2009年莆田市初中毕业、升学考试试卷(WORD版 有答案)
更新时间:2023-08-19 19:04:01 阅读量: 高中教育 文档下载
2009年莆田市初中毕业、升学考试试卷
数 学
(满分:150分,考试时间:120分钟)
一、细心填一填(本大题共10小题,每小题4分,共40分.直接把答案填在题中的横线上.)
1. 3的相反数是
2.2009年莆田市参加初中毕业、升学考试的学生总人数约为43000人,将43000用科学记数法表示是___________.
3.在组成单词“Probability”(概率)的所有字母中任意取出一个字母,则取到字母“b”的概率是 .
4.如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB
外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点(第4题图) E、F,测得EF=20m,则AB=__________m.
5.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为__________克.
6.如图,菱形ABCD的对角线相交于点O,请你添加一个条件: ,使得该菱形为正方形.
7.甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得S S,则成绩较稳定的同学是___________.(填“甲”或“乙”)
8.已知⊙O1和⊙O2的半径分别是一元二次方程 x 1 x 2 0的两根,且OO则,12 2
2
甲
2乙
C
(第6题图)
⊙O1和⊙O2的位置关系是
9.出售某种文具盒,若每个获利x元,一天可售出 6 x 个,则当x 元时,一天出售该种文具盒的总利润y最大. 10.如图,在
x轴的正半轴上依次截取
y
OA1 A1A2 A2A3 A3A4 A4A5,过点A1、A2、A3、A4、A5
2
分别作x轴的垂线与反比例函数y x 0 的图象相交于点
x
2 P1、P2、P3、P4、P5
,得直角三角形
OPA并设其面积分别为11、A1P2A2、A2P3A3、A3P4A4、A4P5A5,S1、S2、S3、S4、S,5则S5的值为 .
(第10题图)
二、精心选一选(本大题共6小题,每小题4分,共24分,每小题给出的四个选项中有且只有一个是正确的,请把正确选项的代号写在题后的括号内,答对的得4分;答错、不答或答案超过一个的一律得0分). 11
x的取值范围是( )
A.x≥0 B.x 0 C.x 0 D.x 0
A.a2 a2 a B.ab2
12.下列各式运算正确的是( )
2
a2b4
C.a2·a4=a8 D.5ab 5b a 13.如图是一房子的示意图,则其左视图是( )
A. B.
C.
D.
2、3、3、
3,则这组数据14.某班5位同学参加“改革开放30周年”系列活动的次数依次为1
、的众数和中位数分别是( )
2 B
. 2.4、3 C. 3、2 D.3、3 A.2、15.不等式组
2x 4,
的解集在数轴上表示正确的是( )
x 1 0
A B C
D16.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为
A.N处
x,△MNR的面积为y,如果y关于x的函数图象如图2
所示,则当x 9时,点R应运动到( )
(图1)
(第16题图)
B.P处 C.Q处 D.M处
三、耐心做一做(本大题共9小题,共86分.解答应写出必要的文字说明、证明过程或演
算步骤.)
1
17.(8
分)计算:3 .
3
x2 4x 4x 2
18.(8分)先化简,再求值:其中x 1. x,2
x 4x 2
ABCD中,过对角线BD的中点O作直线EF分别交DA的延
长线、AB、DC、BC的延长线于点E、M、N、F.
(1)观察图形并找出一对全等三角形:△________≌△____________,请加以证明;
19.(8分)已知:如图在
(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的
变换得到?
C
(第19题图)
20.(8分)(1)根据下列步骤画图并标明相应的字母:(直接在图1中画图) ..①以已知线段AB(图1)为直径画半圆O;
②在半圆O上取不同于点A、B的一点C,连接AC、BC; ③过点O画OD∥BC交半圆O于点D. (2)尺规作图:(保留作图痕迹,不要求写作法、证明) ..已知: AOB(图2). 求作: AOB的平分线.
A
A
图1
B
图2
B
(第20题图)
21.(8分)某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随机抽
查部分同学体育测试成绩(由高到低分A、B、C、D四个等级),根据调查的数据绘
制成如下的条形统计图和扇形统计图.
等级
(第21题图)
请根据以上不完整的统计图提供的信息,解答下列问题:
(1)该课题研究小组共抽查了__________名同学的体育测试成绩,扇形统计图中B级所占的百分比b=___________; (2)补全条形统计图;
(3)若该校九年级共有400名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)约有___________名.
22.(10分)已知,如图,BC是以线段AB为直径的⊙O的切线,AC交⊙O于点D,过点D作弦DE AB,垂足为点F,连接BD、BE.. (1)仔细观察图形并写出四个不同的正确结论:①________,②________ ,③________,④____________(不添加其它字母和辅助线,不必证明); (2) A=30°,CD
=
,求⊙O的半径r. 3
C
(第22题图)
23.(10分)面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,农民购买人选产品,政府按原价购买..总额的给予补贴返还.某村委会组织部分农民到商场购买人选的同一型号的冰箱、电...13%...
视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台? (1)设购买电视机
台,依题意填充下列表格:
(2)列出方程(组)并解答.
24.(12分)已知:等边△ABC的边长为a.
探究(1):如图1,过等边△ABC的顶点A、B、C依次作AB、BC、CA的垂线围成
△MNG,求证:△MNG是等边三角形且
.MN ;
探究(2):在等边△ABC内取一点O,过点O分别作OD AB、OE BC、OF CA,垂足分别为点D、E、F.
①如图2,若点O是△ABC的重心,我们可利用三角形面积公式及等边三角形性质得到两个正确结论(不必证明):结论1
.OD OE OF 2.AD BE CF
a;结论2
3
a; 2
2是否仍然成立?如果成立,②如图3,若点O是等边△ABC内任意一点,则上述结论1、
请给予证明;如果不成立,请说明理由.
B
C (图1)
G
E (图2) F E (图3)
E (图4)
N
(第24题图)
1 作平行于x轴的直线l,抛物线y 25.(14分)已知,如图1,过点E 0,
12
x上4
的两点A、B的横坐标分别为 1和4,直线AB交y轴于点F,过点A、B分别作直线l的垂线,垂足分别为点C、D,连接CF、DF. (1)求点A、B、F的坐标; (2)求证:CF DF; (3)点P是抛物线y
12
x对称轴右侧图象上的一动点,过点P作PQ⊥PO交x轴4
于点Q,是否存在点P使得△OPQ与△CDF相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
备用图
(第25题图)
(图1)
2009年莆田市初中毕业、升学考试试卷
数学试卷参考答案及评分标准
说明:
(一)考生的解法与“参考答案”不同时,可参照“答案的评分标准”的精神进行评分 (二)如解答的某一步计算出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,
但原则上不超过后面应得分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步骤应得的累计分数. (四)评分的最小单位是1分,得分或扣分都不能出现小数. 一、细心填一填(本大题共10小题,每小题4分,共40分.)
2
4.40 5.2 11
1
6.AB BC或AC BD或AO BO等 7.甲 8.相交 9.3 10.
5
1.3 2.4.3 104(不必考虑有效数字) 3. 二、精心选一选(本大题共6小题,每小题4分,共24分.) 11.A 12.B 13.C 14.D 15.A 16.C 三、耐心做一做(本题共9小题,共86分)
17.(1)解:原式
=34 1 ························································································6分
=····································································································8分
1 注:3 32分)
4(2分), =1(2分)
3
x 2 x 2 x
18.解:原式= ···········································································6分
x 2x 2x 2
=1 x ·······································································································7分 当x 1时原式=1 1 0 ······················································································8分
2
注:x 4x 4 x 2 、x 4 x 2 x 2 、?
2
2
2
x 2x 2
? (各2分) x 2x 2
A 19. (1)①△DOE≌△BOF; ························· 2分
证明:∵四边形ABCD是平行四边形
∴AD∥BC ·········································· 3分 F
C
∴ EDO FBO, E F······························ 4分
(第19题图)
又∵OD OB
∴△DOE≌△BOF AAS ·············································································5分
②△BOM≌△DON ······················································································2分
证明:∵四边形ABCD是平行四边形
∴AB∥CD ······································································································3分
∴ MBO NDO, BMO DNO ···························································4分 又∵BO DO
∴△BOM≌△DON AAS ···········································································5分
③△ABD≌△CDB; ·····················································································2分
证明:∵四边形ABCD是平行四边形
∴AD CB,AB CD ····················································································3分 又∵BD DB···································································································4分
∴△ABD≌△CDB SSS ···············································································5分 (2)绕点O旋转180°后得到或以点O为中心作对称变换得到.·······························8分
20.(1)正确完成步骤①、②、③,各得1分,字母标注完整得1分,满分4分.
(2)说明:①以点O为圆心,以适当长为半径作弧交OA、OB于两点C、D ·············5分
②分别以点C、D为圆心,以大于
1
CD长为半径作弧, 2
两弧相交于点E ····················································································7分
③作射线OE ···························································································8分
A B
(第20题图)
21.(1)80 ················································································ 2分 40% ··························································································· 4分
(2)补全条形图(如右图) ······················································ 6分 (3)380························································································ 8分 DF FE,BD BE,△BDF≌△BEF,22.(1)BC AB,AD BD, △BDF∽△BAD, BDF BEF, A E,DE∥BC等 等级
(每写出一个正确结论得1分,满分4分.)
(第21题图) (2)解:又
O
图1
D
图2
AB是⊙O的直径 ADB 90° ································ 5分
E 30°
A 30° ·············································································· 6分
1
BD AB r ····································································· 7分
2
又BC是⊙O的切线 CBA 90° ············································································· 8分 C 60
C
(第22题图)
在Rt△
BCD中,CD
3
BDr
····································································································9分 tan60° ·
DC······························································································································10分 r 2 ·
23.(1)每个空格填对得1分,满分5分.
(2)解:依题意得
-··························································7分 65·
2xx
解得x 10··························································································································8分
经检验x 10是原分式方程的解 ··························································································9分
2x 20.
答:冰箱、电视机分别购买20台、10台 ····································10分 24.证明:如图1,△ABC为等边三角形
A
ABC 60°
G BC MN,BA MG
B ∴ CBM BAM 90°
C
ABM 90°- ABC 30 ················································ 1分 M 90 - ABM 60 ···················································· 2分 (图1) N 同理: N G 60 △MNG为等边三角形. ·····················
·····························
·················································3分
在Rt△ABM中,BM
ABa
sinMsin60 在Rt△
BCN中,BN
BCa a································································4分 tanNtan60 MN BM BN ························································································································
··········· 5分
(2)②:结论1成立.
证明;方法一:如图2,连接AO、BO、CO 由S△ABC S△AOB S△BOC S△AOC=作AH BC,垂足为H,
D
1
a OD OE OF ·············· 7分 2
C
则AH ACsin ACB a sin60 2
E H (图2)
S△ABC
11BC·AH a· 222
11 a
OD OE OF a
22 OD OE OF
··································································································8分 ·方法二:如图3,过点O作GH∥BC,分别交AB、AC于点G、H,过点
H作HM⊥BC于点M,
DGO B 60°, OHF C 60° △AGH是等边三角形 GH AH ···································································· 6分 OE⊥BC OE∥HM
四边形OEMH是矩形 HM OE······································································· 7分
在Rt△
ODG中,OD OG·sin DGO OG·sin60
A
在Rt△
OFH中,OF OH·sin OHF OH·sin60
在Rt△
HMC中,HM HC·sinC HC·
sin60
HC O
OD OE OF OD HM OF
HC 222
E M (图3)
(2)②:结论2成立.
Aa ···························8分
GH HC 222
E
E
证明:方法一:如图4,过顶点A、B、C依次作边
AB、B、CCA△MNG,NG为等边
的垂线围成由(1)得△M
三角形且MN ··············································· 9分
G
D MN于D ,OE NG于NG于点过点O分别作OD MGE ,OF于点F
由结论1得:
N
(图4)
OD OE OF
又
3
··································································10分 MN a ·
22
OD AB,AB MG,OF MG
ADO DAF OF A 90 四边形ADOF 为矩形 OF AD
同理:OD BE,OE CF····························································································11分
3
······························································································ 12分 AD BE CF OD OE OF a ·2
方法二:(同结论1方法二的辅助线) 在Rt△
OFH中,FH
OF
tan OHFA
HM在Rt△
HMC中,HC ························· 9分
·
sinC CF HC FH
33
O
E M (图3)
同理:AD
···············································10分 ,BE OE ·
3333
AD BE CF
OD OE OF ········································································································11分 由结论1
得:OD OE OF
a AD BE CF 3 a···················································································12分 22
A D
F
方法三:如图5,连接OA、OB、OC,根据勾股定理得:
BE2 OE2 OB2 BD2 OD2① CF OF OC CE OE②
2
2
2
2
2
E
(图5)
22222
AD OD AO AF OF③···················································································9分
①+②+③得:
············································································10分 BE2 CF2 AD2 BD2 CE2 AF2 ·
BE2 CF2 AD2 a AD a BE a CF
········································11分 a2 2ADa AD2 a2 2BEa BE2 a2 2CFa CF2 ·整理得:2a AD BE CF 3a
2
222
AD BE CF
3
·····································································································12分 a ·2
1 4
25.(1)解:方法一,如图1,当x 1时,y 当x 4时,y 4
∴A 1············································································· 1分 ·
1 4
(图1)
B 4,4 ······················································································ 2分
设直线AB的解析式为y kx b ·············································· 3分
13
k b k 则 4 解得 4 4k b 4 b 1
∴直线AB的解析式为y 当x 0时,y 1
3
x 1 ············································· 4分 4
F 01,···························································································································5分 ·
方法二:求A、B两点坐标同方法一,如图2,作FG BD,AH BD,垂足分别为G、H,交y轴于点N,则四边形FOMG和四边形
NOMH均为矩形,设FO x···················································· 3分 △BGF∽△BHA
BGFG (图2) BHAH4 x4
·······················································································································4分 ·
54 4解得x 1
F 0,1 ·························································································································5分
(2)证明:方法一:在Rt△CEF中,CE 1,EF 2
CF2 CE2 EF2 12 22
5
························································································································6分 CF ·
在Rt△DEF中,DE 4,EF 2
DF2 DE2 EF2 42 22
20
DF 由(1)得C 1, 1 ,D 4, 1
CD 5 CD2 52 25
·································································································· 7分 CF2 DF2 CD2 ·
CFD 90° ··············································································································· 8分 CF⊥DF·
55方法二:由 (1
)知AF ,AC
44 AF AC ················································································································· 6分
同理:BF BD ACF AFC AC∥EF
ACF CFO AFC CFO ······································································································ 7分 同理: BFD OFD
CFD OFC OFD 90° 即CF⊥DF ················································································································ 8分
(3)存在.
解:如图3,作PM⊥x轴,垂足为点M ··········· 9分 又
PQ⊥OP
Rt△OPM∽Rt△OQP
PMOM
PQOP
PQPM
···················································· 10分
OPOM
图3
设P xx2 x 0 ,则PM
14
12
x,OM x 4
①当Rt△QPO∽Rt△CFD时,
PQCF1
·······························································································11分 ·
OPDF2
12x
PM1 OMx2解得x 2
···················································································································12分 P, ·1 21②当Rt△OPQ∽Rt△CFD时,
PQDF·······························································································13分 2 ·
OPCF12
x
PM 2 OMx解得x 8
P2 816,
,, 使得△OPQ与△CDF相似. ·综上,存在点P··································14分 、P2 8161 21
正在阅读:
2009年莆田市初中毕业、升学考试试卷(WORD版 有答案)08-19
国家电网公司现场标准化作业指导书06-25
我与乌龟的故事作文350字06-23
微观习题2011.2 -06-05
GMP—文件系统的设计与审计10-23
2010年1月《人力资源管理(一)》试题06-11
苏电生〔2010〕102号新建居住区供配电设施规划设计导则(试行)07-11
VirtualBox - 虚拟机教程09-09
小学捉迷藏的作文06-15
- 上海大众、一汽大众、东风日产车型与VIN代号对照表
- 第2章服装原型及原型制作
- 江苏省工商行政管理系统经济户口管理办法及四项制度
- 纪检监察业务知识试题2
- 传感器综合题答案
- 北京第二外国语学院翻硕招生人数及学费
- 初三新编英语教材下册
- 公司庆中秋、迎国庆联欢会客串词
- 向区委常委会汇报安全生产工作材料
- 2006年GCT英语模拟试题(三)及答案解析
- 经济法概念的早期使用
- 我爱做家务课堂教学设计
- 学校安全工作月报表、消防安全排查表、消防隐患排查台账
- 成本会计毕业论文
- 班级文化建设论文
- 2018年天津市高考文科试题与答案汇总(Word版) - 图文
- 铁路论文
- 2017年嵌入式系统设计师考试时间及地点
- 1.111--灾害与突发公共卫生事件应急预案
- 起爆点主图 注意买入 拉升 逃顶源码指标通达信指标公式源码
- 莆田市
- 升学
- 试卷
- 初中
- 答案
- 毕业
- 考试
- 2009
- WORD
- 公司领导值班、交接班制度
- 智能小区要求
- 高中物理选修5-第一次课(动量与冲量、动量定理)
- 3334_四川师范大学2014届本专科优秀大学毕业生拟定名单xls
- 12部位经络养生法
- 卫生监督--个体诊所检查内容
- 万欣保护卡说明书新版
- 2011年福州市高中毕业班质量检查英语答案
- 电容三点式及石英晶体振荡器实验
- 2015.6.3卫生检查结果
- 员工离职部门谈话记录表
- 中央财经大学金融专硕复习经验总结与心得体会
- 顶管施工实施方案
- 主持人大赛决赛主持稿
- 小学数学教师学科核心素养竞赛试卷
- 2015青岛XX商贸有限公司运营发展规划
- 谷子肌动蛋白基因的克隆及序列分析
- 2017-2018学年最新北师大版八年级下册数学全册教案(含教学反思)
- 高中历史学科学生自主学习能力的培养策略
- V-ing_form_复习公开课