结晶器振动装置设计毕业设计说明书

更新时间:2024-06-03 17:19:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

毕业设计说明书

结晶器振动装置设计

毕业设计(论文)原创性声明和使用授权说明

原创性声明

本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作 者 签 名: 日 期: 指导教师签名: 日 期:

使用授权说明

本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名: 日 期:

学位论文原创性声明

本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。

作者签名: 日期: 年 月 日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名: 日期: 年 月 日 导师签名: 日期: 年 月 日

注 意 事 项

1.设计(论文)的内容包括:

1)封面(按教务处制定的标准封面格式制作) 2)原创性声明

3)中文摘要(300字左右)、关键词 4)外文摘要、关键词 5)目次页(附件不统一编入)

6)论文主体部分:引言(或绪论)、正文、结论 7)参考文献 8)致谢

9)附录(对论文支持必要时)

2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。 4.文字、图表要求:

1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写

2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画

3)毕业论文须用A4单面打印,论文50页以上的双面打印 4)图表应绘制于无格子的页面上

5)软件工程类课题应有程序清单,并提供电子文档 5.装订顺序 1)设计(论文)

2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订

指导教师评阅书

指导教师评价: 一、撰写(设计)过程 1、学生在论文(设计)过程中的治学态度、工作精神 □ 优 □ 良 □ 中 □ 及格 □ 不及格 2、学生掌握专业知识、技能的扎实程度 □ 优 □ 良 □ 中 □ 及格 □ 不及格 3、学生综合运用所学知识和专业技能分析和解决问题的能力 □ 优 □ 良 □ 中 □ 及格 □ 不及格 4、研究方法的科学性;技术线路的可行性;设计方案的合理性 □ 优 □ 良 □ 中 □ 及格 □ 不及格 5、完成毕业论文(设计)期间的出勤情况 □ 优 □ 良 □ 中 □ 及格 □ 不及格 二、论文(设计)质量 1、论文(设计)的整体结构是否符合撰写规范? □ 优 □ 良 □ 中 □ 及格 □ 不及格 2、是否完成指定的论文(设计)任务(包括装订及附件)? □ 优 □ 良 □ 中 □ 及格 □ 不及格 三、论文(设计)水平 1、论文(设计)的理论意义或对解决实际问题的指导意义 □ 优 □ 良 □ 中 □ 及格 □ 不及格 2、论文的观念是否有新意?设计是否有创意? □ 优 □ 良 □ 中 □ 及格 □ 不及格 3、论文(设计说明书)所体现的整体水平 □ 优 □ 良 □ 中 □ 及格 □ 不及格 建议成绩:□ 优 □ 良 □ 中 □ 及格 □ 不及格 (在所选等级前的□内画“√”) 指导教师: (签名) 单位: (盖章) 年 月 日

XXX大学毕业设计说明书(毕业论文)

6.5阀的选择计算 ................................................................................................................... 40 6.6辅助元件的选择计算 ....................................................................................................... 42

6.6.1管路 ........................................................................................................................ 42 6.6.2蓄能器的选择 ........................................................................................................ 44 6.7油箱的设计计算 ............................................................................................................... 45

6.7.1油箱设计原则 ........................................................................................................ 45 6.7.2油箱参数设计计算 ................................................................................................ 45 6.7.3油箱容量的计算 .................................................................................................... 46 6.7.4油箱内工作介质体积估算 .................................................................................... 46 6.8系统发热功率计算 ........................................................................................................... 46

6.8.1液压泵的功率损失 ................................................................................................ 46 6.8.2阀的损失功率 ........................................................................................................ 46 6.8.3管路以及其它功率损失 ........................................................................................ 47 6.9过滤器的选择 ................................................................................................................... 47 6.10液压工作介质的选取 ..................................................................................................... 48 第七章 三维建模 ........................................................................................................................... 49

7.1零部件三维设计 ............................................................................................................... 49

7.1.1结晶器振动装置固定台 ........................................................................................ 49 7.1.2结晶器振动装置活动台 ........................................................................................ 49 7.1.3连杆1 ..................................................................................................................... 50 7.1.4连杆2 ..................................................................................................................... 50 7.1.5心轴 ........................................................................................................................ 51 7.1.6轴承 ........................................................................................................................ 51 7.1.7挡圈 ........................................................................................................................ 51 7.1.8轴承端盖 ................................................................................................................ 52 7.1.9阻尼器气囊 ............................................................................................................ 52 7.1.10进水管 .................................................................................................................. 52 7.1.11阻尼器进气管道 .................................................................................................. 53 7.1.12环状活塞杆头 ...................................................................................................... 53 7.1.13阻尼器支架 .......................................................................................................... 54 7.1.14液压缸 .................................................................................................................. 54 7.2总装配图 ........................................................................................................................... 55 总结 ................................................................................................................................................ 56 致谢 ................................................................................................................................................ 57 参考文献......................................................................................................................................... 58

II

第一章 绪论

1.1什么是连铸

连铸即为连续铸钢(英文,Continuous Steel Casting)的简称。在钢铁厂生产各类钢铁产品过程中,使用钢水凝固成型有两种方法:传统的模铸法和连续铸钢法。而在二十世纪五十年代在欧美国家出现的连铸技术是一项把钢水直接浇注成形的先进技术。与传统方法相比,连铸技术具有大幅提高金属收得率和铸坯质量,节约能源等显著优势。

连续铸钢的具体流程为:钢水不断地通过水冷结晶器,凝成硬壳后从结晶器下方出口连续拉出,经喷水冷却,全部凝固后切成坯料的铸造工艺过程。

从上世纪八十年代,连铸技术作为主导技术逐步完善,并在世界各地主要产钢国得到大幅应用,到了上世纪九十年代初,世界各主要产钢国已经实现了90%以上的连铸比。中国则在改革开放后才真正开始了对国外连铸技术的消化和移植;到九十年代初中国的连铸比仅为30%。

WAM公司作为中国最早的一家民营专业化连铸技术公司,从1992年成立起就致力于中国连铸技术的发展和创新,为推动国内连铸钢铁业的迅速发展,提高国内连铸比贡献自己的一份力量。

铸铁水平连铸课题为国家“七五”攻关项目,铸铁经过水平连铸方法生产的型材,无砂型铸造经常出现的夹渣、缩松等缺陷,其表面平整,铸坯尺寸精度高(土L 0mm)无需表面粗加工,即可用于加工各种零件。特别是铸铁型材组织致密,灰铸铁型材石墨细小强度高,球铁型材石墨球细小园整,机械性能兼有高强度与高韧性结合的优点。目前国际上铸铁型材已广泛运用到制造液压阀体,高耐压零件,齿轮、轴、柱塞、印刷机辊轴及纺织机零部件。在汽车、内燃机、液压、机床、纺织、印刷、制冷等行业有广泛用途。

1.2国内连铸的重要性

新世纪以来,中国继续保持快速发展连铸的态势,2007年连铸坯产量达到47430万t,钢铁工业连铸比已达98.86%。随着板、带、管材在钢材消费

结构中的比例大幅上升,数量众多的板坯、方坯、圆坯、异形坯及薄板坯连铸机在新世纪投入生产。这一过程不仅促进了炼钢生产设备的大型化,而且还促进了炼铁生产设备的大型化;同时由于连铸品种质量的稳定提高,高温、无缺陷铸坯技术的发展,使炼钢与轧钢工序通过连铸坯热送热装变得更为紧凑。在中国,连铸的发展促进了钢铁生产流程的进一步优化。可以说新世纪以来,连铸技术不断推动着中国钢铁工业的快速发展。

1.3中国连铸发展的主要成就

1990年中国连铸坯产量只有1480万t,钢铁工业连铸比为25.07%。至2000年,连铸坯产量达到10522.4万t,连铸比达到84.81%。在此期间,小方坯连铸发展尤为迅速。1988年中国拥有小方坯的流数为206流,而至2000年则增加到624流,增幅达202.9%,远高于板坯连铸机流数的增幅,这主要取决于我国以长材为主的钢材消费结构。

如果说上世纪90年代,中国连铸发展以小方坯连铸的强劲发展带动全国连铸产量、连铸比及全连铸钢厂的迅速发展为重要特征,那么新世纪以来,中国连铸发展又呈现出更新的特点和丰富的内涵。首先是连铸产量和连铸比继续保持快速增长的态势;其次随着板、带、管钢材消费的增长,板坯、方坯、圆坯、异形坯等多种连铸机数量急剧增加。这期间尤其是薄板坯连铸-连轧,无论生产规模还是相关技术经济指标,均达到了世界水平;在推进高效化连铸技术的同时,品种、质量得到很大改善和提高。继续遵循“开放引进与自主研发并重”的原则,自主设计、自主制造的国产连铸机的比例越来越大。连铸坯产量、连铸比的快速增长新世纪以来,中国连铸继续保持快速增长的态势。2000~2007年,中国粗钢产量增加幅度为280.7%,而连铸坯产量的增幅为350.8%,连铸比在这期间继续保持了高速增长的趋势。至2007年,中国钢铁工业连铸比已达到98.86%。可以说连铸的快速增长仍然是推动钢铁工业发展的技术动力。

新世纪中国连铸发展的另一个重要特征是,连铸机型改变了上世纪以发展小方坯机型为主的趋势,而向多样化发展,尤其是板坯、方坯、圆坯、异型坯、薄板坯等机型的数量增加远远超过小方坯连铸机的增幅。

按连铸机流数统计,板坯铸机由2000年的78流增加到2007年237流,增幅达到203.8%;方坯铸机由378流增加到1323流,增幅达250%;圆坯铸机由40流增加到173流,增幅达325.5%;异形坯铸机由3流增加到15流,增幅达400%;而小方坯流数的增幅为64.6%。这充分说明了,中国钢材消费结构发生了巨大变化,即板、带、管材的消费大幅增加,改变了上世纪以长材为主流的钢材消费结构。图6示出了2006年中国钢材产品结构,另外,1998年尚未有一台薄板坯连铸机正式投产,但至2007年已有13条薄板坯连铸连轧生产线投产,其中薄板坯连铸机的流数为28流,发展速度很快。 连铸坯的吨数与总铸坯(锭)的吨数之比叫做连铸比,它是衡量一个国家或一个钢铁企业生产发展水平的重要标志之一,也是连铸设备、工艺、管理以及和连铸有关的各生产环节发展水平的综合体现。1970年至1980年,世界平均连铸比从4.4%发展到28.4%,中国的连铸比从2.1%发展到6.2%;至1990年,世界和中国的连铸比分别发展到62.8%和22.4%;到2001年,又分别发展到87.6%和92.0%。2003年,中国连铸比达到95.3%左右,估计世界平均连铸比2003年接近90%。从统计数字可以看出,中国的连铸技术在近10多年内得到了迅速发展。

1.4世界连铸技术的发展及我国存在的差距

世界上有许多连铸技术实力较强的公司,如西马克?德马格、奥钢联、日本JSP公司、达涅利(包括戴维)公司等。以板坯连铸机为例,西马克?德马格公司从1962年至2001年新设计和改造板坯连铸机共约370台;奥钢联从1959年至2000年新建和改造板坯连铸机共约181台;日本JSP公司截止2001年新建并改造板坯连铸机共约150台;达涅利的戴维公司也设计了10多台连铸机。2001年末,世界上共有各类投产的板坯连铸机约550台800流(有一些是重复改造的,按估计值未计入)。

截止到2002年底,中国共有551台(1749流)连铸机,其中板、方坯连铸机分别为101台(130流)、429台(1564流),圆坯、异形坯连铸机分别为20台(52流)、1台(3流)。这些统计中,绝大部分连铸机是立足于中国国内设计制造的。

我国加入WTO后,人才、知识、科技与经济的全球化趋势越来越清晰地展现出来。由于历史及其他各方面原因,国外先进技术和管理方式显然具有竞争优势。近几年,我国经济发展较快,冶金企业投放的技改资金比较大,新上项目很多,连续铸钢项目也较多,但连铸机设备和技术大部分还是靠引进。我国薄板坯连铸连轧已经引进了将近10条生产线;从2000年开始,我国先后全部引进或引进核心部位设备与技术的常规板坯连铸机共有24台27流,还有继续引进的趋势;中薄板坯连铸机、异型坯连铸机全部引进;大方坯连铸机也有引进的倾向。其原因主要是我国连铸技术与国外先进水平还存在一定差距。

1.5连铸机振动系统应注意的部分问题

图为某连铸机原振动系统,从整体上看传动环节太多,从局部上看则结构环节过多。动力由电机传至外弧左偏心轮轴要经过减速机、联轴器、传动轴等7个环节,仅联轴器就用了4套。而运动传至内弧偏心则还要多一个环节。从局部看,为了实现振动机构振幅可调,在机构中增加了偏心套。从偏心轴至振动台需经过偏心轴、偏心套、轴承、连杆以及关节轴承等环节。由此可见,该振动装置的振动系统环节太多。

振动系统环节过多造成振动不稳定的原因可归结如下:

(1)环节过多使系统刚度降低,从而导致系统固有频率降低。

(2)环节过多导致振动台四点振幅及相位误差增大。 (3)增加了系统存在间隙的机会。

所以我们在设计连铸机振动系统时应尽量避免以上问题的发生。

第二章 结晶器振动技术

2.1结晶器振动技术发展的历史

最初的连铸机结晶器是静止不动的,在拉坯的过程中坯壳很容易与结晶器内壁产生粘结,从而出现坯壳“拉不动”或拉漏钢水的事故发生。因此,静止不动的结晶器限制了连铸生产的工业化发展。直到1933年现代连铸的奠基人一德国的西格弗里德·容汉斯开发了结晶器振动装置,并成功地将它应用于有色金属黄铜的连铸。

1949年S·容汉斯的合伙人美国的艾尔文·罗西(Irving Rossi )获得了容汉斯结晶器振动技术专利的使用权,并首次在美国约阿·勒德隆钢公司厂的一台方坯连铸试验机上采用了振动结晶器。与此同时,容汉斯振动结晶器又被西德曼内斯(Mannesmann)公司胡金根厂的一台连续铸钢试验连铸机上成功应用结晶器振动技术在这两台连铸机上的成功应用,为结晶器振动技术的广泛应用打下了坚实的基础。

2.2 连铸机结晶器振动简介

在连铸技术的发展过程中,只有采用了结晶器振动装置后,连铸才能成功。结晶器振动的目的是防止拉坯坯壳与结晶器粘结,同时获得良好的铸坯表面,因而结晶器向上运动时,减少新生的坯壳与铜壁产生粘结,以防止坯壳受到较大的应力,使铸坯表面出现裂纹;而当结晶器向下运动时,借助摩擦,在坯壳上施加一定的压力,愈合结晶器上升时拉出的裂痕,这就要求向下的运动速度大于拉坯速度,形成负滑脱。

机械振动的振动装置由直流电动机驱动,通过万向联轴器,分两端传动两个蜗轮减速机,其中一端装有可调节轴套,蜗轮减速机后面再通过万向联轴器,连接两个滚动轴承支持的偏心轴,在每个偏心轮处装有带滚动轴承的曲柄,并通过带橡胶轴承的振动连杆支撑振动台,产生振动。

在新型连铸生产工艺中,采用带有数字波形发生器的结晶器电液伺服振动控制是保证连铸生产质量的关键技术之一。国外的应用情况表明,采用连铸结晶器非正弦伺服振动,能够有效地减少铸坯与结晶器间的摩擦力,从而防止坯壳与结晶器粘结而被拉裂,减小铸坯振痕,提高铸坯质量川一〔9l。带有数字波形发生器的结晶器电液伺服振动控制装置和传统的结晶器振动装置相比,可以方便地实现多种波形振动、实现连铸过程监督和实时显示振动波形,并能在线修改非振动方式及振动频率和幅值等参数,实现控制过程的平稳过度。

2.3结晶器振动规律的演变

结晶器振动技术的发展过程来看,结晶器振动技术先后经历了矩形速度规律、梯形速度规律值到目前应用最广泛的正弦振动规律以及近几年更为先进的非正弦振动规律。 结晶器振动速度随时间的变化规律即为结晶器振动规律,结晶器振动规律是结晶器振动技术中最基本的内容。因为从结晶器振动技术发展的历史过程来看,每当结晶器采用了一种新的振动规律时,新的振动规律都较过去的振动规律更为合理,而且都对铸坯的连续浇注、铸坯的表面质量及拉坯速度的提高产生了重大的影响。 (1)矩形速度规律

从结晶器振动技术发展历史来看,矩形速度规律是最早出现的一种结晶器振动方式,如图2-1中的曲线1所示即为它速度变化规律[3]。矩形速度规律的主要特点是:结晶器在

向下振动时与拉坯速度相同,即结晶器与铸坯做同步运动,然后结晶器又以3倍的拉坯速度向上运动。其表达式如下:

3vcf?4s式中:f—结晶器振动频率 cpm S—振幅 mm vc—拉坯速度 mm/min

图 2-1 矩形振动规律

生产实践证明,矩形振动方式对铸坯的脱模是有效的,相比静止不动的结晶器,这种振动方式大大提高了铸坯的表面质量,提高了连铸的生产效率,在早期得到广泛应用。但此种振动方式的存在的缺点是:该振动规律的实现是用凸轮来实现的,但是凸轮的加工制造比较麻烦;为了保证结晶器与铸坯之间速度严格的同步运动,结晶器振动机构与拉坯机构之间要实行严格的电器连锁;结晶器振动速度在上升和下降时的转折点处变化很大,其加速度在理论上等于无穷大。虽然凸轮曲线在上升和下降之间有过渡连接曲线使结晶器振动的加速度达不到无穷大,但是仍然很大。过大加速度对铸坯的表面质量和振动系统的正常运转都是不利的,将对设备产生强大的冲击,因而也不能采用高频率振动方式。

(2)梯形速度规律

梯形速度规律是在矩形速度规律的基础上进行了一些改进,如图2-2中的曲线2所示即为梯形速度变化规律。梯形速度规律的主要特点是:结晶器在向下振动的过程中有一段较长时间其速度略大于铸坯的拉坯速速,即现在所称的“负滑动运动”。负滑动运动可以在坯壳中产生压应力,可以使结晶器里已经断裂的坯壳被压合,并且能够使粘结在结晶

器内壁上的坯壳强制脱模;从图1.1中曲线2可以看出结晶器振动速度在上升和下降的转折点处,变化比较缓和,这将有利于提高结晶器振动的平稳性。

生产实践证明,梯形速度规律是一种相对比较好的振动规律,因此这种振动规律被使用了许多年。后来才被更为合理的正弦振动规律所取代。

(3)正弦速度规律

正弦速度规律如图2-2的曲线所示(正弦速度与余弦速度相同)。之所以选择正弦规律的主要原因有两个:一是正弦速度规律打破了前两种速度振动规律结晶器和铸坯之间有一定的速度关系的框架,重点发挥结晶器的脱模作用;二是速度规律的实现用偏心轮取代了之前使用的凸轮。

图2-2 正弦和非正弦振动规律

结晶器振动的正弦速度规律曲线的数学表达式为:

vm??2?f?sin?t?

1000?60??fh式中 vm— 结晶器运动的速度 m/min

h—振动冲程(俩倍振幅), mm

f—振动频率, 1/min

从图2-2中的曲线可以看出正弦速度规律的主要特点如下:

1)结晶器与铸坯之间没有同步运动阶段,但结晶器仍然有一小段负滑动运动,这有利于拉裂坯壳的“愈合”和粘结坯壳的脱模。

2)由于结晶器振动速度是按正弦曲线变化,其加速度就是按照余弦曲线变化的。因此速度与加速度的变化都很平稳,这也使结晶器的振动很平稳。

3)由于结晶器振动的加速度较小,因此可以采用较高频率的振动,这有利于消除坯壳与结晶器壁的粘结,也就提高了结晶器的脱模作用。

4)结晶器正弦振动规律是用偏心机构来实现的,采用偏心机构比凸轮机构具有加工制造容易、运动精度高、润滑密封方便、易于采用高频振动的优点。基于正弦振动规律上述的优点,它是目前国内外应用最为广泛的一种结晶器振动规律。它在方坯、板坯及薄板坯连铸机上都有最广泛的应用。 (4)非正弦速度规律

如图2-2的非正弦速度规律[4]。它是近年来出现的一种新型振动方式。非正弦速度规律主要特点是:负滑动时间比较短,这有利于减轻铸坯表面振动痕迹的深度,提高铸坯表面质量;较长的正滑动时间可增加保护渣的消耗量,有利于提高结晶器的润滑条件,减小拉坯阻力;结晶器向上振动速度与拉坯速度之差较小,有利于减小结晶器施加给铸坯向上作用的摩擦力,即可减小坯壳中的拉应力,减小铸坯拉裂事故的发生。这些都有利于拉坯速度的提高,有利于连铸生产效率的提高。

2.4结晶器振动和润滑的关系

结晶器振动的重要影响主要是对润滑和振动痕迹形成的作用。振动的同 时要求提供结晶器润滑,两者的共同作用是减小坯壳和结晶器壁间的摩擦力,以得到最好的表面质量和防止粘结漏钢的最佳安全性。 2.4.1 结晶器振动与保护渣的关系

如前所述,结晶器振动对于改善结晶器壁间的润滑是非常有效的,但对于结晶器振动如何影响结晶器保护渣的消耗和保护渣的润滑作用,其机理并不十分清楚。早期的研究曾提出一个负滑脱期间保护渣流入量的模型,但是随后的试验结果表明,保护渣消耗量是正滑脱时间的增函数,图2-3示出了保护渣消耗量与正滑脱时间的关系。可见,对于振动结晶器,正滑脱时间越长,保护渣消耗量越大,由此也引起了大量的争论。对于增加保护

本文来源:https://www.bwwdw.com/article/ab46.html

Top