初中数学竞赛知识点

更新时间:2023-07-19 11:40:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

全面的初中数学竞赛知识点讲解

初中数学竞赛知识点归纳

一、数的整除(一)

如果整数A除以整数B(B≠0)所得的商A/B是整数,那么叫做A被B整除. 0能被所有非零的整数整除.

①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。

如 1001 100-2=98(能被7整除)

又如7007 700-14=686, 68-12=56(能被7整除)

能被11整除的数的特征:

①抹去个位数 ②减去原个位数 ③其差能被11整除

如 1001 100-1=99(能11整除)

又如10285 1028-5=1023 102-3=99(能11整除)

二、倍数.约数

1 两个整数A和B(B≠0),如果B能整除A(记作B|A),那么A叫做B的倍数,B叫做A的约数。例如3|15,15是3的倍数,3是15的约数。

2 因为0除以非0的任何数都得0,所以0被非0整数整除。0是任何非0整数的倍数,非0整数都是0的约数。如0是7的倍数,7是0的约数。

3 整数A(A≠0)的倍数有无数多个,并且以互为相反数成对出现,0,±A,±2A, 都是A的倍数,例如5的倍数有±5,±10, 。

4 整数A(A≠0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括±1和±A。例如6的约数是±1,±2,±3,±6。

5 通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的公约数。

6 公约数只有1的两个正整数叫做互质数(例如15与28互质)。

7 在有余数的除法中,被除数=除数×商数+余数 若用字母表示可记作:

A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除

例如23=3×7+2 则23-2能被3整除。

三、质数.合数

1正整数的一种分类:

全面的初中数学竞赛知识点讲解

质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质

数(质数也称素数)。

合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正

整数叫做合数。

2根椐质数定义可知

① 质数只有1和本身两个正约数,

② 质数中只有一个偶数2

如果两个质数的和或差是奇数那么其中必有一个是2,

如果两个质数的积是偶数那么其中也必有一个是2,

3任何合数都可以分解为几个质数的积。能写成几个质数的积的正整数就是合数。

四、零的特性

一,零既不是正数也不是负数,是介于正数和负数之间的唯一中性数。 零是自然数,

是整数,是偶数。

1, 零是表示具有相反意义的量的基准数。

例如:海拔0米的地方表示它与基准的海平面一样高

收支衡可记作结存0元。

2, 零是判定正、负数的界限。

若a >0则a是正数,反过来也成立,若a是正数,则 a>0

记作 a>0

b<0

c 0

d 0

e 0 a是正数 读作a>0等价于a是正数 b 是负数 c是非负数(即c不是负数,而是正数或0) d是非正数 (即d不是正数,而是负数或0) e不是0 (即e不是0,而是负数或正数)

3, 在一切非负数中有一个最小值是0。

例如 绝对值、平方数都是非负数,它们的最小值都是0。

记作:|a| 0,当a=0时,|a|的值最小,是0,

a2 0,a2有最小值0(当a=0时)。

4, 在一切非正数中有一个最大值是0。

例如 -|X| 0,当X=0时,-|X|值最大,是0,(∵X≠0时都是负数),

-(X-2)2 0,当X=2时,-(X-2)2的值最大,是0。

二,零具有独特的运算性质

1, 乘方:零的正整数次幂都是零。

2,除法:零除以任何不等于零的数都得零;

零不能作除数。从而推出,0没有倒数,分数的分母不能是0。

3, 乘法:零乘以任何数都得零。 即a×0=0,

反过来 如果 ab=0,那么a、b中至少有一个是0。

要使等式xy=0成立,必须且只需x=0或y=0。

4, 加法 互为相反数的两个数相加得零。反过来也成立。

全面的初中数学竞赛知识点讲解

即a、b互为相反数 a+b=0

5, 减法 两个数a和b的大小关系可以用它们的差的正负来判定,

若a-b=0,则a=b; 若a-b>0,则a>b; 若a-b<0,则a<b。

反过来也成立,当a=时,a-b=0;当a>b时,a-b>0;当a<b时,a-b<0.

三,在近似数中,当0作为有效数字时,它表示不同的精确度。

例如 近似数1.6米与1.60米不同,前者表示精确到0.1米(即1分米),误差不超过5

厘米; 后者表示精确到0.01米(即1厘米),误差不超过5毫米。可用不等式表示其值范

围如下:

1.55近似数1.6<1.65 1.595 近似数1.60<1605

五、an 的个位数

.1. 整数a的正整数次幂an,它的个位数字与a的末位数的n次幂的个位数字相同。例如20023

与23的个位数字都是8。

2. 0,1,5,6,的任何正整数次幂的个位数字都是它们本身。例如57的个位数是5,620的

个位数是6。

4k+1与21,24K

+2++与22,24K3与23,24K4与24的个位数是相同的(K是正整数)。 3和7也有类似的性

质。

4. 4,8,9的正整数次幂的个位数,可仿照上述方法,也可以用4=22,

8=23,9=32转化为以2、3为底的幂。

5. 综上所述,整数a的正整数次幂的个位数有如下的一般规律:

+a4Km与am的个位数相同(k,m都是正整数)

六、数学符号

数学符号是表达数学语言的特殊文字。每一个符号都有确定的意义,即当我们把它规定为某

种意义后,就不再表示其他意义。

数学符号一般可分为:

1, 元素符号:通常用小写字母表示数,用大写字母表示点,用⊙和△表示园和三角形

等。

2, 关系符号:如等号,不等号,相似∽,全等≌,平行∥,垂直⊥等。

3, 运算符号:如加、减、乘、除、乘方、开方、绝对值等。

4, 逻辑符号:略

5, 约定符号和辅助符号:例如我们约定正整数a和b中,如果a除以b的商的整数

部份记作Z(aa),而它的余数记作R(), 那么 bb

全面的初中数学竞赛知识点讲解

Z(1010)=3,R()=1;又如设 x 表示不大于x的最大整数,那么 5.2 =5, 5.2 33

=-6, 2 =0, 3 =-3。 3

正确使用符号的关健是明确它所表示的意义(即定义)

对题设中临时约定的符号,一定要扣紧定义,由简到繁,由浅入深,由具体到抽象,

逐步加深理解。

在解题过程中为了简明表述,需要临时引用辅助符号时,必须先作出明确的定义,所用

符号不要与常规符号混淆。

七、用字母表示数

1, 用字母表示数最明显的好处是能把数量间的关系简明而普遍地表达出来,从具体的数字

计算到用抽象的字母概括运算规律上,是一种飞跃。

2, 用字母表示数时,字母所取的值,应使代数式有意义,并使它所表示的实际问题有意义。

例如①写出数a的倒数 ②用字母表示一切偶数

解:①当a≠0时, a的倒数是1 a

②设n为整数, 2n可表示所有偶数。

3, 命题中的字母,一般要注明取值范围,在没有说明的情况下,它表示所学过的数,并且

能使题设有意义。

例题① 化简:⑴|x -3|(x<3) ⑵| x+5|

解:⑴∵x<3,∴x-3<0,

∴|x-3|=-(x-3)=-x+3

⑵当x -5时,|x+5|=x+5,

当x <-5时,|x+5|=-x-5(本题x 表示所有学过的数)

例② 己知十位上的数是a,个位数是b ,试写出这个两位数

解:这个两位数是10a+b

(本题字母a、b的取值是默认题设有意义,即a 表示1到9的整数,b表示0到9

的整数)

4, 用字母等式表示运算定律、性质、法则、公式时,一般左边作为题设,所用的字母是使

左边代数式有意义的,所以只对变形到右边所增加的字母的取值加以说明。

例如用字母表示:①分数的基本性质 ②分数除法法则 解:①分数的基本性质是bbmbb m (m≠0), (m≠0) aamaa m

a作为左边的分母不另说明a≠0, ②bdbc (d≠0) d在左边是分子到了右边变分母,故另加说明。 acad

116822412(16 24 ) 2 = 817171717175, 用字母等式表示运算定律、性质、法则、公式,不仅可从左到右顺用,还可从右到左逆用;公式可以变形,变形时字母取值范围有变化时应加说明。例如: 乘法分配律,顺用a(b+c)=ab+ac,

逆用5a+5b=5(a+b), 6.25×3.14-5.25×3.14=3.14(6.25-5.25)=3.14

全面的初中数学竞赛知识点讲解

路程S=速度V×时间T, V=SS(T≠0), T=(V≠0) TV

6, 用因果关系表示的性质、法则,一般不能逆用。

例如:加法的符号法则 如果a>0,b>0, 那么 a+b>0,不可逆

绝对值性质 如果a>0,那么|a|=a 也不可逆(若|a|=a则a 0)

7, 有规律的计算,常可用字母表示其结果,或概括成公式。

例1:正整数中不同的五位数共有几个?不同的n位数呢?

解:不同的五位数可从最大 五位数99999减去最小五位数10000前的所有正整数,即

99999-9999=90000.

推广到n位正整数,则要观察其规律

一位正整数,从1到9共9个, 记作9×1

二位正整数从10到99共90个, 记作9×10

三位正整数从100到999共900个, 记作9×102

四位正整数从1000到9999共9000个, 记作9×103 (指数3=4-1)

∴n位正整数共9×10 n-1个

例2 _____________________________________________________

A C D E B

在线段AB上加了3个点C、D、E后,图中共有几条线段? 加n点呢?

解:以A为一端的线段有: AC、AD、AE、AB 共4条

以C为一端的线段有:(除CA外) CD、CE、CB 共3条

以D为一端的线段有:(除DC、DA外) DE、DB 共2条

以E为一端的线段有:(除ED、EC、EA外) EB 共1条

共有线段1+2+3+4=10 (条) 注意:3个点时,是从1加到4, 因此

如果是n个点,则共有线段1+2+3+ +n+1= 1 n 1n(n 2)n=条 22

八、抽屉原则

1, 4个苹果放进3个抽屉,有一种必然的结果:至少有一个抽屉放进的苹果不少于2个(即

等于或多于2个);如果7个苹果放进3个抽屉,那么至少有一个抽屉放进的苹果不少

于3个(即的等于或多于3个),这就是抽屉原则的例子。

2, 如果用 表示不小于的最小整数,例如 =3, 2 。那么抽屉原则可

个。

的定义,己知m、n可求 ; 3, 根据 ,则可求的范围,例如己知 =3,那么2< 3;己知 =2,己知 于

则 1< 2,即3<x 6,x有最小整数值4 定义为:m个元素分成n个集合(m、n为正整数m>n),则至少有一个集合里元素不少九、一元一次方程解的讨论

全面的初中数学竞赛知识点讲解

1, 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。一元方程的

解也叫做根。

例如:方程 2x+6=0, x(x-1)=0, |x|=6, 0x=0, 0x=2的解

分别是: x=-3, x=0或x=1, x=±6, 所有的数,无解。

2, 关于x 的一元一次方程的解(根)的情况:化为最简方程ax=b后,

讨论它的解:当a≠0时,有唯一的解 x=b; a

当a=0且b≠0时,无解;

当a=0且b=0时,有无数多解。(∵不论x取什么值,0x=0都成立)

3, 求方程ax=b(a≠0)的整数解、正整数解、正数解

当a|b时,方程有整数解;

当a|b,且a、b同号时,方程有正整数解;

当a、b同号时,方程的解是正数。

综上所述,讨论一元一次方程的解,一般应先化为最简方程ax=b

十、二元一次方程的整数解

1, 二元一次方程整数解存在的条件:在整系数方程ax+by=c中,

若a,b的最大公约数能整除c,则方程有整数解。即

如果(a,b)|c 则方程ax+by=c有整数解

显然a,b互质时一定有整数解。

例如方程3x+5y=1, 5x-2y=7, 9x+3y=6都有整数解。

返过来也成立,方程9x+3y=10和 4x-2y=1都没有整数解,

∵(9,3)=3,而3不能整除10;(4,2)=2,而2不能整除1。

一般我们在正整数集合里研究公约数,(a,b)中的a,b实为它们的绝对值。

2, 二元一次方程整数解的求法:

若方程ax+by=c有整数解,一般都有无数多个,常引入整数k来表示它的通解(即所有的

解)。k叫做参变数。

方法一,整除法:求方程5x+11y=1的整数解

1 11y1 y 10y1 y 2y (1) , =555

1 y k(k是整数) 设,则y=1-5k (2) , 5解:x=

把(2)代入(1)得x=k-2(1-5k)=11k-2

∴原方程所有的整数解是

方法二,公式法: x 11k 2(k是整数) y 1 5k

x x0 x x0 bk设ax+by=c有整数解 则通解是 (x0,y0可用观察法) y y aky y00

3, 求二元一次方程的正整数解:

① 出整数解的通解,再解x,y的不等式组,确定k值

② 用观察法直接写出。

十一、二元一次方程组解的讨论

全面的初中数学竞赛知识点讲解

1. 二元一次方程组 a1x b1y c1的解的情况有以下三种: a2x b2y c2

① 当a1b1c1 时,方程组有无数多解。(∵两个方程等效) a2b2c2

a1b1c1 时,方程组无解。(∵两个方程是矛盾的) a2b2c2

a1b1 (即a1b2-a2b1≠0)时,方程组有唯一的解: a2b2② 当③ 当

c1b2 c2b1 x ab ab 1221 (这个解可用加减消元法求得)

y c2a1 c1a2

a1b2 a2b1

2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按

二元一次方程整数解的求法进行。

求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解

含待定系数的不等式或加以讨论。

十二、用交集解题

1. 某种对象的全体组成一个集合。组成集合的各个对象叫这个集合的元素。例如6的正约

数集合记作{6的正约数}={1,2,3,6},它有4个元素1,2,3,6;除以3余1

的正整数集合是个无限集,记作{除以3余1的正整数}={1,4,7,10 },它的

个元素有无数多个。

2. 由两个集合的所有公共元素组成的一个集合,叫做这两个集合的交集

例如6的正约数集合A={1,2,3,6},10的正约数集合B={1,2,5,10},6与

10的公约数集合C={1,2},集合C是集合A和集合B的交集。

3. 几个集合的交集可用图形形象地表示,

右图中左边的椭圆表示正数集合, 右边的椭圆表示整数集合,中间两个椭圆 的公共部分,是它们的交集――正整数集。

例如不等式组

2x 6 (1)解的集合就是 x 2 (2)

不等式(1)的解集x>3和不等式(2)的解集x>2的交集,x>3. 4有的解(即解的集合)分别求出来,它们的公共部分(即交集)就是所求的答案。

全面的初中数学竞赛知识点讲解

有时可以先求出其中的一个(一般是元素最多)的解集,再按其他条件逐一筛选、剔除,得

答案。

十三、用枚举法解题

有一类问题的解答,可依题意一一列举,并从中找出规律。列举解答要注意:

① 按一定的顺序,有系统地进行;

② 分类列举时,要做到既不重复又不违漏;

③ 遇到较大数字或抽象的字母,可从较小数字入手,由列举中找到规律。

十四、经验归纳法

1.通常我们把“从特殊到一般”的推理方法、研究问题的方法叫做归纳法。

通过有限的几个特例,观察其一般规律,得出结论,它是一种不完全的归纳法,也叫做经

验归纳法。例如

①由 ( - 1)2 = 1 ,(- 1 )3 =- 1 ,(- 1 )4 = 1 , ,

归纳出 - 1 的奇次幂是- 1,而- 1 的偶次幂 是 1 。

②由两位数从10 到 99共 90 个( 9 × 10 ),

三位数从 100 到 999 共900个(9×102),

四位数有9×103=9000个(9×103),

归纳出n 位数共有9×10n-1(个)

③ 由1+3=22, 1+3+5=32, 1+3+5+7=42

推断出从1开始的n个連续奇数的和等于n2等。

可以看出经验归纳法是获取新知识的重要手段,是知识攀缘前进的阶梯。

2. 经验归纳法是通过少数特例的试验,发现规律,猜想结论,要使规律明朗化,必须进行

足夠次数的试验。

由于观察产生的片面性,所猜想的结论,有可能是错误的,所以肯定或否定猜想的结论,

都必须进行严格地证明。(到高中,大都是用数学归纳法证明)

十五、乘法公式

1. 乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。

公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、

根式。

公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还

要记住一些重要的变形及其逆运算――除法等。

2. 基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。

完全平方公式:(a±b)2=a2±2ab+b2,

平方差公式:(a+b)(a-b)=a2-b2

立方和(差)公式:(a±b)(a2 ab+b2)=a3±b3

3.公式的推广:

① 多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd

即:多项式平方等于各项平方和加上每两项积的2倍。

② 二项式定理:(a±b)3=a3±3a2b+3ab2±b3

(a±b)4=a4±4a3b+6a2b2±4ab3+b4)

(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5)

全面的初中数学竞赛知识点讲解

注意观察右边展开式的项数、指数、系数、符号的规律

③ 由平方差、立方和(差)公式引伸的公式

(a+b)(a3-a2b+ab2-b3)=a4-b4

(a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5

(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6

注意观察左边第二个因式的项数、指数、系数、符号的规律

在正整数指数的条件下,可归纳如下:设n为正整数

-----(a+b)(a2n1-a2n2b+a2n3b2- +ab2n2-b2n1)=a2n-b2n

---(a+b)(a2n-a2n1b+a2n2b2- -ab2n1+b2n)=a2n+1+b2n+1

类似地:

-----(a-b)(an1+an2b+an3b2+ +abn2+bn1)=an-bn

4. 公式的变形及其逆运算

由(a+b)2=a2+2ab+b2 得 a2+b2=(a+b)2-2ab

由 (a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得 a3+b3=(a+b)3-3ab(a+b)

由公式的推广③可知:当n为正整数时

an-bn能被a-b整除,

a2n+1+b2n+1能被a+b整除,

a2n-b2n能被a+b及a-b整除。

十六、整数的一种分类

1. 余数的定义:在等式A=mB+r中,如果A、B是整数,m是正整数,

r为小于m的非负整数,那么我们称r是A 除以m的余数。

即:在整数集合中 被除数=除数×商+余数 (0 余数<除数)

例如:13,0,-1,-9除以5的余数分别是3,0,4,1

(∵-1=5(-1)+4。 -9=5(-2)+1。)

2. 显然,整数除以正整数m ,它的余数只有m种。

例如 整数除以2,余数只有0和1两种,除以3则余数有0、1、2三种。

3. 整数的一种分类:按整数除以正整数m的余数,分为m类,称为按模m分类。例如:

m=2时,分为偶数、奇数两类,记作{2k},{2k-1} (k为整数)

m=3时,分为三类,记作{3k},{3k+1},{3k+2}.

或{3k},{3k+1},{3k-1}其中{3k-1}表示除以3余2。

m=5时,分为五类,{5k}.{5k+1},{5k+2},{5k+3},{5k+4}

或{5k},{5k±1},{5k±2}, 其中5k-2表示除以5余3。

4. 余数的性质:整数按某个模m分类,它的余数有可加,可乘,可乘方的运算规律。

举例如下:

①(3k1+1)+(3k2+1)=3(k1+k2)+2 (余数1+1=2)

②(4k1+1)(4k2+3)=4(4k1k2+3k1+k2)+3 (余数1×3=3)

③(5k±2)2=25k2±20k+4=5(5k2±4k)+4 (余数22=4)

以上等式可叙述为:

① 两个整数除以3都余1,则它们的和除以3必余2。

② 两个整数除以4,分别余1和3,则它们的积除以4必余3。

③ 如果整数除以5,余数是2或3,那么它的平方数除以5,余数必是

全面的初中数学竞赛知识点讲解

4或9。

余数的乘方,包括一切正整数次幂。

如:∵17除以5余2 ∴176除以5的余数是4 (26=64)

5. 运用整数分类解题时,它的关鍵是正确选用模m。

十七、奇数.偶数

1. 奇数和偶数是在整数集合里定义的,能被2整除的整数是偶数,如2,0-2 ,不能被

2整除的整数是奇数,如-1,1,3。

如果n 是整数,那么2n是偶数,2n-1或2n+1是奇数。如果n是正整数,那么2n是

正偶数,2n-1是正奇数。

2. 奇数、偶数是整数的一种分类。可表示为:

奇数 整数 或 整数集合 偶数

这就是说,在整数集合中是偶数就不是奇数,如果既不是偶数又不是

奇数,那么它就不是整数。

3. 奇数偶数的运算性质:

奇数±奇数=偶数,奇数±偶数=奇数,偶数±偶数=偶数

奇数×奇数=奇数 奇数×偶数=偶数,偶数×偶数=偶数

奇数的正整数次幂是奇数,偶数的正整数次幂是偶数,

两个連续整数的和是奇数,积是偶数。

十八、式的整除

1. 定义:如果一个整式除以另一个整式所得的商式也是一个整式,并且余式是零,则称这

个整式被另一个整式整除。

2. 根据被除式=除式×商式+余式,设f(x),p(x),q(x)都是含x 的整式,

那么 式的整除的意义可以表示为:

若f(x)=p(x)×q(x), 则称f(x)能被 p(x)和q(x)整除

例如∵x2-3x-4=(x-4)(x +1),

∴x2-3x-4能被(x-4)和(x +1)整除。

显然当 x=4或x=-1时x2-3x-4=0,

3. 一般地,若整式f(x)含有x –a的因式,则f(a)=0

反过来也成立,若f(a)=0,则x-a能整除f(x)。

4. 在二次三项式中

若x2+px+q=(x+a)(x+b)=x2+(a+b)x+ab 则p=a+b,q=ab

在恒等式中,左右两边同类项的系数相等。这可以推广到任意多项式。

十九、因式分解

我们学过因式分解的四种基本方法:提公因式法,运用公式法,十字相乘法,分组分解法。

下面再介紹两种方法

1. 添项拆项。是.为了分组后,能运用公式(包括配方)或提公因式

例1因式分解:①x4+x2+1 ②a3+b3+c3-3abc

①分析:x4+1若添上2x2可配成完全平方公式

解:x4+x2+1=x4+2x2+1-x2=(x2+1)2-x2=(x2+1+x)(x2+1-x)

全面的初中数学竞赛知识点讲解

②分析:a3+b3要配成(a+b)3应添上两项3a2b+3ab2

解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b-3ab2

=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)[(a+b)2-(a+b)c+c2]-3 ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-ac-bc)

例2因式分解:①x3-11x+20 ② a5+a+1

① 分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提。(注意这

里16是完全平方数)

② 解:x3-11x+20=x3-16x+5x+20=x(x2-16)+5(x+4)

=x(x+4)(x-4)+5(x+4) =(x+4)(x2-4x+5)

③ 分析:添上-a2 和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式

解:a5+a+1=a5-a2+a2+a+1=a2(a3-1)+ a2+a+1

=a2(a-1)( a2+a+1)+ a2+a+1= (a2+a+1)(a3-a2+1)

2. 运用因式定理和待定系数法

定理:⑴若x=a时,f(x)=0, [即f(a)=0],则多项式f(x)有一次因式x-a

⑵若两个多项式相等,则它们同类项的系数相等。

例3因式分解:①x3-5x2+9x-6 ②2x3-13x2+3

①分析:以x=±1,±2,±3,±6(常数6的约数)分别代入原式,若值为0,则可找到一次

因式,然后用除法或待定系数法,求另一个因式。

解:∵x=2时,x3-5x2+9x-6=0,∴原式有一次因式x -2,

∴x3-5x2+9x-6=(x -2)(x2-3x+3,)

②分析:用最高次项的系数2的约数±1,±2分别去除常数项3的约数

±1,±3得商±1,±2,±

可知只有当x=

解:∵x=13,±,再分别以这些商代入原式求值, 221时,原式值为0。故可知有因式2x-1 21时,2x3-13x2+3=0,∴原式有一次因式2x-1, 2

设2x3-13x2+3=(2x-1)(x2+ax-3), (a是待定系数)

比较右边和左边x2的系数得 2a-1=-13, a=-6

∴2x3-13x+3=(2x-1)(x2-6x-3)。

例4因式分解2x2+3xy-9y2+14x-3y+20

解:∵2x2+3xy-9y2=(2x-3y)(x+3y), 用待定系数法,可设

2x2+3xy-9y2+14x-3y+20=(2x-3y+a)(x+3y+b),a,b是待定的系数,

比较右边和左边的x和y两项 的系数,得

a 4 a 2b 14 解得 b 5 3a 3b 3

∴2x2+3xy-9y2+14x-3y+20=(2x-3y+4)(x+3y+5)

又解:原式=2x2+(3y+14)x-(9y2+3y-20) 这是关于x的二次三项式

常数项可分解为-(3y-4)(3y+5),用待定系数法,可设

2x2+(3y+14)x-(9y2+3y-20)=[mx-(3y-4)][nx+(3y+5)]

比较左、右两边的x2和x项的系数,得m=2, n=1

∴2x2+3xy-9y2+14x-3y+20=(2x-3y+4)(x+3y+5)

全面的初中数学竞赛知识点讲解

二十、代数恒等式的证明

证明代数恒等式,在整式部分常用因式分解和乘法两种相反的恒等变形,要特别注意运用乘

法公式和等式的运算法则、性质。

具体证法一般有如下几种

1.从左边证到右边或从右边证到左边,其原则是化繁为简。变形的过程中要不断注意结论

的形式。

2.把左、右两边分别化简,使它们都等于第三个代数式。

3.证明:左边的代数式减去右边代数式的值等于零。即由左边-右边=0可得左边=右边。

4,由己知等式出发,经过恒等变形达到求证的结论。还可以把己知的条件代入求证的一边

证它能达到另一边,

二十一、比较大小

1. 比较两个代数式的值的大小,一般要按字母的取值范围进行讨论,常用求差法。根据不

等式的性质:

当a-b>0时,a>b; 当a-b=0时,a=b; 当a-b<0时a<b。

2. 通常在写成差的形式之后,用因式分解化为积的形式,然后由负因数的个数决定其符号。

3. 需要讨论的可借助数轴,按零点分区。

4. 实数(有理数和无理数的统称)的平方是非负数,在决定符号时常用到它。即若a是实

数,则a2 0,由此而推出一系列绝对不等式(字母不论取什么值,永远成立的不等式)。

诸如

(a-b)2 0, a2+1>0, a2+a+1=(a+123)+>0 24

-a2 0, -(a2+a+2)<0 当a≠b时,-(a-b)2<0

二十二、分式

1. 除式含有字母的代数式叫做分式。分式的值是由分子、分母中的字母的取值确定的。

(1)分式A中,当B≠0时有意义;当A、B同号时值为正,异号时值为负,反过来也成立。B

分子、分母都化为积的形式时,分式的符号由它们中的负因数的个数来确定。

A都是整数,那么A是B的倍数,B是A的约数。 B

A(3)一切有理数可用来表示,其中A是整数,B是正整数,且A、B互质。 B(2)若A、B及

2. 分式的运算及恒等变形有一些特殊题型,要用特殊方法解答方便。

二十三、递推公式

1.先看一例:a1=b,a2=222,a3= an+1=a2a1an这a1,a2,a3 an,an+1是对应于正整数1,

2,3 n,n+1 的有序的一列数(右下标的数字表示第几项),这一列数只要给出某一项数

值,就可以推出其他各项数值。

例如: 若 a1=10, 则a2=121=,a3=10,a4=,a5=10 5105

全面的初中数学竞赛知识点讲解

2. 为了计算的方便,通常把递推公式写成以a1和n表示an的形式,这可用经验归纳法。 例

如:把递推公式an+1=an+5改为用a1 和n来表示

∵a2=a1+5, ∴a3=a2+5=(a1+5)+5=a1+2×5, a4=a3+5=(a1+2×5)+5=a1+3×5

∴an=a1+(n-1)5

如果 已知a1=10, 求a20,显然代入这一公式方便。A20=10+19×5=105

3.有一类问题它与正整数的顺序有关,可寻找递推公式求解,这叫递推法。

二十四、连续正整数的性质

一.两个连续正整数

1.两个连续正整数一 定是互质的,其商是既约分数。

2.两个连续正整数的积是偶数,且个位数只能是0,2,6。

3.两个连续正整数的和是奇数,差是1。

4.大于1的奇数都能写成两个连续正整数的和。例如3=1+2,79=39+40, 111=55+56。

二.计算连续正整数的个数

例如:不同的五位数有几个?这是计算连续正整数从10000到99999的个数,它是 99999

-10000+1=90000(个)

1. n位数的个数一般可表示为 9×10n-1(n为正整数,100=1)

例如一位正整数从1到9共9个(9×100),

二位数从10到99共90个 (9×101)

三位数从100到999共900个(9×102)

2.连续正整数从n 到m的个 数是 m-n+1

把它推广到连续奇数、连续偶数、除以模m有同余数的连续数的个数的计算,举例如下:

49-13+1=19 2

48-14从13到49的连续偶数的个数是+1=18 2

48-154. 从13到49能被3整除的正整数的个数是+1=12 3

49-13从13到49的正整数中除以3余1的个数是+1=13 33. 从13到49的连续奇数的个数是

你能从中找到计算规律吗?

三.计算连续正整数的和

n (n是正整数) 2

b a 1 连续正整数从a到b的和 记作(a+b) 21. 1+2+3+ +n=(1+n)

把它推广到计算连续奇数、连续偶数、除以模m有同余数的和,举例如下:

2. 11+13+15+ +55=(11+55)×

个)

3. 11+14+17+ +53=(11+53)×

数的个数共2355-11=759 (∵从11到55有奇数+1=232215=480 (∵从11到53正整数中除以3余2的253-11+1=15) 3

全面的初中数学竞赛知识点讲解

四. 计算由连续正整数连写的整数,各数位上的数字和

1. 123456789各数位上的数字和是(0+9)+(1+8)+ +(4+5)

=9×5=45

2. 1234 99100计算各数位上的数字和可分组为:(0,99),(1,98),

(2,97) (48,51),(49,50)共有50个18,加上100中的1

∴各数位上的数字和是18×50+1=901

五. 连续正整数的积

从1开始的n个正整数的积1×2×3× ×n记作n!,读作n的阶乘

1. n个连续正整数的积能被n!整除,

如11×12×13能被1×2×3整除;97×98×99×100能被4!整除;

a(a+1)(a+2) (a+n)能被(n+1)!整除。

2. n!含某因质数的个数。举例如下:

① 1×2×3× ×10的积中含质因数2的个数共8个

其中2,4,6,8,10都含质因数2 暂各计1个,共5个

其中4=22 含两个质因数2 增加了1个

其中8=23 含三个质因数2 再增加2个

② 1×2×3× ×130的积中含质因数5的个数的计算法

5,10,15, 125,130 均含质因数5 暂各计1个,共26个

其中25,50,75,100均含52有两个5 各加1个, 共4个

其中125=53含三个5 再增加2个

∴积中含质因数5的个数是32

二十五、十进制的记数法

1. 十进制的记数法就是用0,1,2 9十个数码记数的方法,位率是逢十进一。底数为10

的各整数次幂,恰好是十进制数的各个位数:

100=1(个位数—第1位), 101=10(十位上的数---第2位),

102=100(百位上的数---第3位), 10n(第n+1位上的数)

例如54307记作5×104+4×103+3×102+0×101+7×100

2. 十进制的n位数(n为正整数),123nn 记作:

10n-1a1+10n-2a2+10n-3+ +102an-2+10an-1+an

其中最高位a1≠0,即0<a1 9,其它是0 a1,a2,a3 an 9

3. 各位上的数字相同的正整数记法:

例如∵999=1000-1=103-1,9999=104-1,∴999 9=10n-1 n个9

10n 110n 1510n 1,333,555 111 1= 5= 3= 939n个1n个5n个3

4 解答有关十进制数的问题,常遇到所列方程,少于未知数的个数,这时需要根据各位上

的数字都是表示0到9的整数,这一性质进行讨论

二十六、选择题解法(一)

1. 选择题有多种类,这里只研究有唯一答案的选择题解法。

2. 对“有唯一答案”的选择题解答,一般从两方面思考:直接选择正确的答案或逐一淘汰

全面的初中数学竞赛知识点讲解

错误的选择项。

3. 判断的根据有:运用概念辨析,借助图形判别,直接推理演算,列举反例否定,代入特

殊值验证等等。

4. 必须注意:

① 先易后难,寻找突破口。

② 否定选择项,只要有一个反例。

③ 对涉及数值(包括比较大小)的选择题,可考虑用符合条件的特殊值代入判断,包

括利用连续数,奇偶数,平方数,个位数等特征。

④ 概念辨析要注意类同概念的差异,特殊点的取舍,凡分区讨论字母的取值,要做到

既不违漏又不重复。

⑤ 能借助图形判别的,应按比例画出草图。

二十七、识图

1.几何学是研究物体形状、大小、位置的学科。

2.几何图形就是点,线,面,体的集合。点是组成几何图形的基本元素。《平面几何学》只

研究在同一平面内的图形的形状、大小和相互位置。

3.几何里的点、线、面、体实际上是不能脱离物体而单独存在的。因此单独研究点、线、面、

体,要靠正确的想像

点:只表示位置,没有大小,不可再分。

线:只有长短,没有粗细。线是由无数多点组成的,即“点动成线”。

面:只有长、宽,没有厚薄。面是由无数多线组成的,“线动成面”。

4.因为任何复杂的图形,都是由若干基本图形组合而成的,所以识别图形的组合关系是学好

几何的重要基础。

识别图形包括静止状态的数一数,量一量,比一比,算一算;运动状态中的位置、数量的

变化,图形的旋转,摺叠,割补,并合,比较等。还要注意一般图形和特殊图形的差别。

二十八、三角形的边角性质

三角形边角性质主要的有:

1. 边与边的关系是:任意两边和大于第三边,任意两边差小于第三边,反过来要使三条线

段能组成一个三角形,必须任意两条线段的和都大于第三条线段,即最长边必须小于其

他两边和。用式子表示如下:

a b c a,b,c是△ABC的边长 b c a a bc a b c a b

推广到任意多边形:任意一边都小于其他各边的和

2. 角与角的关系是:三角形三个内角和等于180;任意一个外角等于和它不相邻的两个

内角和。

推广到任意多边形:四边形内角和=2×180, 五边形内角和=3×180

六边形内角和=4×180 n边形内角和=(n-2) 180

3. 边与角的关系

全面的初中数学竞赛知识点讲解

① 在一个三角形中,等边对等角,等角对等边;

大边对大角,大角对大边。

② 在直角三角形中,

△ABC中∠C=Rt∠ a2 b2 c2(勾股定理及逆定理)

C Rt △ABC中 a:b:c=1::2 A 30

△ABC中 C Rt a:b:c=1:1: A 45

二十九、概念的定义

1. 概念是反映事物本质属性的思维形态。概念是用词(或符号)表现出来的。例如:水果,

人,上午,方程,直线,三角形 ,平行,相等以及符号=≌,∥,⊥等等都是概念。

2. 概念是概括事物的本质,事物的全体,事物的内在联系。例如水果这一概念指的是桃,

李,苹果, 这一类食物的全体,它们共同的本质属性是有丰富的营养,充足的水

份,可食的植物果实,而区别于其他食物(如蔬菜)。

人们在生活,学习,工作中时时接触概念,不断地学习概念,加深对概念的正确认识,

同时运用概念进行工作,学习和生活,

3. 正确理解数学概念是掌握数学基础知识的前提。

4. 理解概念就是对名词,符号的含义的正确认识,一般包含两个方面:

① 明确概念所反映的事物的共同本质属性,即概念的内涵;

② 明确概念所指的一切对象的范围,即概念的外延。

例如“代数式”这一概念的内涵是:用运算符号连结数或表示数的字母的式子;概念的

外延是一切具体的代数式――单项式,多项式,分式,有理式,根式,无理式。

又如“三角形”的概念内涵是三条线段首尾顺次相接的封闭图形;它的外延是不等边三

角形,等腰三角形,等边三角形,直角三角形,钝角三角形,锐角三角形等一切三角形。

就是说要正确理解名词或符号所反映的“质”的特征和“量”的范围。

一般情况是,对概念下定义,以明确概念的内涵;把概念分类,可明确概念的外延。

5. 概念的定义就是用语句说明概念的含义,揭示概念的本质属性。

数学概念的基本定义方式是种属定义法。

在两个从属关系的概念中(如三角形与等腰三角形),外延宽的一个叫上位概念,也叫

种概念,(如三角形),外延窄的一个叫下位概念,也叫属概念(如等腰三角形)

种属定义法可表示为: 被定义的概念=种概念+类征(或叫属差)

例如: 方 程=等 式+含未知数

又如: 无理数=小 数+无限不循环

或 无理数=无限小数+不循环

再如 等腰三角形=三角形+有两条边相等

6. 基本概念(即原始概念)是不下定义的概念,因为种属定义法,要用已定义过的上位概

全面的初中数学竞赛知识点讲解

念来定义新概念,如果逐一追溯上去,必有最前面的概念是不下定义的概念。如点,线,

集合等都是基本概念。

不定义的基本概念一般用描述法,揭示它的本质属性。

例如:几何中的“点”是这样描述的:线与线相交于点。点只表示位置,没有大小,不

可再分。“直线”我们用“拉紧的线”和“纸张的折痕”来描述它的“直”,再用“直线是向

两方无限延伸的”以说明它的“无限长”的本质属性。

有了点和直线的概念,才能顺利地定义射线,线段,角,三角形等。

7. 概念的定义也可用外延法。即列举概念的全部外延,以揭示概念的内涵。

例如:单项式和多项式统称整式;锐角三角形和钝角三角形合称斜三角形等都是外延定义法。

对同一个概念有时可用几种不同的定义法。例如:“有理数”可定义为

① 有限小数和无限循环小数叫做有理数。②整数和分数统称有理数。

前者是用上位概念“小数”加上类征“有限,无限循环”来定义下位概念的,这是种属定义

法;后者是用下位概念的“整数”、“分数”来定义上位概念的,它是外延法。

8. 正确的概念定义,要遵守几条规则。

①不能循环定义。例如周角的360分之1叫做1度的角(对),360度的角叫做周角(错,

这是循环定义)

② 定义概念的外延与被定义的概念的外延必须一致。例如若用“无限小数叫做无理数”来

定义无理数就不对了,因为“无限小数”的外延比“无理数”的外延宽。

③ 定义用语要简单明确,不要含混不清。

④ 一般不用否定语句或比喻方法定义。

9. 定义可以反叙。一般地,定义既是判定又是性质。

例如:有两边相等的三角形叫做等腰三角形。这里“等腰三角形“是被定义的概念,

而“有两边相等的三角形”是用来定义的概念,这两个概念的外延是相等的,所以两者

可易位,即定义可反叙。

所以由定义可得

等腰三角形的判定:如果三角形有两条边相等,那么它是等腰三角形。

等腰三角形的性质:如果一个三角形是等腰三角形,那么它有两条边相等。

10. 数学概念要尽可能地用数学符号表示。

例如:等腰三角形,要结合图形写出两边相等,在△ABC中,AB=AC

直角三角形,要写出哪个是直角, 在Rt△ABC中,∠C=Rt∠

又如 实数a的绝对值是非负数,记作

11. 运用定义解题是最本质的解题方法 “ ”读作大于或等于。 a 0,

a(a 0) 例如:绝对值的定义,可转化为数学式子表示a= 0(a 0) a(a 0)

含有绝对值符号的所有问题都可以根据其定义,化去绝对值符号后解答。

全面的初中数学竞赛知识点讲解

x (x 1)(x 0) 如:化简:x x 可等于 x (x 1)(0 x 1) x (x 1)(x 1)

解方程:x =2x+1可化为 当x<-1时, -(x+1)=2x+1;

当x -1时, x+1=2x+1。

解不等式 -x<2 可解两个不等式组:

1-x 0 1 x 0 (1 x) 2 1 x 2

三十、概念的分类

1. 概念的分类是揭示概念的外延的重要方法。当一个概念的外延有许多事物时,按照某一

个标准把它分成几个小类,能更明确这一概念所反映的一切对象的范围,且能明确各类

概念之间的区别与联系。

2. 概念分类必须用同一个本质属性为标准,把一种概念分为最邻近的类概念。例如三角形

可按边的大小分类,也可用角的大小分类;又如整数可按符号性质分为正、负、零,也

可以按除以模m的余数分类。

分别表示如下:

能被4整除能被3整除 正整数 偶数 除以4余1整数 零整数 整数 除以 3余1 整数 奇数 负整数 除以 除以4余23余2 除以4余3

3. 一种概念所分成的各类概念应既不违漏,又不重复。即每一个被分的对象必须落到一个

类,并且只能落到一个类。所分的各类概念的外延总和应当与被分的概念的外延总和相

等。

例如 正整数按下列分类是正确的

质数 正奇数 正整数 合数 正整数 正偶数 1

如果只分为质数和合数,则外延总和比正整数的外延小;如果分为奇数和偶数则外延总

和比正整数外延大,因此都不对。

又如等腰三角形的定义是:有两条边相等的三角形叫做等腰三角形。

所以三角形按边的大小分类

应是分成两类:不等边三角形和等腰三角形, 而不能是三类:(不等边,等腰,等边)

如果这样,三边相等的三角形将落入两类(等腰,等边),所以概念的分类与概念的定

义有直接联系。

4. 二分法是常用的分类法。即把一种概念分为具有和不具有某种属性。

全面的初中数学竞赛知识点讲解

例如三角形 不等边三角形平 等腰三角形 相交 不相交

实数可分为:非负实数和负实数;四边形可分为:平行四边形和非平行四边形等等。

5. 从属关系的概念(上下位概念)是指一个概念的外延包含着另一个概念的外延。种概念

与它所分的各类概念之间的关系就是从属关系。

例如:等边三角形从属于等腰三角形,而等腰三角形又从属于三角形

又如:代数式包含有理式和无理式,有理式包含整式和分式,整式包含单项式和多项式。其

关系可图示如下:

6.并列关系的概念是两个概念的外延互相排斥,互不相容。由同一种概念分成的各类概念之

间的关系是并列关系的概念(同位概念)。

例如:偶数和奇数;有理式和无理式;直角三角形、钝角三角形和锐角三角形,它们之

间的关系都是并列关系的概念。可图示如下:

7. 一种概念用不同的标准分类,所得的各类概念之间的关系 可能就有交叉关系的概念。

例如:正数和整数是交叉关系的概念,既是正数又是整数的数叫做正整数;

等腰三角形和直角三角形也是交叉关系的概念,外延重叠的部分,叫做等腰直角三角

形。图示如下:

三十一、勾股定理

勾股定理及逆定理:△ABC中 ∠C=Rt∠ a2+b2=c2

2. 勾股定理及逆定理的应用 1.

全面的初中数学竞赛知识点讲解

① 作已知线段a的2,, 5 倍

② 计算图形的长度,面积,并用计算方法解几何题

③ 证明线段的平方关系等。

3. 勾股数的定义:如果三个正整数a,b,c满足等式a2+b2=c2,那么这三个正整数a,b,c叫做

一组勾股数.

4. 勾股数的推算公式

① 罗士琳法则(罗士琳是我国清代的数学家1789――1853)

任取两个正整数m和n(m>n),那么m2-n2,2mn, m2+n2是一组勾股数。

k2 1k2 1② 如果k是大于1的奇数,那么k, ,是一组勾股数。 22

K K ③ 如果k是大于2的偶数,那么k, 1, 1是一组勾股数。 2 2

④ 如果a,b,c是勾股数,那么na, nb, nc (n是正整数)也是勾股数。

5. 熟悉勾股数可提高计算速度,顺利地判定直角三角形。简单的勾股数有:3,4,5; 5,

12,13; 7,24,25; 8,15,17; 9,40,41。 22

三十二、中位线

1. 三角形中位线平行于第三边,并且等于第三边的一半。

梯形中位线平行于两底,并且等于两底和的一半。

2. 中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度,

确定线段的和、差、倍关系。

3. 运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。

4. 中位线性质定理,常与它的逆定理结合起来用。它的逆定理就是平行线截比例线段定理

及推论,

①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等

②经过三角形一边中点而平行于另一边的直线,必平分第三边

③经过梯形一腰中点而平行于两底的直线,必平分另一腰

5. 有关线段中点的其他定理还有:

①直角三角形斜边中线等于斜边的一半

②等腰三角形底边中线和底上的高,顶角平分线互相重合

③对角线互相平分的四边形是平行四边形

④线段中垂线上的点到线段两端的距离相等

因此如何发挥中点作用必须全面考虑。

三十三、同一法

1. “同一法”是一种间接的证明方法。它是根据符合“同一法则”的两个互逆命题必等效的原理,当一个命题不易证明时,釆取证明它的逆命题。

2. 同一法则的定义是:如果一个命题的题设和结论都是唯一的事项时,那么它和它的逆命题同时有效。这称为同一法则。

互逆两个命题一般是不等价的。例如

原命题:福建是中国的一个省 (真命题)

全面的初中数学竞赛知识点讲解

逆命题:中国的一个省是福建 (假命题)

但当一命题的题设和结论都是唯一的事项时,则它们是等效的。例如

原命题:中国的首都是北京 (真命题)

逆命题:北京是中国的首都 (真命题)

因为世界上只有一个中国,而且中国只有一个首都,所以互逆的两个命题是等效的。又如 原命题:等腰三角形顶角平分线是底边上的高。(真命题)

逆命题:等腰三角形底边上的高是顶角平分线。(真命题)

因为在等腰三角形这一前提下,顶角平分线和底边上的高都是唯一的,所以互逆的两个命题是等效的。

3. 釆用同一法证明的步骤:如果一个命题直接证明有困难,而它与逆命题符合同一法则,则可釆用同一法,证明它的逆命题,其步骤是:

① 作出符合命题结论的图形(即假设命题的结论成立)

② 证明这一图形与命题题设相同(即证明它符合原题设)

三十四、反证法

1. 反证法是一种间接的证明方法。它的根据是原命题和逆否命题是等价命题,当一个命题

不易直接证明时,釆取证明它的逆否命题。

2. 一个命题和它的逆否命题是等价命题,可表示为:A→B

例如 原命题:对顶角相等 (真命题)

逆否命题:不相等的角不可能是对顶角 (真命题)

又如 原命题:同位角相等,两直线平行 (真命题)

逆否命题:两直线不平行,它们的同位角必不相等 (真命题)

3. 用反证法证明命题,一般有三个步骤:

① 反设 假设命题的结论不成立(即假设命题结论的反面成立)

② 归谬 推出矛盾(和已知或学过的定义、定理、公理相矛盾)

③ 结论 从而得出命题结论正确

例如: 求证两直线平行。用反证法证明时

① 假设这两直线不平行;

② 从这个假设出发,经过推理论证,得出矛盾;

③从而肯定,非平行不可。

三十五、两种对称

1. 轴对称和中心对称定义 把一个图形沿着某一条直线折叠,如果它能够和另一个图形重

合,那么这两个图形关于这条直线对称。这条直线叫做对称轴

把一个图形绕着某一点旋转180,如果它能够和另一个图形重合,那么这两个图形关

于这点对称,这点叫做对称中心

2. 轴对称图形和中心对称图形的定义:如果一个图形沿着某一条直线折叠,直线两旁的部

分能够互相重合,那么这个图形中叫做轴对称图形,这条直线就是它的对称轴

一个图形绕着某一点旋转180,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

3. 性质:①成轴对称或中心对称的两个图形是全等形

本文来源:https://www.bwwdw.com/article/9y71.html

Top