卡尔曼滤波算法及其在组合导航中的应用综述

更新时间:2024-01-08 07:28:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

卡尔曼滤波算法及其在组合导航中的应用综述

摘要:由于描述系统特性的数学模型和噪声的统计模型不准确,不能真实反映物理过程,使模型与获得的观测值不匹配从而会导致滤波器发散。文章在描述组合导航基本特性和卡尔曼滤波原理的基础上提出了滤波发散的问题并提出了抑制发散的方法,最后介绍了卡尔曼滤波在组合导航中的应用。

关键词:卡尔曼滤波;组合导航;发散

随着计算机技术的迅速发展,它有条件提供运算速度高、存贮量大的机载计算机,这为组合导航系统的发展创造了一个很好的技术条件,现代控制理论中最优估计理论的数据处理方法为组合导航系统提供了理论基础。Kalman滤波是R.E.Kalman于1960年提出的从众多与被提取信号有关的观测量中通过算法估计出所需信号的一种滤波算法。他把状态空间的概念引入到随机估计理论中,把信号过程视为白噪声作用下的一个线性系统的输出,用状态方程来描述这种输入-输出关系,估计过程中利用系统状态方程、观测方程、系统噪声和观测噪声的统计特性形成滤波算法。

1组合导航系统基本特性描述

要描述一个实际系统,首先要对其进行建模,即建立系统的状态方程和测量方程。对于组合导航系统,要进行滤波计算必须建立数学模型,此模型具有以下特点。

1.1非线性

组合导航系统本质上是非线性系统,有时为了减少计算量及提高系统实时性,在某些假设条件下组合导航系统的非线性因素可以忽略,其可以用线性化的数学模型来近似描述。但当假设条件不满足时,组合导航系统就必须采用能反映自身实际特性的非线性模型来描述。所以说,非线性是组合导航系统本质的特性。

1.2模型不确定性

组合导航系统处于实际运行环境当中时,受系统本身以及外部应用环境不确定性因素的影响,系统实际模型与建立的理论模型不能完全匹配,即组合导航系统具有模型不确定性。造成系统模型不确定性的主要原因如下:

①模型简化。采用较少的状态变量来描述系统,忽略掉实际系统某些不重要的状态特征。由此造成模型与实际不匹配。②系统噪声统计不准确。所建模型的噪声统计特性与实际系统噪声统计特性有较大差异。③对实际系统初始状态的统计特性建模不准确。④实际系统出现器件老化、损坏等使系统参数发生了变动,造成模型与实际系统不匹配。

本文来源:https://www.bwwdw.com/article/a1ux.html

Top