不定积分(含变上限积分)和微分解题方法

更新时间:2023-11-19 22:04:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

不定积分和微分

一、公式

dd/f(x)dx?f(x)f(x)dx?和??dxf(x)dx?f(x)?c的应用 dx?注意:f(x)的不定积分为F(x)?c?F(x)是f(x)的原函数?f(x)是F(x)的导数,即

?f(x)dx?F(x)?c或F/(x)?f(x)

1、已知不定积分的值,求被积函数或被积函数中的一部分,利用两边求导处理 已知

?f(?(x))dx?F(x)?c,求f(x)

?f(x)dx?x2方法:求导得f(?(x))?F/(x),令?(x)?t,则x???1(t),即f(x)?F/(??1(x)) 例1(1)解:对

?c,求?xf(1?x2)dx

?f(x)dx?x2?c求导得f(x)?2x,f(1?x2)?2?2x2

2222x2?c 则?xf(1?x)dx??x(2?2x)dx?x?3(2)xf(x)dx?arcsinx?c,求

??dx f(x)解:对xf(x)dx?arcsinx?c两边求导得xf(x)??11?x2,即f(x)?1x1?x2

?/dx11??x1?x2dx???1?x2d(1?x2)??(1?x2)2?c f(x)2332、已知导数值,求原函数,利用两边积分的方法处理 已知F(?(x))?f(x),求F(x)

方法:令?(x)?t,则x??(t),即F(t)?f(?(t)),故F(x)?/22例2(1)f(sinx)?tanx,求f(x)

?1//?f(?/(t))dt

sin2xt?解:令sinx?t,则cost?1?t,tanx?

cos2x1?t222 48

即f(t)?/ttdt??t?ln|t?1|?c 两边积分的f(t)??1?t1?t(2)已知f/(?x)?x[f/(x)?1],求f(x)

解:令?x?t,则上式为f/(t)??t[f/(?t)?1],即f/(x)??x[f/(?x)?1]

2x x2?12xdx?ln(x2?1)?c 两边积分得f(x)??2x?1由上面两式得f(x)?/(3)设f(u)在???u???内可导,且f(0)?0,又

??1f?(lnx)????x0?x?1x?1,求f(u)

t解:令lnx?t得x?e,则

??1/f(t)??t??e0?et?1e?1t?1? 即f(t)??t2??e/t?0

t?0/当t?0时,f(t)?1,两边积分得f(t)?dt?t?c1

?当t?0时,f(t)?e,两边积分得f(t)?edt?2e?c2

又因为设f(t)在???u???内可导,所以f(t)在???u???内连续

t2/t2?t2t2f(t)?lim(t?c1)?c1 f(t)?lim(2e?c2)?2?c2,lim而lim????t?0t?0t?0t?0因为f(t)在t?0处连续,则2?c2?c1?0,即c1?0,c2??2

t?0?t?故f(t)??t

2??2e?2t?0(4)设y?f(x)在x处的改变量为?y?y/?x?o(?x)y(0)?1,(?x?0),求y(1) 1?x49

解:由?y?yydydx?x?o(?x) 知 y/? 即 ?1?x1?xy1?x两边积分得

dydx??y?1?x 得 lny?ln(1?x)?c

而y(0)?1 故 c?0,即y?1?x 故y/(1)?1 (5)设f(x)?解:

??0?sintdt,求?f(x)dx

0??t??0??0/f(x)dx?xf(x)|?0??xf(x)dx???0?xsinxsinxdx??dx

0??x??x ???0sinxdx?2

/?F?(x)?f(x)二、已知F(x)是f(x)的原函数??,求被积函数中含有f(?(x))的

f(x)dx?F(x)?c???积分

1、由f(x)?F/(x)求出f(x),代入积分计算 2、把积分转化为例3(1)

?f(?(x))d(?(x))的形式,利用?f(x)dx?F(x)?c求值

sinxf(ax)dx 是f(x)的原函数,a?0,求?axsinxsinx?c 解:因为是f(x)的原函数,所以?f(x)dx?xxf(ax)ax?t1sintsinaxdx?2?f(t)dt?2?c?3?c 而?aaatax(2)e?x2是f(x)的原函数,求xf(lnx)dx

?解:因为f(x)?(e)??e2?x/?x,所以f(lnx)??1 xx2?c 则?xf(lnx)dx???xdx??2三、已知f(x)的表达式,求被积函数中含有f(?(x))的积分 1、由f(x)求f(?(x)),再把f(?(x))的表达式代入积分计算

50

2、由f(x)先求

?f(x)dx,把含有f(?(x))的积分转化为?f(?(x))d?(x)的形式处理

xx,求?f(x)dx sinx1?x例4(1)f(sinx)?2解:在

??x1?xx1?xf(x)dx中,令x?sin2t得

sin2t1?sin2tf(x)dx??f(sin2t)d(sin2t)?2?sin2t?f(sin2t)dt

?2?tsintdt??2?td(cost)??2tcost?2?costdt??2tcost?2sint?c因为sint?x,cost?1?x,t?arcsinx f(x)dx??21?x?arcsinx?2x?c

所以

?x1?x2x2(2)f(x?1)?ln2,且f[?(x)]?lnx求??(x)dx

x?22解:令x?1?t,则f(t)?lnt?1,而f[?(x)]?lnx t?1则lnx?1?(x)?1?lnx 即?(x)?

x?1?(x)?1??(x)dx??(3)(e?x22x?1dx?x?2ln|x?1|?c x?1)/?f(x),f/(x)连续,求?xf/(x)dx

2解:因为(e?x)/?f(x),所以f(x)??2xe?x,

?f(x)dx?e?x?c

222/2?x?x?xf(x)dx??xd[f(x)]?xf(x)??f(x)dx??2xe?e?c

(4)f(x)?xe,求解:

x?f/(x)?lnxdx

?f/(x)?lnxdx??lnxd[f(x)]?f(x)lnx??51

f(x)dx x

xxxx ?xelnx?edx?xelnx?e?c

?xf/(x)(5)lnf(x)?cosx,求?dx

f(x)xf/(x)解:?dx??xd[lnf(x)]?xlnf(x)??lnf(x)dx

f(x)?xcosx??cosxdx?xcosx?sinx?c

(6)设f(x)??x211sintdt,求?xf(x)dx

0t解:因为f(x)??x21sintsinx22sinx2/dt,所以f(x)??2x? 2txx111x2f(x)1112/22xf(x)dx?f(x)dx?|?xf(x)dx??xsinxdx 0?0?02?022?01 ??111cos112221sinxdx?cosx|?? 0?02222四、利用凑微分法求积分

注意:f/[g(x)]?g/(x)dx?f/[g(x)]?d[g(x)]?d[f(g(x))]

/例5(1)f(0)?1,f(2)?3,f(2)?5,求

?10xf//(2x)dx

12//12tf/(t)212//tf(t)dt??td[f(t)]?|0??f(t)dt 解:?xf(2x)dx??000444401//令2x?tf/(2)f(2)?f(0)??2 ?24//(2)设f(x)二阶可导,f(b)?a, f(a)?b,求

?baf/(x)f//(x)dx

解:

?baf(x)f(x)dx??///ba[f/(x)]2ba2?b2f(x)d[f(x)]?|a?

22//(3)设

??0[f(x)?f//(x)]sinxdx?5,f(?)?2,求f(0)

52

解:

???0f(x)sinxdx??sinxd[f(x)]???f/(x)cosxdx

00//?/? ??因为

?0??0cosxd[f(x)]?f(0)?f(?)??f(x)sinxdx

0?[f(x)?f//(x)]sinxdx?5,所以

f(0)?f(?)?5而f(?)?2,故f(0)?7

五、已知F/(x)?f(x),且f(x)?F(x)?g(x),求f(x)

F2(x)??g(x)dx,求f(x) 方法:两边积分?F(x)F(x)dx??g(x)dx,得2/例6(1)F(x)是f(x)的原函数,且x?0时,有f(x)?F(x)?sin22x,又F(0)?1,

F(x)?0,求f(x)

解:因为F(x)是f(x)的原函数,所以F/(x)?f(x), 由于 f(x)?F(x)?sin22x 故F/(x)?F(x)?sin22x, 两边积分得

/2?F(x)F(x)dx??sin2xdx?11xsin4xdx?cos4xdx???c1 2?2?28F2(x)?c2 而 ?F(x)F(x)dx??F(x)d[F(x)]?2/故F(x)?x?2sin4x?c,又F(0)?1得c?1 4而F(x)?0,所以F(x)?x?sin4x?1 f(x)?41?cos4x4x?sin4x?4

(2)f(x)连续,且当x??1时,f(x)[?x0xex,求f(x) f(t)dt?1]?22(1?x)x0解:令g(x)??x0f(t)dt,g(x)?f(x),由于f(x)[?/xex f(t)dt?1]?2(1?x)2xex则 g(x)[g(x)?1]? 22(1?x)/ 53

xex两边积分得 ?g(x)[g(x)?1]dx??dx

2(1?x)2/xex1ex1ex即 ?[g(x)?1]d[g(x)?1]??dx??dx??dx 2221?x2(1?x)2(1?x)ex?c 故 [g(x)?1]?1?x2因为 g(x)??x0f(t)dt 令x?0得g(0)?0,代入上式c?0

exxex/故g(x)?? ?1,f(x)??31?x2(1?x)2(3)已知f(x)为非负连续函数,且x?0时,?f(x)f(x?t)dt?x3,求f(x)

0x提示:因为

?x0f(x)f(x?t)dt?bx令x-t?uf(x)?f(u)du,令g(x)??f(u)du处理

00xxx六、变上限积分的导数运算 注意:(1)如F(x)?(2)如F(x)?/???f(t)dt,x?[a,b],则F(x)???f(t)dt,则F/(x)??f(x)

b?(x)af(t)dt,则由复合函数的求导法则有

dduF(u)??f(u)??/(x)?f[?(x)]??/(x) dxdx F(x)?(3)如F(x)??(x)?(x)f(t)dt,可得成F(x)??c?(x)f(t)dt???(x)cf(t)dt,则

F/(x)?f[?(x)]??/(x)?f[?(x)]??/(x)

例7(1)已知f(x)满足xf(x)?1?/2?x0t2f(t)dt,求f(x)

d[f(x)]1?(x?)dx

f(x)xx22 解:两边求导得f(x)?xf(x)?xf(x) 即

x2Ce?lnx?c,所以f(x)?两边积分得lnf(x)?2x

2(2)求一个不恒等于零的连续函数f(x),使它满足f(x)?

54

?x0f(t)sintdt

2?cost

解:两边求导得2f(x)f(x)?f(x)即 f(x)?(2f(x)?//sinx

2?cosxsinx)?0

2?cosx/因为f(x)是不恒等于零的连续函数,故f(x)?两边积分得f(x)?sinx

4?2cosx1sinx1dx??ln(2?cosx)?c

2?2?cosx2xsint12dt中令x?0,得f(0)?0代入上式有c?ln3 在f(x)??f(t)02?cost211故f(x)??ln(2?cosx)?ln3

22注意:

(1)上题要充分利用已知条件确定初始条件f(0)?0

(2)定积分或变上限积分的被积函数有参变量时,必须通过换元,使被积函数不含参变

量,然后再求导

例8(1)已知f(x)连续, 解:令2x?t?u,

?xx0tf(2x?t)dt?21arctanx2,f(1)?1求?f(x)dx

12?tf(2x?t)dt???0x2x(2x?u)f(u)du?2x?2x2xxf(u)du??uf(u)du

x2x即 2x?2xxf(u)du??uf(u)du?两边求导得:2?2xx1arctanx2

x2xf(u)du?xf(x)? 41?x因为 f(1)?1,上式中令x?1得2所以

?21f(u)du?f(1)?1 2?21f(x)dx?3 4(2)求可导数f(x),使它满足解:令tx?u,则因为

?10f(tx)dt?f(x)?xsinx

?10f(tx)dt?1xf(u)du x?0?10f(tx)dt?f(x)?xsinx,所以

/?x0f(u)du?xf(x)?x2sinx

两边求导得f(x)??2sinx?xcosx

55

两边积分得f(x)??2sinxdx?xcosxdx?cosx?xsinx?c

??(3)由方程

?y0edt??y2t2x20sinttdt?1(x?0)确定y是x的函数,求

dy dxdy2sinx2 解:对x求导得e?y?2sinx?0,故 ??y2dxe/2(4)y?y(x)是由x??y?x12edt?0确定的函数,求y//x?0

2?t2 解:对x求导得1?e?(y?x)(y/?1)?0故y/?e(y?x)?1 在x??y?x1e?tdt?0中令x?0时,有?e?tdt?0,即y?1

12y2故y//x?0?e?1 注意:此题确定y的方法

(5)设f(x)为已知可导奇函数,g(x)为f(x)的反函数,则解:令t?x?u,则

dx?f(x)xg(t?x)dt ?xdx?x?f(x)xxg(t?x)dt?x??f(x)0g(u)du

?f(x)dx?f(x)xg(t?x)dt??g(u)du?xf/(x)?g[?f(x)] 所以?0dxx令h(x)???f(x)0g(u)du,则h/(x)??f/(x)?g[?f(x)]?xf/(x)

两边积分得h(x)??xf/(x)dx?xf(x)??f(x)dx

dx?f(x)xg(t?x)dt?xf(x)?x2f/(x)??f(x)dx 故?dxx(6)设函数f(x)可导,且f(0)?0,g(x)?解:令x?t?u,则g(x)?由于 g(x)?x/n?1nn?x0tn?1f(xn?tn)dt,求limx?0g(x) x2n?x0tn?11xnf(x?t)dt??f(u)du

n0nnf(xn)

g(x)g/(x)1f(xn)1f(xn)?f(0)f/(0)?lim?lim?故lim2n?lim nx?0xx?02nx2n?12nx?0xn2nx?02nx?0七、求分段函数的不定积分

56

先分别求分段函数f(x)的各分段在相应区间的原函数F(x),然后考虑函数F(x)在分段点处的连续性。如果f(x)在分段点x0处连续,则F(x)在x?x0处连续 例9(1)f(x)???x?1?2xx?1,求?f(x)dx x?1x2?x?c1 解:当x?1时,?f(x)dx??(x?1)dx?2当x?1时,因为

?f(x)dx??2xdx?x2?c2

?f(x)dx在x?1处连续,故1?c2?311?c1,即c2??c1??c 222?x2?x?cx?1??2所以?f(x)dx??

?x2?1?cx?1?2?2(2)max(1,x)dx

??1?1?x?1?1,x2)??x2x?1 解:max(

?x2x??1?2当?1?x?1时,max(1,x)dx?dx?x?c1

??x31,x)dx??xdx??c2 当x?1时,?max(322x31,x)dx??xdx??c3 当x??1时,?max(322求满足F(1)?1的原函数

12?c2 得c1?0,c2?

x?13312F(x)?1???cc??又由于F(?1)?lim,即 得 33x?1?33F(x),即1?1?c1?由于1?F(1)?lim?

57

??x?c?1?x?1?32?x2max(1,x)dx???cx?1 ???33?x32???cx??1?33(3)[x]dx(x?0)

解:分别求出在区间[n,n?1](n?0,1,2,3?)上满足F(0)?0的原函数 在[n,n?1]上,[x]dx?nx?cn,F(n?1)?F(n)?n

在[n?1,x]上,[x]dx?(n?1)x?cn?1,F(x)?F(n?1)?(n?1)(x?n?1) 故[x]dx?0?1?2?3??n?(n?1)(x?n?1)?c?(n?1)(x?八、分段函数的变上限积分

????n?1)?c 2?cosx??例10(1)f(x)???c??续性

解:当0?x?0?x??2,求?(x)??2?x???x0f(t)dt,并讨论?(x)在[0,?]的连

?2时,?(x)?x?x0f(t)dt??costdt?sinx

0x当

?2?20?x??时,?(x)??f(t)dt??costdt??cdt?1?c(x?02???2)

????(x)在[0,),(,?]上连续,在x?处,

222lim??(x)?lim?[1?c(x?x??2?2x??)]?1,lim??(x)?lim?sinx?1

x??22x??2故?(x)在x??2处连续

58

?cosx??(2)f(x)???x???2?解:令x?t?u,则当0?x?0?x?x??2,求

?2?tf(x?t)dt

0xxx?x0tf(x?t)dt?x?f(u)du??uf(u)du

00x0?2时,

?x0x0f(u)du??cosudu?sinx

uf(u)du??ucosudu?xsinx?cosx?1

0x 此时

x??tf(x?t)dt?1?cosx

0当x??2时,

?x0?f(u)du??20x2?x?2cosudu???(u?)du????1

22282x?323x?x?? ?uf(u)du??2ucosudu???(u?)udu?????1

002344822xx??x3?x2?2?3???(?1)x???1 此时?tf(x?t)dt?0648482x九、积分估值 估计积分

?/baf(x)dx的值

方法:(1)令y?f(x),x?[a,b]

(2)求y?f(x),确定f(x)?0和f(x)不存在的点 (3)在[a,b]上确定y?f(x)的最值 (4)利用m(b?a)?例11估计积分值

///?2baf(x)dx?M(b?a)估计积分值 dx

2?20ex?x解:设函数y?f(x)?ex?x,其中x?[0,2]

y?(2x?1)e

/x2?x

59

令y/?0,得x?

1 2

1??1因为f(0)?1,f()?e4,f(2)?e2,故e4?y?e2

2141所以 2e???ex022?xdx?2e2

ba十、形如f(x)?g(x)?h(x)方法:(1)令

?f(x)dx的等式,求f(x)和

?baf(x)dx

?baf(x)dx?A

b(2)两端积分

得A???abaf(x)dx?A??g(x)dx??Ah(x)dx

aabbg(x)dx?A?h(x)dx,求A的值

ab(3)把A的值代入原式求f(x) 例12设f(x)?x?x2 解:令

?10f(x)dx?x3?f(x)dx,求f(x)

0202??10f(x)dx?a,?f(x)dx?b

则 f(x)?x?ax2?bx3 两边积分

10f(x)dx??(x?ax2?bx3)dx?011ab?? 234即 8a?3b?6 两边积分

?20f(x)dx??(x?ax2?bx3)dx?2?028a?4b 3即 8a?3b?6

33x2?x3 故a?,b??1,即f(x)?x?88十一、已知函数f(x)在[a,b]上的形式,求f(x) 方法:(1)求f(x)

/(2)对f(x)两边积分得f(x)?F(x)?c

/ 60

(3)取d?[a,b],由已知条件求f(d)的值确定c 例13(1)设0?x??2,求f(x)??sin2x0arcsintdt+?cos2x0arccostdt

解:两边求导得f/(x)?xsin2x?xsin2x?0,所以f(x)?c(c为常数) 又因为当x?0时,f(x)??arccostdt??0110t1?tdt?4 3所以 f(x)?4 3x11xdt(2)设x?0, f(x)??+?01?t2dt,求f(x) 01?t2解:两边求导得f(x)?/111??1?x2x21111?2x?0,所以f(x)?c(c为常数)

又因为当x?1时,f(x)?2所以 f(x)?1?dt? ?01?t22?2

十二、例14 已知(dx??23ydx?ydx?y???dx)?1?ydx??1,求x?f(y). 41?y解:因为(dx??23?ydx??ydx??ydx)?1?ydx??1 1?y4所以dx??23ydx?ydx?y???dx??1

1?y?1?y4dx1?y1?y423两边对x求导得1?y?y?y?

1?y2(?dx)1?y4故(

1?y1?y1?y1?y21?y1?y2dx)?()dx?dx?? 即或 ?1?y4?1?y41?y4?1?y41?y41?y461

1?y1?y1?y/时,令,则dx?u(x)?u(x)?u(x),此时两边积分得 4?1?y41?y41?y1?y1?yx 所以 Ce?1?y41?y4 u(x)?Cex 而 u(x)?ex?123,即x??ln(1?y?y?y)?c 23C(1?y?y?y)同理(略) 十三、计算

b11、如果I??f1(x)dx,令x?得I??f2(x)dx

aatbA则 2I??[f1(x)?f2(x)]dx?A 得I?

a2b例15I????01dx p2(1?x)(1?x)1dt t2 解:令x?,即dx??则 I?1t???001dx????(1?xp)(1?x2)1(1?11)(1?)p2tt?(?1)dt 2t ????0tpdt

(1?tp)(1?t2)所以 2I?即 I?????0????1xpdx? dx?dx??p2p22??002(1?x)(1?x)(1?x)(1?x)1?x?4

2、形如

??20?dxy??x,然后相加处理 的积分,令

21?tan?x例16

?20cos2005xdx 20052005cosx?sinx 62

4. 一些积分变限函数的图形

下面就让我们来亲眼看一看利用数学软件Maple编程画出的一些积分变限函数的图形。这些图形使得积分变限函数不再神秘。

(1)正弦积分函数 (Sine integral function 或 Sine integral)(教材下册,227页,例5)

with(plots):

quxian:=plot(int(sin(t)/t,t=0.01..x),x=-40..40,thickness=3):

display(quxian,title=\

(2)误差函数(概率积分)(Error function)(教材下册,226页,例4)

83

with(plots):

quxian:=plot(int((2/sqrt(Pi))*exp(-t^2),t=0..x),x=-5..5,thickness=3):

display(quxian,title=\

(3)费涅耳函数(Fresnel function)

84

with(plots):

quxian:=plot(int(sin(Pi*t^2/2),t=0..x),x=-5.5..5.5,thickness=3):

display(quxian,title=\

如果不但积分上下限有自变量、被积函数也有自变量,则属于含参变量的积分(教材下册第九章,第五节)。这种函数更加复杂

(已超出本科教学大纲)。但是用数学软件仍然能够作出它们的图形。

含参变量的积分1(教材下121页,例1)

85

with(plots):

quxian:=plot(int(sin(x*t)/t,t=x..x^2),x=-3..3,thickness=3):

display(quxian);

含参变量的积分2(教材下123页,题2)

86

with(plots):

quxian:=plot(int((t^2*sin(x)-t^3),t=sin(x)..cos(x)),x=-4..4,thickness=3):

display(quxian);

87

本文来源:https://www.bwwdw.com/article/9wov.html

Top