点) 因此,只要知道了随机变量X的分布函数,它落在某区间内的概率就可以得到全面的描述. 分布函数性质:①0?F(x)?1;②F(x)在(??,??)上是一个不减函数,由此可推出F(x2)?F(x1)?0);③F(??)?limF(x)?0,F(??)?limF(x)?1; x? ??x? ??④F(x)右连续,即lim?F(x)?F(x0)(这四个性质是鉴别一个函数是否是x?x0某随机变量的分布函数的充分必要条件)

- 13 -

①分布函数不连续 其间断点上是右连续的 ①分布函数在R上连续 值a的概率均为0,即P(X?a)?0 ②F(x)最多有可列个间断点,并且在②连续型随机变量取任一指定实数③P(X?x)?P(X?x)?P(X<x) 分布函数 ?F(x)?F(x?0)(不同点) ④P(x1<X<x2)?P(X<x)?P(X?x)?P(X?x) ?P(X?x)?0 ?P(X?x)?F(x) ?P(X?x2)?P(X?x2)?P(X?x1)③P(a?X?b)?P(a<X?b) ?F(x2)?[F(x2)?F(x2?0)]?F(x1) ?P(a?X<b)?P(a<X<b) ?F(x2?0)?F(x1) 即取值落在某区间的概率与端点

无关 3、例题 1357已知离散型随机变量X的可能取值为?2,0,2,5相应的概率依次为,, ,,a2a4a8a试求 (1)a; (2) 概率P{X?2X?0} 1 作业 【答案】由概率的性质知,a?0且P(X?2| X?0)?P(X?2且X?0)P(X?0)371357. ????1,解得a?8a2a4a8a?22 29x??1?0,?a,?1?x?11??设离散型随机变量X的分布函数为F(x)??2,且P{X?2}?,试确定常2?3?a,1?x?2?x?2??a?b,数a,b,并求X的分布律。 【答案】2?P(X?2)?P(X?2)?P(X<2)?F(2)?F(2?0)?(a?b)?(3?a) ① a?b?1 ②12?0 ,x<?1?12 ?, ?1?x<11115作业 由①②得a?,b?. 可得?6. P(X??1)?F(?1)?F(?1?0)??0?, F(x)??6666?1 , 1?x<2?2?1,x?2?P(X?1)?F(1)?F(1?0)?1111,P(X?2)?1?F(?1)?F(1)?. ??2263X的分布律为: X -1 1 2 P 1/6 1/3 1/2

- 14 -

1?2(1?),1?x?2?设随机变量?的概率密度为f(x)??,求?的分布函数。 x2?0,其他?3 作业 【答案】F(x)??x??11?0 , x<?0 , x<?x?12??f(x)dx???2(1?2) dx , 1?x<2 ??2x??4 , 1?x<2 1xx?????1 , x?2?1 , x?2????Acosx,??x?22, 设随机变量X的概率密度函数为f(x)???其他?0,?试求(1)系数A;(2)X的分布函数;(3)P{0?X?}.4 【答案】(1)F(x)??f(x) dx??Acosx dx?Asinx????4 作业 ? 2?? 2? 2?? 2?2A?1 ?A?1 2(2) F(x)??x??????0 , x<? 0 , x<? ??22??????? x1?sinx?1f(x) dx????cosx dx , ? ?x< ?? , ? ?x< ? 2222?22?2????1 , x??1 , x??2?2?2(3)P(0<X?)?F()?F(0)? 444一批产品的废品率为3%,从中任意抽取一个进行检验,请用随机变量X来描述废品出现的情况,即写出X的分布律。 5 PPT 【答案】用X表示废品的个数,显然它服从0-1分布,其概率函数为P{X=0}=97%, P{X=1}=3%,即X的分布律为 X 0 1 3% ??P 97% 某射手连续向一目标射击,直到命中为止,已知他每发命中的概率是p,求所需射击发数X的分布律. 6 PPT ,【答案】显然,X可能取的值是1,2,…,为计算P{X =k },k = 1,2, …, 可见所求所需射击发数X的分布律为:

- 15 -

7 ?sinx , 0?x??设有函数F(x)??,试说明F(x)能否是某个随机变量的分布函数. 0 ,其他?PPT 【答案】函数F(x)在区间 [函数. 8 PPT 判断函数F(x)??2,?] 递减,不满足“不减函数”的性质,故F(x)不能是分布1arctanx?是不是随机变量的分布函数? 2?【答案】是,符合分布函数的性质。 在区间 [4,10] 上任意抛一个质点,用X表示这个质点与原点的距离,则X是一个随机变量。若这个质点落在 [4,10] 上任一 子区间内的概率与这个区间长度成正比,求X的分布函数。 【答案】X只可取 [4,10] 上的一切实数,故P(4?X?10)?1 9 PPT 故??1/6 设随机变量X具有的概率密度如下, 【答案】(1) 10 PPT (2) (3)

- 16 -

设随机变量X的分布函数为 11 PPT 【答案】 设随机变量X的概率密度为12 PPT 【答案】

四、二元随机变量

1、离散型与连续型

二元离散型随机变量 ①F(x,y)是关于变量x和y的不减函数 ②0≤F(x,y)≤1,且对任意固定的y∈R,F(??,y)?0,对任意固定的x∈R,F(x,??)?0,F(??,??)?0,F(??,??)?1 共同点 二元连续型随机变量

- 17 -

(1)联合分布(律) (也叫联合概率分布) 步骤:①确定随机变量(X,Y)的所有取值数对。②计算取每个数值对的概率。③列出表格。 ②(1)联合概率密度f(x,y) f(s,t)dtds F(x,y)?? 性质: ①x?????yf(x,y)≥0 性质:①pij?0,(i,j?1,2,?) ②??pij??R2????????f(x,y)dxdy?1 ij?1 也可以写成 例如: 联合分布 边缘分布 条件分布 / X Y 0 1 1 0.1 0.25 2 0.1 0 3 0.3 0.25 ??f(x,y)dxdy?1 bac③P(a<??b,c<??d)???df(x,y)dydx (2)边缘概率密度 ①二元随机变量(X,Y)中关于X的 边缘概率密度:??联合概率密度 (2)边缘分布(律) 边缘概率密度 例如: 边缘分布函数 X Y 0 1 1 0.1 0.25 2 0.1 0 3 0.3 0.25 P(X=i) 0.5 0.5 1 fX(x)??f(x,y)dy ??②二元随机变量(X,Y)中关于Y的 边缘概率密度: (3)边缘分布函数(对应边缘概率密度) ①FX(x)? xfY(y)??f(x,y)dx ????P(X=j) 0.35 0.1 0.55 (3)条件分布 用条件概率公式计算 例如: ????fX(x)dx fY(y)dy (??<X?x,??<Y???) y??②FY(y)?P(X?1,Y?2) (??<X???,??<Y?y) P(X?1|Y?2)? P(X?1)P(Y?2)随机变量的

- 18 -

相互独立性 ?P(X?x,Y?y)?P(X?x)?P(Y?y)?X和Y相互独立??联合分布函数F(x,y)?FX(x)?FY(y) ?f(x,y)?f(x)?f(y)XY? 分布律:X→Y 概率密度:X→Y 2、例题

通过研究两个有联系的随机变量的关系,由已知的随机变量的分布律求出另一个随机变量的分布律,或 由已知的随机变量的概率密度求出另一个随机变量的概率密度 设随机变量?X,Y?的联合分布如下表,则(1)a,b应满足 ;(2)若X,Y互相独立, 则a,b应满足 . 1 作业 Y X 1 2 1 1/6 1/3 2 1/9 3 1/18 a b 【答案】(1)a+b=1/3,a≥0,b≥0 (2)a=2/9,b=1/9(任取一个(x,y)组合得到等式) 把两个白球随机的放入红、蓝、黄、绿四个盒子,四个盒子依次标有数字1~4,?i表 示第i个盒子内球的数目?i?1,2,3,4?,求(1)??1,?2?的联合分布律和边缘分布律; (2)P??2?1?1?1?;(3)P??1??2?;(4)红蓝两个盒子内球的数目之和?1??2的分布律. (5)?1,?2是否独立,为什么? 【答案】(1)?1 ?1 ?2 2 作业 0 1 2 P(?20 1/4 1/4 1/16 1 2 P(?1?i) 1/4 1/16 1/8 0 0 0 9/16 3/8 1/16 ?j) 9/16 3/8 1/16 1 P(?2?1,?1?1)1/81P(??1|??1)??? (2)21P(?1?1)3/83(3)P(?1(4) ??2)?1/4?1/8?3/8 0 1/4 1 1/2 2 1/4 ?1??2 P

- 19 -

1?9?1P(??0,??0)?,而P(??0)P(??0)?(5)?1、?2不独立,因为??? 12124?16?4?cx2y二维随机变量(?,?)的联合概率密度为f(x,y)???03 作业 【答案】2x2?y?1其它1?1,求常数c. ??R2f(x,y) dxdy?1 ?1??dx?2cxydy?c?x2?1x112121yy?x2dx 2?c?126421(x-x)dx?c ?c? ?122141?6e?2xe?3yx,y?0设(?,?)的联合概率密度为f(x,y)??求(?,?)的边缘密度函数, ,其它?0并判断?,?是否独立. 4 作业 【答案】当x?0时,f(x,y),f?(x)?????0?????f(x,y)dy?0 当x>0时,f?(x)??f(x,y)dy??6e?2xe?3ydy?2e?2x ???2e?2x, x>0?3e?3y, y>0 同理可得,f?(y)??f(x,y)dx?? ?f?(x)????0 , x?00 , y?0????5 作业 ?210?y?2?x?xy0?x?1,设求P?X?Y?1?. (X,Y)?f(x,y)??3,?0其它?【答案】P(X?Y?1)?1?P(X?Y<1)?1???f(x,y)dxdy X?Y<11765xy)dy?1?? 0037272测量一圆形物件的半径为R,其分布如右表,求圆周长?与面积?的分布. ?1??dx?R P 6 作业 11?x(x2?10 0.1 11 0.4 12 0.3 13 0.2 【答案】?=2πR,?=πR2 ? ? P 20π 22π 24π 144 0.3 26π 169π 0.2 100π 121π 0.1 0.4 设随机变量X的分布密度函数为f(x)??7 2(2)Z?X的密度函数. ?2x0?x?1,求(1)Y??2X?1的密度函数;, 0其它?作业 【答案】(1) FY(x)?P(Y?x)?P(?2X?1?x)?P(X?1?x1?x1?x)?1?P(X<)?1?FX() 222

- 20 -

1?x?1?x?1?x,0<<1?,?1<x<111?x?f(x)?f()??2?2?2两边同时对x求导,得Y X22???0,其它?0,其它22(2)FZ(x)?P(Z?x)?P(X?x) 当x?0时,P(X?x)?0. 当x>0时,FZ(x)?P(?x?X?x)?P(X?x)?P(X??x)?P(X?x)?FX(x). ?1,0<x<1?1,0<x<11fX(x)??两边同时对x求导,得fZ(x)?. 综上,得fZ(x)?? 2x?0,其它?0,x?1同一品种的5个产品中,有3个正品。每次从中抽取1个检验质量,不放回地抽取2次。记与联合边缘分布律 8 PPT 【答案】 X1 X2 0 1 0 0.1 0.3 1 0.3 0.3 X1 X2 0 1 P(X2=j) 0 0.1 0.3 0.4 1 0.3 0.3 0.6 P(X1=i) 0.4 0.6 1 将两封信随机地往编号为1,2,3,4的四个邮筒内投设Xi表示第i个邮筒内信的数目,i=1,2,写出(X1,X2)的联合与边缘分布律及在X1=1 条件下关于X2的条件分布。 【答案】(X1,X2)分布律如下表 9 PPT (X1,X2)在X1=1条件下关于X2的条件分布为: 设(X,Y)的概率密度是 10 PPT 【答案】(1)

- 21 -

(2) 【答案】(1) 11 PPT (2)

- 22 -

【答案】 (1) (2) 12 PPT

- 23 -

【答案】 13 PPT 【答案】(1) 14 PPT (2) 一个仪器的长度由两个主要部件构成, 其总长度为此二部件之和, 这两个部件的长度x 和h 15 PPT 为两个相互独立的随机变量, 其分布律如下二表所示. 求此仪器长度的分布律.

- 24 -

【答案】 【答案】 16 PPT 【答案】 17 PPT

五、随机变量的数字特征

1、数学期望(是确定的一个数,不是变量) 数学期望(实际意义为加权平均) (1)E(c)?c(c为常量) 数学期望的性质 (2)E(X?c)?EX?c(c为常量) (3)E(cX)?cEX(c为常量) (4)随机变量线性函数的数学期望等于这个随机变量期望的同一线

一元离散型随机变量 一元连续型随机变量 EX??????xf(x)dx f(x)是概率密度函数 - 25 -

23 PPT 【答案】

六、几种重要的分布

1、离散型

内容 (1)定义:若随机变量X有概率函数:kkn?kP(X?k)?Cnpq(k?0,1,?)(0<p<1) (q?1?p), 则称X 服从参数为n和p的二项分布,记作X~B(n,p) ① 二项分布 ? np?p 和 np?p-1 , ?(2)二项分布的最可能值k0?? 当np?p是整数时;? [np?p] , 其它? [np?p]指不超过np?p的最大整数 (3)伯努利试验和二项分布的关系:二项分布描述的是n重伯努利试验中 事件A出现的次数X的分布律. (4)EX?np,DX?npq (1)定义:设随机变量X所有可能取的值为0,1,2?,且概率分布为: ② 普哇松分布 也叫 P?(m)?P(X?m)??mm!e?? (m?0,1,2?) (?为常数且>0), 则称X服从参数为?的普哇松分布,记作X~P(?) 或X~P?(k) (2)当n较大,p很小时,可用泊松分布近似代替二项分布,其中?? np. 泊松分布 (3)常见于所谓稠密性的问题中, 如一段时间内, 电话用户对电话台的呼唤 次数, 候车的旅客数, 原子放射粒子数, 织机上断头的次数等. (4)EX??,DX?? (1)定义:N个元素分为两类, 有N1个元素属于第一类, N2个元素属于第二 类(N1+N2=N).从中按不重复抽样取n个, 令X表示这n个中第一(或二) ③ 超几何分布 类元素的个数, 则X的分布称为超几何分布,记作X~H(n,M,N),其概率 函数为: mn?mCNCN21P(X?m)?CnN(m?0,1,?n) (0<p<1,q?1?p) (N1?N2?N) (2)当N→∞时,超几何分布以二项分布为极限;当N很大而n相对于N比较

- 31 -

小时,可用二项分布公式近似计算,其中p?(3)EX?n?N1 NN1N1N2N?nDX???, NNNN?1?1,a?x?b?(1)定义:若随机变量X的概率密度为?(x)??b?a, ??0,其它 则称X在区间[a,b]上服从均匀分布,记作X~U(a,b) dd1P(c<X?d)??(x)dx?(2)对于区间(c,d),有?c?cb?adx ④ 均匀分布 ? d?c (a?c<d?b) b?a(3)X的分布函数为: ?0,x<a?x?a x?F(x)?P(X?x)??(x)dx ?,a?x<b ? ? -??b?a??1,x?b(b-a)a?b(4)EX?,DX? 122⑤ 两点分布 ⑥ 0-1分布

2只有两个可能取值的随机变量所服从的分布,其概率函数为: P(X?k)?pkq1?k (k?0,1) (0<p<1) (q?1?p) 只可能取0与1 两个值的随机变量X所服从的分布,其概率函数为: P(X?k)?pkq1?k (k?0,1)1??0?? 或 X~? ?1?pp(0<p<1) (q?1?p)??2、连续型 ① 指数分布 内容 ??e??x,x>0(?>0), (1)定义:若随机变量X的概率密度为?(x)??0,其它? 则称X服从参数为?的指数分布,记作X:E(?) (2)易知:

- 32 -

①??????(x)dx???e0????x ③P(a<X<b)?(3)常用于使用寿命类问题,如随机服务系统中的服务时间, 某些消耗性产品(电子元件等)的寿命等等 (4)EX??ba?e??xdx (0?a<b) ?1?e??x, x?0dx?1 ②F(x)?? 0 , x?0?1?,DX?1?2 (1)定义:若随机变量X的概率密度为?(x)?12?? 2 e(x??)2? 2?2 2② 正态分布 (?,?为常数,?>0),则称X服从正态分布,记作X~N(?,?) (2)图像:?决定了图形的中心位置,?决定了图形中峰的陡峭程度,越小越集中越陡峭. (3)它的线性函数kX?b (k?0)仍然服从正态分布 2(4)EX??,DX?? (1)定义:在随机变量X服从正态分布的基础上,当??0,??1时, 有?0(x)?(2)?0(x)的图像性质:①?0(x)的图形关于y轴对称 ②lim?0(x)?0 ③?0(x)在x??1处有两个拐点 (3)标准正态分布概率密度函数和分布函数的图像 x??x? 1 e2,此时2π 2X服从标准正态分布X~N(0,1) 注:x轴为密度函数?0(x)的水平渐近线 ③ (4)一般正态分布与标准正态分布的关系: 标准正态分布 ①Φ(x)?Φ0 (X?u)(分布函数) ②?(x)?1 ?0 (X?u)(概率密度函数) ③任何一个一般的正态分布都可以通过线性变换转化为标准正态分布 2X?? ④已知X~N(?,?),令??,则? ~ N(0,1) ?(4)计算公式: ??? x>0?Φ0(x) ,?P(X?x)? x?0 ?0.5 , ①若X~N(0,1),则 ?1?Φ(?x) ,x<00? P(X?x)?2Φ0(x)?1(当x>0时); P(a<X?b)?Φ0(b)?Φ0(a);

- 33 -

当x≥5时,Φ0(x)?1;当x≤-5时,Φ0(x)?0 2 ②若X~N(?,?),则??X???~N(0,1) (5)EX???0,DX???1 2 (1)定义:若n个相互独立的随机变量?1,?2,??n均服从标准正态分布,则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布④ 卡方分布 规律称为?分布,记作?~?(n) (2)若X1??2(n1),X2??2(n2),X1,X2相互独立,则X1?X2~?(n1?n2) (3)n??时,?(n)~N(n,2n) 2近似地222(4)E?

?n,D??2n B(n,p),EX?12,DX?8,n? 3、例题

1 已知随机变量X,p?. 作业 【答案】36,1/3 设X服从参数为?的泊松分布,已知P(X?2)?P(X?3),P(X?4)?a?P(X?0)则2 a?. 作业 【答案】由泊松分布的定义知,P(X<4)?P(X?0)?P(X?1)?P(X?2)?P(X?3) 代入公式可以得出a?13 3 设随机变量XN(2,4),则D(2X?5)?. 作业 【答案】D(2X?5)?D(2X)?22DX?22?2?22·4?16 设随机变量XN(?,?2), (1)P(a?X?b)?4 作业 (2) Y?aX?b2. ,Z?X???. x?4x?4?1(3) 若X概率密度为?(x)?,?2??e6,(???x???),则??6??b????a????Φ【答案】(1)Φ0??? (2)N(a??b,a2?2) (3)2,3 0???????.

- 34 -

5 作业 设随机变量XN(?1,?2),且P(?3?X??1)?0.4,则P(X?1)?. 【答案】画图可知,P(?1?X?1)?P(?3?X??1)?0.4,P(X?1)?P(??3)?(1?0.4?0.4)/2?0.1 若每次射击中靶的概率为0.7,求射击10炮,至少命中3炮的概率;最可能命中几炮? 【答案】(1)设命中X炮,则X~B(10,0.7),P(X即至少命中3炮的概率为0.99841 k?k)?C100.7k0.310?k,k?0,1,?10 6 作业 P(X?3)?1?P(X<3)?1?P(X?0)?P(X?1)?P(X?2)?0.99841 (2)?np?p?7.7,?最可能命中7炮 k3?kC13C39(k?0,1,2,3) 作业 【答案】设红桃张数为X,则P(X?k)?3C527 从一副不含大小王的扑克牌(52张)中发出3张,求其中红桃张数的概率分布. 电话交换台每分钟的平均呼唤次数为4,假定呼唤次数服从泊松分布,求:(1)每分钟恰有6次呼唤的概率;(2)每分钟呼唤次数不超过10次的概率. 4k?4e 【答案】设每分钟的呼唤次数为X,则X~P(?). 4?EX???P(X?k)?k!作业 (k?0,1,2,?). (1)P(X?6)?0.104196 (查表) (2)P(X?10)?1?P(X>10) 8 ?1?(0.001925?0.000642?0.000197)?0.9972(查表) 已知某电子管的寿命X(小时)服从指数分布,如果它的平均寿命EX?1000小时, 求X的概率密度,并计算这只电子管能使用1200小时以上的概率. 9 作业 ??e??x,x>0?0.001e?0.001x,x>0??【答案】1000?EX????0.001??(x)?? ?0,其它0,其它??1?1?e?0.001x,x>0?F(x)???(x)dx???P(X>1200)?1?P(X?1200) ???0,其它x1200?1?F(1200)?1?(1?e?0.001·)?e?1.2 2设?服从[1,6]上的均匀分布,求使方程x??x?1?0有实根的概率. ?11?x?6?,2210 【答案】ξ~U(1,6)?f(x)??5. 要使x?ξx?1?0,则??ξ?4?0 ?作业 ?0,其它?ξ?4?P(??4)?1?P(?<4)?1?P(?2<?<2)?1??设X11 2222114dx? 55N(0,1),求P(?1?X?3),P(0?X?5),P(X?3). 【答案】u?0,??1?1?(1)P(?1?X?3)??0(3)??0(?1)??0(3)?[1??0(1)] (3)P(X<3)?2?0(3)?1?2·0.99865?1?0.9973 作业 ?0.99865?1?0.8413?0.83995 (2)P(?0?X?5)??0(5)??0(0)?1?0.5?0.5

- 35 -

设XN(3,4),求P(2?X?3),P(?4?X?10),P(X?2),P(X?3). 【答案】X?32?3X?33?3~N(0,1)?(1)P(2<X<3)?P(<<) 222211??0(0)??0(?)??0(0)?[1??0(?)]?0.5?1?0.6915?0.1915 2212 ?4?3X?310?377<<)??0()??0(?)???0.9995348 (2)P(?4?X?10)?P(作业 22222?2?32?3?X?) (3)P(X>2)?1?P(X?2)?1?P(?2?X?2)?1?P(221515?1?[?0(?)??0(?)]??0()??0()?1?0.6915?0.99379?0.69771 2222X?33?3?)?1??0(0)?1?0.5?0.5 (4)P(X>3)?1?P(X?3)?1?P(22X~N(3,4)?设某校一年级学生期末数学考试的成绩近似服从正态分布,且全体学生的数学平均成绩为72分,又有2.3%的学生成绩在96分以上,试估计数学成绩在60分至84分之间的学生比例. 22【答案】设数学成绩为X,则X~N(?,?). ?72?EX??,?X~N(72,?) 13 作业 ?2.3%?P(X>96)?1?P(X?96)?1?P(X?72??96?72?)?1??0(24?) ??0(60?7284?722424?X?) )?97.7%,查表得?2,???12?P(60?X?84)?P(1212??60?7284?72?P(?X?)??0(1)??0(?1)?2?0(1)?1?2·0.8413?1?0.6826 1212已知100个产品中有5个次品,现从中有放回地抽取3次,每次任取1个,求所取的3个14 PPT 产品中恰有2个次品的概率. 【答案】这是一个3重伯努利试验. 依题意,每次试验取到次品的概率为0.05.设X为所取的3个产品中的次品数,则X ~ B(3, 0.05),故所求概率为: 10部机器各自独立工作, 因修理调整的原因, 每部机器停车的概率为0.2. 求同时停车数目X 的分布. 15 PPT 【答案】X~B(10,0.2), 计算得X的概率分布为 16 PPT 一批产品的废品率 p = 0.03, 进行20次有放回重复抽样,求出现废品的频率为0.1的概率. 【答案】令X 表示20次重复抽取中废品出现的次数, 则 X~B(20, 0.03), 故所求概率为

- 36 -

设在独立重复实验中,每次实验成功概率为0.5,问需要进行多少次实验,才能使至少成功17 一次的概率不小于0.9 PPT 【答案】 某批产品有80%的一等品, 对它们进行有放回地重复抽样检验, 共取出4个样品, 求其中一等品数?的最可能值k0, 并用伯努利公式验证. 18 PPT 【答案】?~B(4, 0.8), 因np+p=4是整数, 所以k0=4和k0=3时P{?=k}为最大, 即3和4为最可能值.用伯努利公式计算可得 故经验证3和4确实为最可能值。 19 望,方差和最可能值. 某工厂每天用水量保持正常的概率为0.8, 求最近一个星期内用水量正常的天数X的数学期PPT 【答案】X~B(7,0.8), 因此 20 PPT 【答案】 某班有学生20名, 其中有5名女同学, 今从班上任选4名学生去参观展览, 被选到的女同学数?是一个随机变量, 求?的分布. 【答案】 21 PPT 一大批种子的发芽率为90%, 今从中任取10粒, 求播种后, (1)恰有8粒发芽的概率; (2)不22 少于8粒发芽的概率. 这是一个N很大, n相对很小的超几何分布问题,可用二项分布近似计算,取n =10, p =90%,

PPT 【答案】设10粒种子中发芽的数目为随机变量X. 因10粒种子是由一大批种子中抽取的, - 37 -

q =10%, k=8,则 一大批产品的废品率p=0.015,求任取100个产品恰有一个废品的概率。 23 PPT 【答案】100个产品中废品数X服从超几何分布,但由于产品总量远远大于抽取量,故 ∵当n较大,且p很小,∴可用泊松分布近似代替二项分布,其中?? np=100*0.015=1.5 故 24 PPT 【答案】 一家商店采用科学管理,由该商店过去的销售记录知道,甲商品每月的销售数可以用参数 λ=5的泊松分布来描述,为了以95%以上的把握保证不脱销,问商店在月底至少应进甲商品多少件? 【答案】25 PPT 26 PPT 【答案】 27 PPT 【答案】

- 38 -

28 PPT 【答案】 29 PPT 【答案】 【答案】 30 PPT 【答案】 31 PPT 32 PPT 【答案】

- 39 -

,,1,2 33 PPT 【答案】

七、大数定律与中心极限定理

1、大数定律

在相同条件下对某一个随机变量进行反复地试验, 计划试验n次, 就试验方案而言, 这 样的试验将产生出相互独立且同样分布的n个随机变量?1,?2,?,?n则称?n?

?1??2????n

m1n???i为这n个随机变量的算术平均值,它仍然是随机变量.虽然n个随机变量的算 ni?1 术平均值仍然是随机变量, 人们相信当试验次数n无限增大的时候, 此随机变量将趋向 于常数, 即数学期望, 这就是大数定律.

2、中心极限定理

(1)概念:“和的分布收敛于正态分布”这一类定理称为中心极限定理 (2)独立同分布下的中心极限定理、拉普拉斯定理、李雅普诺夫定理

设随机变量X1,X2,?,Xn相互独立,服从同一分布,且具有数学期望和方差:E(Xk)?a,D(Xk)?b (k?1,2,?),则随机变量之和X?① 独立、同分布 下的 中心极限定理 nb?Xk?1nk,且EX?na,DX?nb,DX?nb,X的标准化变量Y?X?na的分布函数Fn(x)对于任意x满足limFn(x)?Φ0(x). n??定理表明,独立同分布的随机变量之和X?近似地?Xk?1nk,当n充分大时,随机变量近似地之和与其标准化变量分别有X~N(EX,DX)?N(na,nb);X?EX~N(0,1) DX

- 40 -

本文来源:https://www.bwwdw.com/article/acu3.html

Top