12册数学四五单元数与代数教案

更新时间:2023-04-20 12:27:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第四单元比例

第1课时比例的意义

教学内容:比例的意义(教材第40页的内容)。

教学目标:

1.理解比例的意义,会根据比例的意义组成比例。

2.培养学生的分析概括能力,经历引导学生参与知识的形成过程,发现过程和运用过程,体验从实践中学习的方法,感受数学知识与日常生活的密切联系。

3.感受生活中处处有数学,激发学习的兴趣,体会事物间的相对联系,培养探究精神。

重点难点:

1.认识比例,理解比例的意义。

2.在已有知识的基础上,结合实例引出新的知识。

教学准备:情境图、投影仪、多媒体课件。

教学过程:

(一)复习导入

1.教师:请同学们回忆一下上学期我们学过的比的知识,谁能说一说什么叫做比?举例说明什么叫做比的前项、后项、比值。

教师把学生举的例子板书出来,并注明各部分的名称。

2.求下面各比的比值。

学生独立求出各比的比值。

(1)教师:在求比值的时候你们发现了什么吗?

学生:有两个比的比值相等。

教师:哪两个比的比值相等呢?

学生回答后,教师把这两个比画上横线。

师:是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连接起来,写成一种新的式子,如:4.5∶2.7=10∶6。课件显示:“10∶6”和“4.5∶2.7”同时闪烁,接着两个比下面的比值隐去,再用等号连接起来。

(2)前面的两个比能用等号连接起来吗?为什么?

教师将课件后面的两个比隐去。

学生:不能,比值不相等。

教师小结:数学中规定,像这样的一些式子就叫做比例。

教师板书:比例。

(二)探索新知

1.师:今天这节课我们就来一起研究比例,你想研究哪些内容呢?

生:比的意义,学比例有什么用?比例有什么特点?

师:那好,我们就来研究比例的意义吧,到底什么是比例呢?根据下面的问题自学例1。

①找出每面红旗长与宽的比。

②求出每个比的比值。

③哪几个比的比值相等?

2.学生自学完以后,教师逐个问题指名学生回答,并板书在黑板上:2.4∶1.6=3:2,60∶40=3:2。两面国旗的长和宽的比值相等。板书:2.4∶1.6=60∶40,

师:像这样的式子就叫做比例。观察这些式子,你能说出什么叫做比例吗?根据学生的回答,教师抓住关键点板书:两个比比值相等

师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。教师用课件显示:表示两个比相等的式子叫做比例。

学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

3.找比例。

师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?

过程要求:

学生猜想另外两面国旗长、宽的比值。

求出国旗长、宽的比值,并组成比例。

(三)课堂作业

1.完成教材第40页“做一做”第1题。

学生独立完成,再在小组中相互交流、订正。

2.完成教材第40页“做一做”第2题。

组织学生议一议,加深对比例意义的理解。

(四)课堂小结

通过这节课的学习,你知道“比”和“比例”这两个概念的联系与区别吗?学生各抒己见,之后师生共同归纳。

(五)课后作业

1.教材第43页练习八第1、2题。

2.完成练习册中本课时的练习。

板书设计:

比例的意义和性质

2.4:1.6=3:2 60:40= 3:2

2.4:1.6=60:40

教后反思:

第2课时比例的基本性质

教学内容:比例的基本性质(教材第41页内容)。

教学目标:

1.使学生理解比例的基本性质。

2.提高学生观察、计算、发现、验证和总结的能力。

3.在总结比例的基本性质的过程中,使学生感受到探索数学问题的乐趣。

重点难点:

应用比例的基本性质判断两个比能否组成比例,并正确地组成比例。

教学准备:投影仪。

教学过程:

(一)复习导入

1.教师提问:什么叫做比例?

2.应用比例的意义,判断哪两个比可以组成比例。

6∶3和8∶5 0.2∶2.5和4∶50

教师:同学们能正确判断两个比能不能组成比例了,那么比例各部分的名称是什么?

(二)探索新知

1.教学比例各部分的名称。

引导学生自学教材第41页第1行、第2行的内容。

教师板书:2.4∶1.6=60∶40

指名让学生指出板书的比例的外项、内项。随着学生的回答教师接着板书。

学生认一认,说一说比例中的外项和内项。

2.探究比例的基本性质。

教师:我们知道了比例的各部分的名称,那么比例有什么性质呢?现在我们就来探究一下。

教师板书:比例的基本性质。

组织学生观察组成比例的两个内项和两个外项,并探究它们的关系。

学生小组内交流。指名汇报,学生可能会说:两个外项的积是2.4×40=96,两个内项的积是1.6×60=96,两个内项的积等于两个外项的积。

验证其他的比例有没有这个规律,举例说明,检验发现。0.12∶0.5=1.2∶5,两个外

项的积是0.12×5=0.6,两个内项的积是0.5×1.2=0.6。外项的积等于内项的积。如果把比例改成分数形式呢?等号两边的分子和分母分别交叉相乘,所得的积相等。

教师:这个规律叫做比例的基本性质。引导学生说一说,比例的基本性质是什么?组织学生小组交流、汇报。教师补充:在比例里,两个外项之积等于两个内项之积,这叫做比例的基本性质。学生齐读两遍。

3.应用比例的基本性质,判断哪两个比可以组成比例。

6∶3和8∶5 0.2∶2.5和4∶50

组织学生在小组中互相交流,然后指名汇报。

4.教师:到现在为止,我们学习了判断两个比能否组成比例有几种方法?学生讨论交流后,指名回答。

教师小结:两种方法:看两个比的比值是否相等;两个比的两个外项之积是否等于两个比的内项之积。

(三)课堂作业

教材第41页“做一做”。组织学生独立思考,指名说一说,全班集体订正。

(四)课堂小结

通过这节课的学习,你有哪些收获?

(五)课后作业

1.教材第43页练习八第5题。

2.完成练习册中本课时的练习。

板书设计:

比例的基本性质

在比例里,两个外项之积等于两个内项之积,这叫做比例的基本性质。

教后反思:

第3课时解比例

教学内容:解比例。(教材第42页例2、例3及练习八的习题)。

教学目标:

1.使学生学会解比例的方法,进一步理解并掌握比例的基本性质。

2.培养学生运用已学的知识解决问题的能力,在计算过程中使学生养成验算的良好习惯。

3.感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。

重点难点:

1.使学生掌握解比例的方法,学会解比例。

2.引导学生根据比例的基本性质,将带未知数的比例改写成方程。

教学准备:多媒体课件。

教学过程:

(一)情景导入

上节课我们学习了比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

学生在小组中议一议,再汇报。

师:这节课,我们还要继续学习有关比例的知识,就是解比例。

板书课题:解比例。

(二)探索新知

1.教师用多媒体课件出示教材第42页第1、2行的内容。引导学生思考:什么叫做解比例?

学生独立思考后,在小组中交流并说出:求比例中的未知项叫做解比例。师:想一想,怎样才能解出比例中的未知项呢?学生很容易想到比例的基本性质。

2.教学例2。

教师用多媒体课件出示例2。指名读题,根据题意,描述两个相等的比。

模型的高度=110或模型高度:实际高度=1∶10。实际的高度

让学生列出比例,指出这个比例的外项、内项,并说明知道哪三项,求哪一项?

教师板书:x∶320=1∶10,你能试着计算出来吗?

请一名学生板演,其余的学生在练习本上做。

做完后,师问:怎样把比例式转化为方程式?学生回答:根据比例的基本性质转化。师接着板书:10x=320×1。

教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以把方程解出来。注意:解方程要写“解”,那么解比例也要写“解”。

师:怎样解这个方程?

生:根据乘法各部分间的关系,把x看做一个因数,根据一个因数=积÷另一个因数,可以求出x。

小结:从刚才的解比例过程中可以看出,解比例可以根据比例的基本性质把比例转化为方程,然后用解方程的方法来求未知项x。

3.教学例3。解比例:2.4:6= 1.5:x

过程要求:学生独立练习,求出未知项。

同学之间互相交流,发现问题,及时解决。请一位学生上台板演。

解: 2.4x=1.5×6

1.5x=

2.4×6

x=3.75

提问:还可以用其他的知识解比例吗? 8学生交流后,可能会说出:根据比例的意义,等号右边的比值是9,要使等号左边的比值也是9,x应等于3.75。

4.总结解比例的方法。

教师:刚才我们学习了解比例,大家回忆一下解比例首先要做什么?转化成方程后再怎么做?

学生回忆解比例的过程。

教师:从上面的过程可以看出,在解比例的过程中哪一步是新知识?

学生:根据比例的基本性质把比例转化成方程。

(三)课堂作业

1.完成教材第42页“做一做”第1题。

学生独立练习,教师指名板演,集体订正。

2.完成教材第43~44页第6、7、8、9、10、11、12、13题。

(四)课堂小结

通过这节课的学习,你在哪些方面得到了提高?

(五)课后作业

完成练习册中本课时的练习。

板书设计:

解比例

例2 X:320=1:10

解:10X=320

X=32

教后反思:

第4课时正比例

教学内容:正比例。

教学目标:

使学生理解正比例的意义,会正确判断成正比例的量。

重点难点:

重点:理解正比例的意义。

难点:正确判断两个量是否成正比例的关系。

教学准备:投影仪。

教学过程:

(一)复习导入

1.复习引入。

用投影仪逐一出示下面的题目,让学生回答。

①已知路程和时间,怎样求速度?板书:路程=速度。时间

②已知总价和数量,怎样求单价?板书:总价=单价。数量

③已知工作总量和工作时间,怎样求工作效率?板书:工作总量=工作效率。工作时间

2.引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

(二)探索新知

1. 教学例1。

教师用投影仪出示例1的图和表格。学生观察上表并讨论问题。

(1)彩带的总价和数量有关系吗?

(2)彩带的总价是怎样随着数量的变化而变化的?

(3)彩带的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

根据观察,学生可能会说出:

①铅笔的总价随着数量变化,它们是两种相关联的量。

②数量增加,总价也增加;数量降低,总价也减少。

③铅笔的总价和数量的比值总是一定的,即单价一定。

教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

2.教师出示:一列火车行驶的时间和路程如下表。

引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是路程=速度(一定)。时间

教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

3.归纳概括正比例关系。

①组织学生分小组讨论,上面两个例子有什么共同规律?

②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

学生说一说是怎么理解正比例关系的。

要求学生把握三个要素:

第一:两种相关联的量。

第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。第三:两个量的比值一定。

4.用字母表示正比例的关系。

教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示:y?k (一定) x

5.教师:想一想,生活中还有哪些成正比例的量?

学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

(三)课堂作业

完成教材第46页的“做一做”(1)~(3)。

(四)课堂小结

通过这节课的学习,你有什么收获?

(五)课后作业

完成练习册中本课时的练习。

板书设计:

成正比例的量

3.5:1=3.5 7:2=3.5 10.5:3=3.5

路程:时间=速度(一定)

Y:x=k (一定)

教后反思:

第5课时正比例图象

教学内容:正比例图象。

教学目标:

1.使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。

2.通过练习,巩固对正比例意义的认识。

3.初步渗透函数思想。

重点难点:

能根据数量关系式或图象判断两种量是否成正比例。

教学准备:投影仪。

教学过程:

(一)探索新知

教学第46页内容。

教师出示表格(见书),依据表中的数据描点。(见书)

师:从图中你发现了什么?

生:这些点都在同一条直线上。

看图回答问题:

①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是4.0的铅笔,数量是多少?③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?

你还能提出什么问题?有什么体会?

组织学生分小组汇报,学生汇报时可能会说出:

①正比例关系的图象是一条经过原点的直线。

②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。

(二)练习讲授

1.基本练习。

(1)投影出示教材第49页第1题。

教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。

教师要求学生从两个方面说明为什么成正比例。a.电是随着用电量的增加而

增加;b.电费与用电量的比值总是相等的。

师生共同订正。

(2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km??

①出示下表,填表。

一列火车行驶的时间和路程

②填表并思考发现了什么?

③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)

④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。⑤用式子表示它们的关系:路程 =速度(一定)。时间

教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。

2.指导练习。

(1)完成教材第49页第2题。

(2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第

(1)小结时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。

(3)解决教材49页第4题:①投影出示书中的表格,引导学生观察表中的数据。

②组织学生在小组中合作探究。a.动手画一画,指名汇报图象特点。b.组织学生说一说,相互交流。

提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。

(三)课堂作业

1.根据x和y成正比例关系,填写表中的空格。

2.看图回答问题。

(1)在这一过程中,哪个量没变?

(2)路程和时间有什么关系?

(3)不计算,从图中看出4小时行驶多少千米?

(4)7小时行驶多少千米?

(四)课堂小结

教师:判断两个相关联的量成正比例的三个要素是什么?

通过这节课的学习,你有什么收获?

(五)课后作业

完成练习册中本课时的练习。

板书设计:

正比例图象

经过原点的一条直线教后反思:

第6课时反比例

教学内容:反比例。(教材第47页例2)。

教学目标:

1.使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。

2.让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。

重点难点:

引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。

教学准备:投影仪。

教学过程:

(一)复习导入

1.让学生说说什么是正比例,然后用投影出示下面的题。

下面各题中哪两种量成正比例?为什么?

(1)每公顷产量一定,总产量和公顷数。

(2)一袋大米的重量一定,吃了的和剩下的。

(3)修房屋时,粉刷的面积和所需涂料的数量。

2.说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?

教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。

(二)探索新知

1.教学例2。

创设情境。

教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?

出示教材第47页例2的情境图和表格。

请学生认真观察表中数据的变化情况,组织学生分小组讨论:

(1)水的高度和底面积变化有关系吗?

(2)水的高度是怎样随着底面积变化的?

(3)水的高度和底面积的变化有什么规律?

学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。

教师板书配合说明这一规律:

30×10=20×15=15×20=??=300

教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。

2.归纳反比例的意义。

组织学生小组内讨论:反比例的意义是什么?

学生小组内交流,指名汇报。

教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

3.用字母表示。

如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?

学生探讨后得出结果。

x×y=k(一定)

4.师:生活中还有哪些成反比例的量?

在教师的引导下,学生举例说明。如:

(1)大米的质量一定,每袋质量和袋数成反比例。

(2)教室地板面积一定,每块地砖的面积和块数成反比例。

(3)长方形的面积一定,长和宽成反比例。

5.组织学生将例1与例2进行比较,小组内讨论:

正比例与反比例的相同点和不同点有哪些?

学生交流、汇报后,引导学生归纳:

相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。不同点:正比例关系中比值一定,反比例关系中乘积一定。

6.你还有什么疑问

?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。

反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来

的图像是一条曲线,图像特征不要求掌握。

(三)课堂作业

1.教材第48页的“做一做”。

2.教材第51页第9、10题。

(四)课堂小结

说一说成反比例关系的量的变化特征。

(五)课后作业

1.完成练习册中本课时的练习。

2.教材51~52页第8、14题。

板书设计:

成反比例的量

圆柱体积:圆柱高=底面积(一定)

水高×底面积=水的体积(一定)

X×Y=K(一定)

教后反思:

第7课时比例尺(1)

教学内容:比例尺(1)(教材第53页内容)。

教学目标:

1.从学生的生活实际出发认识比例尺,理解比例尺的含义,使学生会求一幅图的比例尺。

2.让学生经历比例尺的探究过程,体验从实践中学习的方法,感受数学知识与日常生活的密切联系,培养学生的探究意识和创新意识。

重点难点:

理解比例尺的含义。

教学准备:

投影仪,比例尺不同的地图,机器零件纸,北京的平面图。

教学过程:

(一)情景导入

教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们的教室有多大,它的长和宽大约多少米?如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是人们就想出了一个聪明的办法:在绘制地图和其它平面图的时候,把实际距离按一定的比例缩小,再画在纸上,有时也把一些尺寸小的物体(如机器零件)的实际距离扩大一定的倍数,再画在纸上。不管哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天,我们就来学习这方面的知识。

(二)探索新知

1.比例尺的意义。

(1)教师讲解:因为在绘制地图和其它平面图时,经常要用到图上距离与实际距离的比,我们就把它起个名字,叫做比例尺。(板书:图上距离:实际距离=比例尺)有时图上距离与实际距离的比也可以写成分数形式。

图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项或后项是1的最简整数比。

(2)教师出示地图,引导学生观察1∶100000000。

(3)组织学生议一议:比例尺中的“1”表示什么?“100000000”表示什么?指名说

一说:“1”表示图上距离,“100000000”表示实际距离,也就是说图上1cm的距离表示实际距离100000000cm。

教师说明:1∶100000000是数值比例尺,有时写成

(4)引导学生观察比例尺1。 100000000。适时讲解:这是线段比例尺,表示线段的长度1cm是图上距离,50km是实际距离,也就是说图上距离1cm代表着实际距离是50km。

(5)教师用投影出示图纸。引导学生观察图中的比例尺2∶1表示什么? 指名汇报:2∶1表示图上距离是实际距离的2倍。

教师小结:在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在纸上。这时比例尺的前项比后项大。为了计算方便,通常把比例尺写成前项或后项是1的比。

2.教学例1。

(1)教师出示教材第53页例1。

组织学生独立思考,再在小组中议一议:什么是比例尺?

教师指名汇报,板书:

图上距离:实际距离

=2.4cm∶120km

=2.4cm∶12000000cm

=1∶5000000

(2)巩固应用。教师出示教材第53页“做一做”。组织学生独立完成,在小组中检查。

(三)课堂作业

教材第56页练习十第1题。

(四)课堂小结

通过这节课的学习,你有什么收获?有什么感受?

(五)课后作业

完成练习册中本课时的练习。

板书设计:

比例尺的意义

图上距离:实际距离

=1cm:50km

=1 cm:5000000 cm

= 1 :5000000

教后反思:

第8课时比例尺(2)

教学内容:比例尺(2)(教材第54页内容)。

教学目标:

根据比例尺求图上距离或实际距离。

重点难点:

1.根据比例尺求图上距离和实际距离。

2.设未知数时应统一长度单位。

教学准备:多媒体课件。

教学过程:

(一)情景导入

前面我们学习了比例尺的求法,有同学能简单说一说吗?

指名学生回答问题,教师板书:

图上距离∶实际距离=比例尺

(二)探索新知

教学例2。

出示教材第54页例2。

指名读题,并说出题目已知什么,要求什么?

学生:已知比例尺和地铁1号线的图上距离,求它的实际距离大约是多少。教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。

学生思考并解答一下问题:

(1)这道题的图上距离是多少?(板书:7.8cm)

(2)实际距离不知道怎么办?(用x表示,在7.8的下面板书x,并在它们中间画上分数线)

(3)因为图上距离和实际距离的单位要统一,所设的x应用什么单位?(应用厘米)(4)比例尺是多少?写成什么形式?(分数形式)教师板书解答过程。解:设苹果园站到四惠东站的实际距离为x厘米。

7.81 ?x400000

指定一名学生板演x的值,其他学生在练习本上做。教师强调单位互化的时候,注意0的个数不能写掉了。

本文来源:https://www.bwwdw.com/article/9wjq.html

Top