高中数学说课稿
更新时间:2024-02-18 10:22:01 阅读量: 经典范文大全 文档下载
篇一:高中数学说课稿:《三角函数》说课稿范文
高中数学说课稿:《三角函数》
一、教材分析(一)内容说明
函数是中学数学的重要内容,中学数学对函数的研究大致分成了三个阶段。
三角函数是最具代表性的一种基本初等函数。4.8节是第二章《函数》学习的延伸,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。
本节课是数形结合思想方法的良好素材。数形结合是数学研究中的重要思想方法和解题方法。
著名数学家华罗庚先生的诗句:......数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休......可以说精辟地道出了数形结合的重要性。
本节通过对数形结合的进一步认识,可以改进学习方法,增强学习数学的自信心和兴趣。另外,三角函数的曲线性质也体现了数学的对称之美、和谐之美。
因此,本节课在教材中的知识作用和思想地位是相当重要的。
(二)课时安排
4.8节教材安排为4课时,我计划用5课时
(三)目标和重、难点
1.教学目标
教学目标的确定,考虑了以下几点:
(1)高一学生有一定的抽象思维能力,而形象思维在学习中占有不可替代的地位,所以本节要紧紧抓住数形结合方法进行探索;
(2)本班学生对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。
(3)学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法,巩固应用主要放在后面的三节课进行。
由此,我确定了以下三个层面的教学目标:
(1)知识层面:结合正弦曲线、余弦曲线,师生共同探索发现正(余)弦函数的性质,让学生学会正确表述正、余函数的单调性和对称性,理解体会周期函数性质的研究过程和数形结合的研究方法;
好学教育:
(2)能力层面:通过在教师引导下探索新知的过程,培养学生观察、分析、归纳的自学能力,为学生学习的可持续发展打下基础;
(3)情感层面:通过运用数形结合思想方法,让学生体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信心和兴趣。
2. 重、难点
由以上教学目标可知,本节重点是师生共同探索,正、余函数的性质,在探索中体会数形结合思想方法。
难点是:函数周期定义、正弦函数的单调区间和对称性的理解。
为什么这样确定呢?
因为周期概念是学生第一次接触,理解上易错;单调区间从图上容易看出,但用一个区间形式表示出来,学生感到困难。
如何克服难点呢?
其一,抓住周期函数定义中的关键字眼,举反例说明;
其二,利用函数的周期性规律,抓住“横向距离”和“k∈Z"的含义,充分结合图象来理解单调性和对称性
二、教法分析
(一)教法说明 教法的确定基于如下考虑:
(1)心理学的研究表明:只有内化的东西才能充分外显,只有学生自己获取的知识,他才能灵活应用,所以要注重学生的自主探索。
(2)本节目的是让学生学会如何探索、理解正、余弦函数的性质。教师始终要注意的是引导学生探索,而不是自己探索、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依赖和倦怠。
(3)本节内容属于本源性知识,一般采用观察、实验、归纳、总结为主的方法,以培养学生自学能力。所以,根据以人为本,以学定教的原则,我采取以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参与、师生共同探讨的课堂结构形式,营造一种民主和谐的课堂氛围。
(二) 教学手段说明:
为完成本节课的教学目标,突出重点、克服难点,我采取了以下三个教学手段:
(1)精心设计课堂提问,整个课堂以问题为线索,带着问题探索新知,因为没有问题就没有发现。
好学教育:
(2)为便于课堂操作和知识条理化,事先制作正弦函数、余弦函数性质表,让学生当堂完成表格的填写;
(3)为节省课堂时间,制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。
三、学法和能力培养
我发现,许多学生的学习方法是:直接记住函数性质,在解题中套用结论,对结论的来源不理解,知其然不知其所以然,应用中不能变通和迁移。
本节的学习方法对后续内容的学习具有指导意义。为了培养学法,充分关注学生的可持续发展,教师要转换角色,站在初学者的位置上,和学生共同探索新知,共同体验数形结合的研究方法,体验周期函数的研究思路;帮助学生实现知识的意义建构,帮助学生发现和总结学习方法,使教师成为学生学习的高级合作伙伴。
教师要做到:
授之以渔,与之合作而渔,使学生享受渔之乐趣。 因此
1.本节要教给学生看图象、找规律、思考提问、交流协作、探索归纳的学习方法。
2.通过本课的探索过程,培养学生观察、分析、交流、合作、类比、归纳的学习能力及数形结合(看图说话)的意识和能力。
四、教学程序
指导思想是:两条线索、三大特点、四个环节
(一)导入
引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。
采用这样的引入方法,目的是打消学生对函数学习的畏难情绪,引起学生注意,也激起学生好奇和兴趣。
(二)新知探索 主要环节,分为两个部分
教学过程如下:
第一部分————师生共同研究得出正弦函数的性质
1.定义域、值域 2.周期性
3.单调性 (重难点内容)
为了突出重点、克服难点,采用以下手段和方法:
(1)利用多媒体动态演示函数性质,充分体现数形结合的重要作用;
好学教育:
(2)以层层深入,环环相扣的课堂提问,启发学生思维,反馈课堂信息,使问题成为探索新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。
(3)单调区间的探索过程是:
先在靠近原点的一个单调周期内找出正弦函数的一个增区间,由此表示出所有的增区间,体现从特殊到一般的知识认识过程。
** 教师结合图象帮助学生理解并强调 “距离”(“长度”)是周期的多少倍
为什么要这样强调呢?
因为这是对知识的一种意义建构,有助于以后理解记忆正弦型函数的相关性质。
4.对称性
设计意图:
(1)因为奇偶性是特殊的对称性,掌握了对称性,容易得出奇偶性,所以着重讲清对称性。体现了从一般到特殊的知识再现过程。
(2)从正弦函数的对称性看到了数学的对称之美、和谐之美,体现了数学的审美功能。
5.最值点和零值点
有了对称性的理解,容易得出此性质。
第二部分————学习任务转移给学生
设计意图:
(1)通过把学习任务转移给学生,激发学生的主体意识和成就动机,利于学生作自我评价;
(2)通过学生自主探索,给予学生解决问题的自主权,促进生生交流,利于教师作反馈评价;
(3)通过课堂教学结构的改革,提高课堂教学效率,最终使学生成为独立的学习者,这也符合建构主义的教学原则。
(三)巩固练习
补充和选作题体现了课堂要求的差异性。
(四)结课
五、板书说明 既要体现原则性又要考虑灵活性
1.板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;同时不完全按课本上的呈现方式来编排板书。即体现系统性、程序性、概括性、指导性、启发性、创造性的原则;(原则性)
2.使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。(灵活性)
好学教育:
六、效果及评价说明
(一)知识诊断
(二)评价说明
1.针对本班学生情况对课本进行了适当改编、细化,有利于难点克服和学生主体性的调动。
2. 根据课堂上师生的双边活动,作出适时调整、补充(反馈评价);根据学生课后作业、提问等情况,反复修改并指导下节课的设计(反复评价)。
3. 本节课充分体现了面向全体学生、以问题解决为中心、注重知识的建构过程与方法、重视学生思想与情感的设计理念,积极地探索和实践我校的科研课题——努力推进课堂教学结构改革。
通过这样的探索过程,相信学生能从中有所体会,对后续内容的学习和学生的可持续发展会有一定的帮助。希望很久以后留在学生记忆中的不是知识本身,而是方法与思想,是学习的习惯和热情,这正是我们教育工作者追求的结果
篇二:高中数学_说课稿(万能模板)
高中数学说课稿(模板)
尊敬的各位考官,下午好!我是XX号考生。今天我说课的内容是《_______》第__课时。
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计。
一、教材分析
(一)地位与作用
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。
(二)学情分析
(1)学生已熟练掌握_________________。
(2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。
(3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。
(4) 学生层次参次不齐,个体差异比较明显。
二、目标分析
新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:
(一)教学目标
(1)知识与技能
使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。
(2)过程与方法
引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
(3)情感态度与价值观
在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
(二)重点难点
本节课的教学重点是________________________,教学难点是_____________________。
三、教法、学法分析
(一)教法
基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.
(二)学法
在学法上我重视了:
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
四、教学过程分析
(一)教学过程设计
教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。
(1)创设情境,提出问题。
新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。
(2)引导探究,建构概念。
数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.
(3)自我尝试,初步应用。
有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.
(4)当堂训练,巩固深化。
通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。
(5)小结归纳,回顾反思。
小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?
(二)作业设计
作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本
节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.
我设计了以下作业:
(1)必做题
(2)选做题
(三)板书设计
板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
五、评价分析
学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对____是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。 谢谢!
篇三:高中数学说课稿范文
高中数学说课稿范文
各位评委老师:
大家好!我是***,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》(可以在这时候板书课题,以缓解紧张)。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正。
一、教材分析
1、 教材的地位和作用
(1)本节课主要对函数单调性的学习;
(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)
(3)它是历年高考的热点、难点问题。
(根据具体的课题改变就行了,如果不是热点难点问题就删掉)
2、 教材重、难点
重点:函数单调性的定义。
难点:函数单调性的证明。
重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。
二、教学目标
1、知识目标:(1)函数单调性的定义;
(2)函数单调性的证明。
2、能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂, 由特殊到一般的化归思想。
3、情感目标:培养学生勇于探索的精神和善于合作的意识。
(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)
三、教法学法分析
1、教法分析
“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法。
2、学法分析
“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。
(前三部分用时控制在三分钟以内,可适当删减)
四、教学过程
1、以旧引新,导入新知
通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适
当添加手势,这样看起来更自然)
2、创设问题,探索新知
紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。
让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。
让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。
3、 例题讲解,学以致用
例1 主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式
例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。
例2 是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。
学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。
4、归纳小结
本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。
5、作业布置
为了让学生学习不同的数学,我将采用分层布置作业的方式:一组 习题1.3A组1、2、3 ,二组 习题1.3A组2、3、B组1、2。
6、板书设计
我力求简洁明了地概括本节课的学习要点,让学生一目了然。
(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)
五、教学评价
本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。
正在阅读:
高中数学说课稿02-18
2010年3月长沙房地产市场月报(合富辉煌) - 图文09-14
小学科学四年级上册《我们的食物》教案实录12-18
班干部会议记录02-18
2008年服装行业风险分析报告08-05
告别粗心的自己作文350字06-28
2014年广东省深圳市中考化学试卷(word解析版)10-25
廉洁保证承诺书09-01