Lowry-Folin法测定食品中蛋白质含量

更新时间:2024-03-25 10:19:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

Lowry –Folin法测定食品中蛋白质的含量(测液体样品)

一、 实验目的 1、 2、

了解测定蛋白质的常用方法

掌握蛋白质含量测定的经典Lowry –Folin法。

二、 实验原理

在碱性溶液中,蛋白质中的肽键与铜盐可产生双缩脲反应,产生络合物,此络合物会将磷钼酸-磷钨酸试剂还原,产生深蓝色复合物。在一定的条件下,蓝色深浅与蛋白质的量成正比。在波长540nm处测定样品的吸光度,与标准曲线对比,可确定其蛋白质含量。这种方法是检测可溶性蛋白质含量最灵敏的经典方法之一。 三、 实验步骤 1、

标准曲线的绘制

(1) 取10ml具塞试管6支,编号,分别准确吸取0.00、0.20、0.40、0.60、

0.80、1.00ml血清蛋白溶液置于相应的试管中,在各试管中分别加入1.00、0.80、0.60、0.40、0.20和0.00ml的蒸馏水,使总体积达到1.00ml。不同浓度BSA溶液的配置 编号 BSA(ml) 水(ml) BSA质量(μg)

(2) 取试剂A15.00ml,试剂B0.75ml和试剂C0.75ml,在50ml三角瓶中混

0(空白) 0 1.00 0 1 0.20 0.80 40 2 0.40 0.60 80 3 0.60 0.40 120 4 0.80 0.20 160 5 1.00 0 200 匀,在每只试管中分别准确加入此试剂1.00ml,充分摇匀,静置15min.

(3) 分别在各试管中准确加入Folin-酚试剂稀释液3.00ml,立刻震荡,充分

摇匀。

(4) 静置30min,在540nm波长下测定每个试管中溶液的吸光度(A值)。 (5) 以A值为纵坐标,BSA质量(即0~200μg)为横坐标,绘制标准曲线,

求出回归方程和相关系数R2。

2、

样品的测定

将啤酒样品适当稀释(20倍),吸取2份,各1.00ml,重复步骤1中的(2)~(4)。 四、 实验试剂 1、

试剂A:称取Na2CO3100.0g溶于1000ml(最终体积)0.5mol/LNaOH中。

2、 3、 4、

试剂B:称取CuSO4·5H2O1.0g溶于100ml(最终体积)蒸馏水中。 试剂C:称取酒石酸钾钠2.0g溶于100ml(最终体积)蒸馏水中。 牛血清蛋白(BSA)标准溶液:准确称取牛血清蛋白,配制成浓度为200μg/ml的溶液。

5、

2mol/LFolin-酚试剂。

五、 实验数据与处理 分组 吸光度 0(空白) 0.000 1 2 3 4 5 样品1 样品2 0.164 0.073 0.157 0.216 0.273 0.341 0.172 样品中蛋白质的含量(μg/ml) = XA Ⅹ N Ⅹ 0.001

式中,XA——根据标准曲线计算出来的蛋白质量(对应稀释样品中的蛋白质浓

度,μg/ml) N——样品的稀释度数(N=20) 计算:标准曲线 y = 0.0017x + 0.0078(R2=0.9957)

当y1=0.172时,代入得x1=96.59(μg/ml)样品1中蛋白质含量m1=1.93mg/ml

当y1=0.172时,代入得x1=96.59(μg/ml)样品1中蛋白质含量m1=1.93mg/ml

当y2=0.164时,代入得x2=91.88(μg/ml)样品2中蛋白质含量m2=1.84mg/ml

平均含量:(1.93+1.84)/2=1.885mg/ml 平均偏差:(1.93-1.84)/2 = 0.045

相对平均偏差:0.045/1.885 Ⅹ 100% = 2.39% 六、 实验注意事项 1、

加入Folin-酚试剂后立即将反应液摇匀,以便Folin-酚试剂在碱性溶液中破坏之前即能被铜-蛋白质复合物还原。

2、

短时间内反应液的颜色保持稳定,因此,静置30min后应立即测定吸光度,若拖延时间过长,颜色将会变化,影响测定结果。

七、 思考题 1、

测定食品中蛋白质含量的常用方法有哪些?其原理、适用性如何? 答:①凯氏定氮法

原理:样品与浓硫酸共热,含氮有机物即分解产生氮(消化),氮又与硫酸作用,变成硫酸氢。经强碱碱化使之分解放出氢气,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品的氮含量,再乘以6.25,即得样品中蛋

白质含量,以甘氨酸为例,反应式为:

NH2CH2COOH + 3H2SO4——2CO2+3SO2+4H2O+NH3 2NH3+H2SO4——(NH4)2SO4

(NH4)2SO4+2NaOH——2H2O+NaSO4+2NH3

适用性:用于标准蛋白质含量的准确测定,干扰少,费事太长;灵敏度低,适用于0.2~1.0mg氮,误差为±2%。

②双缩脲法

原理:在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或连个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测量蛋白质含量。

适用性:用于快速测定,但不太灵敏;不同蛋白质显色相似;误差范围为1~10μg蛋白质

③Folin-酚试剂法

原理:在碱性溶液中,蛋白质中的肽键与铜盐可产生双缩脲反应,产生络合物。此络合物会将磷钼酸-磷钨酸试剂还原,产生深蓝色复合物。在一定的条件下,蓝色深浅与蛋白质的量成正比。在波长540nm处测定样品的吸光度,与标准曲线对比,可确定其蛋白质含量。

适用性:耗时长,操作要严格计时;颜色深浅随不同蛋白质变化,灵敏度高;最低位0~5μg;通常测定范围是20~250μg;也适用于酪氨酸和色氨酸的定量测定。

④紫外吸收法

原理:蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有紫外吸收的性质,吸收峰在280nm处,其吸光度与蛋白质含量成正比。此外,蛋白质溶液在280nm时的吸光度值与肽键含量成正比。利用一定波长下,蛋白质溶液的吸光度值与蛋白质浓度的正比关系,可进行蛋白质含量的测定。

适用性:用于层析注流出液的检测;较为灵敏50~100μg;适用于与标准蛋白质氨基酸组成相似的蛋白质。

⑤考马斯亮蓝法

原理:考马斯亮蓝G-250染料,在酸性溶液中与蛋白质结合,使燃料的最大吸收峰位置λmax,由465nm变为595nm,溶液的颜色也由棕黑色变为蓝色,在595nm下测定的吸光度值,与蛋白质浓度成正比。

适用性:干扰物质少,颜色稳定,颜色深浅随不同蛋白质变化;灵敏度最高为1~5μg。 2、

使用分光光度计时应注意哪些问题?

答:分光光度计特点:准确度高,测量范围广,在一定条件下可同时测定水样中两种或两种以上的物质组成含量。

注意:①使用前,仔细阅读其使用说明书;②若大幅度改变测试波长,需稍等片刻,等灯热平衡后,重新调零及满度后,再测量;③指针式仪器在未接通电源时,电表的指针必须位于零刻度,若不是,则需进行机械调零;④操作人员不宜轻易触动灯泡及反光镜灯,以免影响光效率;⑤放大其灵敏度换挡后,必须重新调零;⑥比色皿使用时需注意方向性,并应配套使用,以延长其使用寿命,使用完毕后,应立即用蒸馏水冲洗干净,并用干净柔软的纱布擦水迹,以防表面光

洁度被破坏。

本文来源:https://www.bwwdw.com/article/ab38.html

Top