一元线性回归spss作业

更新时间:2024-01-22 22:57:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

一元线性回归实验指导

一、 使用spss进行线性回归相关计算

题目:

为研究医药企业销售收入与广告支出的关系,随机抽取了20家医药企业,得到它们的销售收入和广告支出的数据如下表(数据在‘广告.sav’中)

1. 绘制散点图描述收入与广告支出的关系

结果:(散点图粘贴在下面)

从散点图可直观看出销售收入和广告支出(存在/不存在)线性关系

2. 计算两个变量的相关系数r及其检验

相关性结果表格:(粘贴在下面)

从结果中可看出,销售收入与广告支出的相关系数为(),双侧检验的P值(),r在0.01显著性水平下(),表明销售收入与广告支出之间(存在/不存在)线性关系。

3. 一元线性回归分析

计算回归分析;并输出标准化残差的pp图和直方图 分析输出的结果: 模型汇总表格:(粘贴在下面)

这个表格给出相关系数R=()以及标准估计的误差()

方差分析(ANOVA)表格:(粘贴在下面)

这个表格给出回归模型的方差分析表,包括回归平方和SSR、回归均方MSR、残差平方和SSE、残差均方MSE、总平方和SST和总均方MST,F值129.762以及P值(),此处p值(),说明回归的线性关系(显著/不显著)

系数表格:(粘贴在下面)

上面这个表格给出的是参数估计和检验的有关内容,包括回归方程的常数项、非标准化回归系数、常数项和回归系数检验的统计量t和显著性水平sig,以及回归系数的?置信区间 从此表可以得出销售收入与广告支出的估计方程为()。回归系数()表示广告支出每变动1万元,销售收入平均变动()万元。

4. 残差的检验

从上面的输出结果中可得到标准化残差的标准pp图和直方图(粘贴在下面)

同时在数据表格中出现残差以及估计值和区间的上下界,其中

PRE_1为点估计值; RES_1为非标准化残差;

ZRE_1为标准化残差;

LMCI_1和UMCI_1表示平均值的置信区间(均值的预测区间); LICI_1和UICI_1表示个别值的预测区间的上界和下界;

下面绘制非标转化残差图:(粘贴在下面)

从残差图上可以看出,各个残差随机分布于0轴两侧,没有任何固定模式,这表明在销售收入与广告支出的一元线性回归中,线性假定以及等方差的假定成立。

下面检验残差正态性:

做出标准化残差(ZRE_1)的散点图,并在图上画出0,2,-2三条y轴参考线(粘贴在下面)

从图上可以看出,20个点中有()个点落在+2和-2之间,结合前面的标准化残差的pp图和正态概率图,表明关于残差的正态分布假定成立。

本文来源:https://www.bwwdw.com/article/a07o.html

Top