考研数学三 经济ch1 各章复习题目及答案

更新时间:2024-06-29 18:00:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第一章 函数·极限·连续

一. 填空题

1. 已知f(x)?sinx,f[?(x)]?1?x2,则?(x)?__________, 定义域为___________. 解. f[?(x)]?sin?(x)?1?x2, ?(x)?arcsin(1?x2) ?1?1?x2?1, 0?x2?2,|x|??1?x?2.设lim??x??x??axa2

????ttedt, 则a = ________.

a解. 可得ea??a??ttedt=(te?e)tt?ae??a?e, 所以 a = 2.

a3. lim?n???21?n?n?11??2n?n?222?????=________. 2n?n?n?nn解. <

n?n?n122n?n?n222???n?n?nn22

12所以

n?n?1n?n?21?2???n1n?n?n2?n?n?nn?n?1n?n?1n?n?11?2???n2n?2???2<2< 2n?n?1n?n?2n?n?nn?n?1???

n(1?n)1?2???nn?n?n1?2???nn?n?122?12?, (n??) 2n?n?n2n(1?n)12?, (n??) 2n?n?121?2n?n?2|x|?1|x|?12?所以 lim?n???2?n?n?1?1????1?= 2n?n?n?2n4. 已知函数f(x)??

?0, 则f[f(x)] _______.

解. f[f(x)] = 1. 5. lim(n?3n?n??n?n)=_______.

(n?3n?n?n)(n?3n?n?nn?n)解. lim(n?3n?n??n?n)?limn??

n?3n? 1

=limn?3n?n?n?3n?n?nnn???2

6. 设当x?0时,f(x)?ex?1?ax1?ax1?bxx为x的3阶无穷小, 则a?_____,b?______.

e?x解. k?limx?0e?bxe?1?axe?bxe?1?ax1?bx ?lim?lim333x?0x?0xx(1?bx)xxxxx ?lime?bex?bxe2x?ax?03xe?2bexx2 ( 1 )

?lim?bxexx?06xx ( 2 )

x 由( 1 ): lim(e?be?bxex?0xxx?a)?1?b?a?0

x 由( 2 ): lim(e?2be?bxe)?1?2b?0

x?0 b??12,a?12

1??=______. x??limx?sinxx37. limcotx?x?0?1?sinx??解. limcosxsinxx?sinxxsinxx?0x?0?lim1?cosx3x2x?0?limsinx6xx?0?16

8. 已知limnk1990kn??n?(n?1)n1990k?A(? 0 ? ?), 则A = ______, k = _______.

解. limn??n?(n?1)k?limnkn1990n??k?1???A

1k11991所以 k-1=1990, k = 1991;

二. 选择题

1k?A,A??

1. 设f(x)和?(x)在(-?, +?)内有定义, f(x)为连续函数, 且f(x) ? 0, ?(x)有间断点, 则 (a) ?[f(x)]必有间断点 (b) [ ?(x)]2必有间断点 (c) f [?(x)]必有间断点 (d)

?(x)f(x)必有间断点

解. (a) 反例 ?(x)??

?0?1|x|?1|x|?1, f(x) = 1, 则?[f(x)]=1

2

(b) 反例 ?(x)???1??1

|x|?1|x|?1, [ ?(x)] = 1

2

(c) 反例 ?(x)??

?0?1|x|?1|x|?1, f(x) = 1, 则f [?(x)]=1

(d) 反设 g(x) = 以(d)是答案.

?(x)f(x)在(-?, +?)内连续, 则?(x) = g(x)f(x) 在(-?, +?)内连续, 矛盾. 所

2. 设函数f(x)?x?tanx?esinx, 则f(x)是

(a) 偶函数 (b) 无界函数 (c) 周期函数 (d) 单调函数 解. (b)是答案. 3. 函数f(x)?|x|sin(x?2)x(x?1)(x?2)2在下列哪个区间内有界

(a) (-1, 0) (b) (0, 1) (c) (1, 2) (d) (2, 3) 解. limf(x)??,x?1limf(x)??,x?0f(0?)?sin24,f(0?)??sin24

所以在(-1, 0)中有界, (a) 为答案. 4. 当x?1时,函数x?1x?121ex?1的极限

(a) 等于2 (b) 等于0 (c) 为? (d) 不存在, 但不为? 解. limx?1???ex?1?lim(x?1)ex?1??x?1x?1?0?352n?1?211x?1?0x?1?0. (d)为答案.

x?1?2???25. 极限lim?2的值是 222?n??1?22?3n?(n?1)??(a) 0 (b) 1 (c) 2 (d) 不存在

?2???2解. lim?2 222?n??1?22?3n?(n?1)???lim?1??1, 所以(b)为答案. =lim?2?2?2?2???2?2?2?n??1n??223n(n?1)?(n?1)????111111??1??352n?1?6. 设lim(x?1)(ax?1)(x?1)250955x???8, 则a的值为

(a) 1 (b) 2 (c)

58 (d) 均不对

3

解. 8 = lim(x?1)(ax?1)(x?1)95250955x??=lim(x?1)952/x(ax?1)/x509555x??(x?1)5/x100

=lim(1?1/x)(a?1/x)(1?1/x)25055?a, a?8, 所以(c)为答案.

x??7. 设lim(x?1)(x?2)(x?3)(x?4)(x?5)(3x?2)13?x????, 则?, ?的数值为

135(a) ? = 1, ? = 解. (c)为答案.

(b) ? = 5, ? =

13 (c) ? = 5, ? = (d) 均不对

8. 设f(x)?2x?3x?2, 则当x?0时

(a) f(x)是x的等价无穷小 (b) f(x)是x的同阶但非等价无穷小 (c) f(x)比x较低价无穷小 (d) f(x)比x较高价无穷小 解. lim2?3?2xxxx?0=lim2ln2?3ln31xxx?0?ln2?ln3, 所以(b)为答案.

9. 设lim(1?x)(1?2x)(1?3x)?axx?0?6, 则a的值为

(a) -1 (b) 1 (c) 2 (d) 3

解. lim(1?x)(1?2x)(1?3x)?a?0, 1 + a = 0, a = -1, 所以(a)为答案.

x?010. 设limatanx?b(1?cosx)cln(1?2x)?d(1?e?x2x?0?2,其中a?c?0, 则必有 )22(a) b = 4d (b) b =-4d (c) a = 4c (d) a =-4c

aatanx?b(1?cosx)cln(1?2x)?d(1?e?x2解. 2 =limx?0=limcosx)x?0?2c?2xde1?2x2?bsinx???x2a2c, 所以a =-4c, 所以(d)

为答案.

三. 计算题 1. 求下列极限

1(1) lim(x?e)x

x???1ln(x?e)xx???xx解. lim(x?e)x?limex???x?ex???limln(x?e)xx?ex???x?e?e?e

lim1?exx1(2) lim(sinx??2x?cos1x)

x 4

解. 令y?2x1x

1x1lim(sinx???cos)?lim(sin2y?cosy)=ey?0xylimy?0ln(sin2y?cosy)ylim2cos2y?sinysin2y?cosy2?e

?ey?0?1?tanx?(3) lim??x?01?sinx???1?tanx?解. lim??x?01?sinx??1x3

1x1x3tanx?sinx???lim?1??x?01?sinx??tanx?sinx1?sinx33

x)x??(1?sintanx?sinxlimtanx?sinxtanx?sinx3??x?0x? ?lim??1?=e ?x?0??1?sinx???? =elimx?0sinx(1?cosx)x3sinx?2sin2x21=elimx?0x3?e2.

2. 求下列极限 (1) limln(1?33x?1)2

x?1arcsin2x?13解. 当x?1时, ln(1?代换 limln(1?33x?1)~3x?1, arcsin233x?1~2x?1. 按照等价无穷小12x?13232x?1)2x?1?limx?12arcsin2x?1x?12x?13?limx?1?1223

?1?2(2) lim?2?cotx?

x?0?x?解. 方法1:

2?sin2x?x2cos2x??1cosx??1?2???lim?2?cotx?=lim??2222?=lim? x?0?xx?0?x?0xsinxsinxx???????1?(x2?1)cos2x???2xcos2x?2(x2?1)cosxsinx??? =lim?=lim? 43???x?0?x?0x4x???? =lim?2xcosx?sin2x4x?2cos232x?0?lim2xcosxsinx4x32x?0

=limx?4xcosxsinx?2cos2x12x2x?0?12

5

=lim =lim方法2:

?2cosx?2cos2x12x?2sin2x24x?22x?0?1316?1213?lim124cosxsinx?4sin2x24x23x?0?13?12

13x?0?12?????

2?sin2x?x2cos2x??1cosx??1?2 lim?2?cotx?=lim?????2222?=lim? x?0?xx?0?x?0xsinxsinxx?????? =lim??x?0?1?(x?1)cos?x422x????1??21?(x?1)(cos2x?1)??2? =lim?4x?0x??????24?1(2x)(2x)24??1?(x?1)(1?1???0(x)?22!4!? =lim?4x?0??x????1164?2424x?0(x))?1?(2x?2x?2?2x?224 =lim?4x?0x?????? ???22 =lim34?

x?0x33. 求下列极限

x4(1) limnlnnn??(nn?1)

n解. limnlnnn??(n?1)?limnn?1nn??lnn 令nn?1?x limxln(1?x)x?0?1

(2) lim1?e1?e?nx?nxn??

x?0?1???0 x?0 ??1x?0?b??, 其中a > 0, b > 0 ??n解. lim1?e1?e?nx?nxn???(3) lim?n?????解. lim?n????na?2nna?2n?1?cb?? x?1/n,c?b/a alim????x?0?2?n1xlim?x?x?0??ae??ln(1?c)?ln2xx

6

=aelimx?0ln(1?c)?ln2?xxlimclnc?x?aex?01?cx?ac?aba?ab

?2?x2(1?cosx)?4. 设f(x)??1?1x??cost2dt?x0x?0x?0 x?0试讨论f(x)在x?0处的连续性与可导性.

1解. f?'(0)?limf(x)?f(0)?x?0x?lim?x?0?xxx0costdt?1x?lim?x?02?x0costdt?xx22

?limx?0cosx?1?2??lim?x?0122x22x2x2?0

(1?cosx)?1?lim?x?0 f?'(0)?limf(x)?f(0)?x?0 ?limx?0x2sinx?2x??lim?x?02(1?cosx)?xx323x2?lim?x?0x2(cosx?1)6x

?0

所以 f'(0)?0, f(x)在x?0处连续可导. 5. 求下列函数的间断点并判别类型

1(1) f(x)?2x?11

2x?111解. f(0)?limx?0?2?x1?1?1, f(0)?lim?x?0?2x?11??1

2x?12x?1所以x = 0为第一类间断点. ?x(2x??)x?0??2cosx(2) f(x)??

1?sinx?02?x?1?解. f(+0) =-sin1, f(-0) = 0. 所以x = 0为第一类跳跃间断点; limf(x)?limsinx?1x?11x?12不存在. 所以x = 1为第二类间断点;

f(??2)不存在, 而limx??x(2x??)?22cosx??2,所以x = 0为第一类可去间断点;

7

limx??k??x(2x??)?22cosx??, (k = 1, 2, …) 所以x =?k???2为第二类无穷间断点.

1??x?0?xsin6. 讨论函数f(x)?? 在x = 0处的连续性. x

x?0?ex???解. 当??0时lim(x?sinx?0?1x1x)不存在, 所以x = 0为第二类间断点;

当??0, lim(x?sinx?0?)?0, 所以

???1时,在 x = 0连续, ???1时, x = 0为第一类跳跃间断点.

7. 设f(x)在[a, b]上连续, 且a < x1 < x2 < … < xn < b, ci (I = 1, 2, 3, …, n)为任意正数, 则在(a, b)内至少存在一个?, 使 f(?)?c1f(x1)?c2f(x2)???cnc1?c2???cn.

证明: 令M =max{f(xi)}, m =min{f(xi)}

1?i?n1?i?n所以 m ?

c1f(x1)?c2f(x2)???cnc1?c2???cn? M

所以存在?( a < x1 ? ? ? xn < b), 使得f(?)?c1f(x1)?c2f(x2)???cnc1?c2???cn

8. 设f(x)在[a, b]上连续, 且f(a) < a, f(b) > b, 试证在(a, b)内至少存在一个?, 使f(?) = ?. 证明: 假设F(x) = f(x)-x, 则F(a) = f(a)-a < 0, F(b) = f(b)-b > 0

于是由介值定理在(a, b)内至少存在一个?, 使f(?) = ?.

9. 设f(x)在[0, 1]上连续, 且0 ? f(x) ? 1, 试证在[0, 1]内至少存在一个?, 使f(?) = ?. 证明: (反证法) 反设?x?[0,1],?(x)?f(x)?x?0. 所以?(x)?f(x)?x恒大于0或恒小于0. 不妨设?x?[0,1],?(x)?f(x)?x?0. 令m?min?(x), 则m?0.

0?x?1因此?x?[0,1],?(x)?f(x)?x?m. 于是f(1)?1?m?0, 矛盾. 所以在[0, 1]内至少存在一个?, 使f(?) = ?.

10. 设f(x), g(x)在[a, b]上连续, 且f(a) < g(a), f(b) > g(b), 试证在(a, b)内至少存在一个?, 使 f(?) = g(?).

证明: 假设F(x) = f(x)-g(x), 则F(a) = f(a)-g(a) < 0, F(b) = f(b)-g(b) > 0 于是由介值定理在(a, b)内至少存在一个?, 使f(?) = ?. 11. 证明方程x5-3x-2 = 0在(1, 2)内至少有一个实根. 证明: 令F(x) = x5-3x-2, 则F(1) =-4 < 0, F(2) = 24 > 0 所以 在(1, 2)内至少有一个?, 满足F(?) = 0.

8

f(x)??sin3x12. 设f(x)在x = 0的某领域内二阶可导, 且lim????0, 求32x?0x??xf(0),f'(0),f''(0)及limf(x)?3x2x?0.

sin3xf(x)?sin3x?xf(x)?sin3x解. lim???lim?lim?323x?0x?0x?0x?x?xxx?f(x)2?0. 所以

?sin3x? lim??f(x)??0. f(x)在x = 0的某领域内二阶可导, 所以f(x),f'(x)在x = 0

x?0?x?连续. 所以f(0) = -3. 因为

sin3xxx?f(x)2sin3x limx?0?0, 所以lim3??limx?0x?3?f(x)?3x2x?0?0, 所以

sin3xxx2 limf(x)?3x2x?0?lim3x?sin3xx3x?0?lim3?3cos3x3x2x?0

=lim3sin3x2xx?0?92

?limf(x)?3x?limx?x?0 f'(0)?lim由limf(x)?3x2f(x)?f(0)x?0f(x)?3x2x?0x?0?0?92?0

x?0?92, 将f(x)台劳展开, 得

12!xf''(0)x?0(x)?3222f(0)?f'(0)x? limx?0?92, 所以

12f''(0)?92, 于是

f''(0)?9.

(本题为2005年教材中的习题, 2008年教材中没有选入. 笔者认为该题很好, 故在题解中加

入此题)

9

本文来源:https://www.bwwdw.com/article/9t63.html

Top