武汉大学习题活页及答案
更新时间:2023-11-17 17:37:01 阅读量: 教育文库 文档下载
- 武汉大学失活剂推荐度:
- 相关推荐
第三章 统计表与统计图
1. 根据数据集03,按“性别”和“教育程度”计算相应的平均工资。用标准的统计表表现用Excel操作所得出的结果。
问:(1)男性的平均工资为______________;女性的平均工资为_____________。 (2)平均工资最低的是哪类人?_____________ 最高的是哪类人?________________
2. 根据数据集03,按“教育程度”和“性别”计算2007年考核时各个档次的人数。用标准的统计表表现按“教育程度”和“性别”分类的2007年考核为“优”的人数。
3. 根据王小毛、吴燕燕和朱青新三人的一年的销售记录,汇总出各种产品的销售量。问:
(1)一月份A产品的销售总量是_________,其原始资料是: (2)八月份F产品的销售总量是_________,其原始资料是: (3)十一月份F产品的销售总量是_________,其原始资料是:
4. 根据数据集01中C列的“国内生产总值”指标,绘制1952-2006年GDP的趋势图。根据Excel作出的图形,手绘出该趋势图的大概形状。
5. 仿照例题3.3,根据数据集01中的相关资料,编制1953、1963、1973、1983和1993年的饼图,比较这六年产业结构的变化状态,并根据这六年的资料绘制三维百分比堆积柱形图。根据Excel作出的图形,手绘出1953年的饼图和六年的三维百分比堆积柱形图的大概形状。 第四章 数据的描述性分析
1.一个车间200名工人某日生产零件的分组资料如下: 零件分组(个) 40-50 50-60 60-70 70-80 80-90
工人数(人)
20 40 80 50 10
合 计 200
要求:(1)计算工人生产零件的算术平均数;(2)计算工人生产零件的标准差与标准差系数。
2.某公司所属三个企业生产同种产品,2007年实际产量、计划完成情况及产品优质品率资料如下:
企 业 实际产量(万件) 完成计划(%) 实际优质品率
(%)
甲 乙 丙
要求:(1)计算该公司产量计划完成百分比;(2)计算该公司实际的优质品率。 3.甲、乙两个菜场三种蔬菜的销售资料如下: 蔬 菜 单 价 名 称 (元) A B C
2.5 2.8 3.5
销售额(元) 甲菜场 2200 1950 1500
乙菜场 1650 1950 3000
100 150 250
120 110 80
95 96 98
要求:(1)计算两个菜场蔬菜的平均价格;(2)比较价格的高低,并说明原因。 4.打开Ex4_1,其中有15个数据。
要求:(1)计算这组数据的算术平均数、调和平均数和几何平均数,(2)比较三种平均数的大小;(3)将这组数据减少10、增加10,计算新生成的两组数列的算术平均数、标准差和标准差系数;(4)将这组数据乘以10、除以10,计算新生成的两组数列的算术平均数、标准差和标准差系数。
5.打开Ex4_2,其中是经济学专业2个班级的微积分的期末考试成绩。
要求:(1)计算这个专业微积分成绩的最高分、最低分、算术平均数和标准差(用工具“描述统计”);(2)分别计算这两个班级微积分成绩的最高分、最低分、算术平均
数和标准差(用工具“描述统计”) ;(3)分别统计并做表列出两个班级各档分数的次数(用函数“Frequency”)与所占比重、列出向上、向下累计的次数与频率。 6.打开Ex4_3,其中是2005年江苏省52个县市人均地区生产总值。 要求:计算各项指标,并选择答案:
(1)江苏省52个县市的平均人均地区生产总值是多少元? A. 20725 B. 18674 C. 15721 D. 19711 E.85124
(2)江苏省52个县市人均地区生产总值的标准差是多少? A. 36023 B. 11969 C. 9837 D. 5632 E. 21773
(3)江苏省52个县市人均地区生产总值的中位数是多少? A. 6923 B. 4292 C. 13119 D. 5798 E. 14992
(4)江苏省52个县市人均地区生产总值的偏态系数是多少? A. 0.55 B. -1.23 C. 2.56 D. 2.48 E. -0.10
(5)江苏省52个县市人均地区生产总值的峰度系数是多少? A. 8.92 B. -5.28 C. 2.02 D. 6.57 E. -0.54
(6)江苏省52个县市人均地区生产总值的全距是多少? A. 10964 B. 108647 C. 108586 D. 32948 E. 25124
(7)根据斯透奇斯规则对52个县市数据进行分组,组数是多少? A. 9 B. 5 C. 7 D. 6 E. 8
(8)若采用等距数列,根据组数和全距的关系,确定的组距是多少? A. 18500 B. 16300 C. 29400 D. 17000 E. 23200
(9)人均地区生产总值在20600~36900元之间的县市个数是多少? A. 35 B. 8 C. 5 D. 6 E. 20
(10)人均地区生产总值大于20600元的县市个数占全部县市比例是多少? A. 32.7% B. 20.2% C. 25.0% D. 15.6% E. 28.8%
第五章 参数估计
1. 某企业从长期实践得知,其产品直径X服从正态分布 。从某日产品中随机抽取10个,测得其直径分别为14.8,15.3,15.1,15.0,14.7,15.1,15.6,15.3,15.5,15.1(单位:厘米)。在99%的置信度下,求该产品直径平均数的置信区间和给出置信上限的单侧置信区间。
2. 现从某公司职工中随机抽取60人调查其工资收入情况,得到有关资料在下表,假定职工的月收入服从正态分布;(1)以95%的置信度估计该公司工人的月平均工资所在范围;(2)以95.45%的置信度估计月收入在1000元及以上工人所占比重。 月收入 工人数
800 900 950 1000 1050 1100 1200 1500 6
7
9
10
9
8
7
4
3. 一农场种植葡萄以生产果冻,假设葡萄的甜度为 ,服从正态分布 ,从27卡车葡萄中,随机的抽取样本,每辆车取一个,然后测量甜度,结果如下: 16.0 15.2 12.0 16.9 14.4 16.3 15.6 12.9 15.3 15.8 15.5 12.5 14.5 14.9 15.1 16.0 12.5 14.3 15.4 13.0 12.6 14.9 15.1 15.3 12.4 17.2 14.8
(1) 求葡萄平均甜度 的95%置信区间和单侧置信区间。 (2) 分别求葡萄甜度方差 和标准差 的95%置信区间。
4. 和 分别表示下肢瘫痪和正常成年男子的血液容量,单位ml,假设 服从 , 服从 。对 做了7次观测,结果是1612,1352,1456, 1222,1560,1456,1924,对 做了10次观测,1082,1300,1092,1040,910,1248,1092,1040,1092,1288。求 的95%置信区间。
5. 和 分别表示A、B两种品牌的日光灯的寿命,分别服从 和 ,从AB两个品牌的日光灯中分别随机地抽取了56和57个日光灯,测得平均寿命分别是937.4小时和988.9小时;求 的99%置信区间。
6.在一项政治选举中,一位候选人在选民中随机地做了一次调查,结果是351名投票者中有185人支持他,求全部选民中支持他的选民所占比重的95%的近似置信区间。 7.某企业对一批产品进行质量检验,这批产品的总数为5000件,过去几次同类调查所得的产品合格率为93%、95%和96%,为了使合格率的允许误差不超过3%,在99.73%的概率下应抽查多少件产品?
8.某国以前的失业率大约是8%,政府在制定国家的经济政策时,要估计最新的失业率。决策者希望失业率的最新估计与真正的失业率相差不能超过1%,问要调查多少人的就业情况?(置信水平为98%)。
9.检验某食品厂本月生产的10000袋产品的重量,根据上月资料,这种产品每袋重量的标准差为25克。要求在95.45%的概率保证程度下,平均每袋重量的误差范围不超过5克,应抽查多少袋产品?
10. 某公司有职工8000人,从中随机抽取406人调查其每月工资收入状况。调查数据存放在Ex5_1中。
(1)计算被调查职工的月平均工资 (2)计算被调查职工的月工资收入的标准差 (3)月收入在2500元及以上职工人数
(4)试以95.45%的置信水平推断该公司职工月平均工资所在的范围
(5) 试以95.45%的置信水平推断月收入在2500元及以上职工在全部职工中所占的比重
11.生物学家要比较某种蜘蛛的雌、雄蜘蛛的体长,以 和 分别表示雌、雄蜘蛛的的体长, 和 分别表示 和 的均值;研究者分别测量了30个雌、雄蜘蛛,数据存放在Ex5_2中。
X: 5.20 4.70 5.75 7.50 6.45 6.55 4.70 4.80 5.95 5.20 6.35 6.95 5.70 6.20 5.40 6.20 5.85 6.80 5.65 5.50 5.65 5.85 5.75 6.35 5.75 5.95 5.90 7.00 6.10 5.80
Y: 8.25 9.95 5.90 7.05 8.45 7.55 9.80 10.85 6.60 7.55 8.10 9.10 6.10 9.30 8.75 7.00 7.80 8.00 9.00 6.30 8.35 8.70 8.00 7.50 9.50 8.30 7.05 8.30 7.95 9.60 (1)试以90%的置信水平推断雌性蜘蛛体长 的范围 (2)试以90%的置信水平推断雌性蜘蛛体长 的范围 (3)试以95%的置信水平确定雌雄蜘蛛体长之差 的置信区间 第六章 假设检验
1.假定某厂生产一种钢索断裂强度为 ,服从正态分布 ,从中选取一容量为6的样本,得 ,能否据此样本认为这批钢索的平均断裂强度为 ?
2.从1997年的新生婴儿中随机抽取20名,测得其平均体重为3180g,样本标准差为300g,而从过去的统计资料知,新生婴儿的平均体重为3140g,问现在的新生婴儿的体重有否显著变化?
3. 检查一批保险丝,抽取10根在通过强电流后熔化所需时间(s)为 :42 , 65 , 75 , 78 , 59 , 71 , 57 , 68 , 54 , 55. 问在 下能否认为这批保险丝的平均熔化时间不小于65s (设熔化时间服从正态分布)?
4. 某种羊毛在处理前后各抽取样本,测得含脂率如下(%): 处理前 19,18,21, 30,66,42,8, 12, 30, 27 处理后 15, 13, 7,24, 19, 4,8, 20
羊毛含脂率按正态分布,且知其处理前后标准差都是6,问处理前后含有无显著变化 ? 5.在同一炼钢炉上进行改进操作方法后确定其得率是否有所变化的试验,用原方法和改进后的新方法各炼了10炉,其得率分别为
原方法:78.1,72.4,76.2,74.3,77.4,78.4,76.0,75.5,76.7, 77.3 新方法:79.1,81.0,77.3,79.1,80.0,79.1,79.1,77.3,80.2,82.1
设两种方法得率相互独立且均服从同方差的正态分布,问新方法的得率是否有所提高 ? 6. 某企业声明有30%以上的消费者对其产品质量满意。如果随机调查600名消费者,表示对该企业产品满意的有220人。试在显著性水平0.05下,检验调查结果是否支持企业的自我声明。
7.某企业生产钢丝以往所得折断力的方差为25,现从某日产品中随机抽取10根检验折断力,得数据如下(单位:kg): 578,572, 570, 568, 572, 570, 570, 572, 596, 584. 设折断力服从正态分布,试在显著性水平0.05下,问该日生产钢丝折断力的方差是否有显著变化?
8.南京财经大学某教师去年所授4个班共207人的“统计学”课程平均成绩为82分。今年该教师进行了本课程较成功地教学改革,于是声称今年自己所授3个班共154人的该课程平均成绩将比去年高。现在要求你对该教师的声称进行假设检验 ( =0.05)。Ex7_1是今年该教师所授本课程3个班级中随机抽取的已批阅36份学生试卷(假设考试已结束)。
(1)你所选取的原假设最好是 ( ) A. u≤82 B. u≥82 C. u<82 D. u>82
(2)你计算出的 = ( )
A. 1.711563 B. 1.892153 C. 1.435912 D. 1.798658 (3)你计算出的p—值= ( )
A. 0.050121 B. 0.041732 C. 0.040351 D. 0.042001 (4)你得到的结论是 ( )
A. 拒绝u≥82 B. 无理由拒绝u≤82 C. 拒绝u<82 D. 接受u>82 (5)若选用 =0.01,你得到的结论是 ( )
A. 拒绝u≥82 B. 无理由拒绝u≤82 C. 拒绝u<82 D. 接受u>82
9. 某教师今年“统计学”课程授课对象为经济学专业(代号1)158人和贸易经济专业(代号2)203人。从该课程期中考试情况看,学生均分前者高于后者2分。该教师声称,该课程期末考试成绩学生均分前者会高于后者。现在要求你对该教师的声称进行假设检验 ( =0.01)。Ex7_2存放着经济学专业和贸易经济专业学生期末考试成绩36个样本资料。假定两个专业学生考分的总体方差相等。 (1)你所选取的原假设最好是 ( )
A. u1-u2≥0 B. u1-u2>0 C. u1-u2<0 D. u1-u2≤0 (2)你计算出的 = ( )
A. 2.829439 B. 3.775602 C. 3.002037 D. 2.443848 (3)你计算出的p-值= ( )
A. 0.008527 B. 0.001606 C. 0.006351 D. 0.003663 (4)你得到的结论是 ( )
A. 拒绝u1-u2≥0 B. 拒绝u1-u2≤0 C. 无理由拒绝u1-u2≤0 D. 无理由拒绝u1-u2<0 (5)若选用 =0.05,你得到的结论是 ( )
A. 无理由拒绝u1-u2≤0 B. 接受u1-u2>0 C. 接受u1-u2≤0 D. 拒绝u1-u2≥0 第七章 方差分析
1.某公司请金环公告公司为促销某产品设计广告,为了评出三个备选方案中较好的一个,该公司对其所属的14家超级市场随机地配用了一种广告。一个月之后,各超市的商品销售增长额资料如下表所示,问:三种广告有差别吗?(α=0.05)
广告类型 A B C
配用超市数量 4 5 5
销售额 69, 76, 71, 84 74, 79, 63, 74, 70 71, 92, 85, 68, 84
2.比较3种化肥(A、B两种新型化肥和传统化肥)施撒在三种类型(酸性、中性和碱性)的土地上对作物的产量情况有无差别,将每块土地分成3块小区,施用A、B两种新型化肥和传统化肥。收割后,测量各组作物的产量,得到的数据如下: 化肥 土 地 种类 酸性 A B
30 31
中性 31 36 29
碱性 32 32 28
传统 27
要求回答:(1)化肥对作物产量有影响吗?(2)土地类型对作物产量有影响吗?假定化肥类型与土地类别之间不存在交互效应,α=0.05。
3.比较3种化肥(A、B两种新型化肥和传统化肥)施撒在三种类型(酸性、中性和碱性)的土地上对作物的产量情况有无差别,将每块土地分成6块小区,施用A、B两种新型化肥和传统化肥。收割后,测量各组作物的产量,得到的数据如下表。化肥、土地类型及其它们的交互作用对作物产量有影响吗?(α=0.05) 化肥 土 地 种类 酸性 A B
30, 35 31, 32
中性 31, 32 36, 35 29,27
碱性 32, 30 32, 30 28, 25
传统 27, 25
4.五商店以各自的销售方式卖出新型健身器,连续五天各商店健身器的销售量如Ex7_1所示。销售量服从正态分布,且具有方差齐性,问销售方式对销售量有无显著影响。 (α=0.05)
(1)该方差分析的备择假设是:
A. B.
C. 不全相等 D. 全不相等
(2)水平间离差平方和SSA的自由度是: A.4 B.20 C.24 D. 46 (3)检验统计量为:
A.2.87 B.4.58 C.0.001 D.1.2 (4)结论是:
A.5种销售方式法有差别 B. 5种销售方式无差别 C. 无法判断 D. 5种销售方式均值相等
(5)如果想知道具体哪些销售方式有差异可采用什么方法? A. 方差分析 B. 假设检验 C. 回归分析 D.多重比较 第八章 非参数检验
1.某企业出台了一套改革方案,向不同工龄的职工进行调查得到下面的列联表,根据这张表能否认为不同工龄的职工对改革方案的态度是不同的?(α=0.05)
职工工龄
态度
10年以下 10-20年
赞成
21
9 10 9 28
20年以上 10 14 19 43
40 40 40 120 合计
无所谓 16 反对 合计
12 49
2. 甲、乙两位评酒员对10种品牌白酒的主观排序如下表,计算两个等级相关系数,问两位评酒员对白酒的评价意见具有一定的相关性吗?(α= 0.05) 品牌 1 甲
7
2 1
3 5
4 6
5 8
6 9
7 4
8 3
9 10
10 2
乙 6 3 2 4 9 10 8 5 7 1
第九章 相关与回归分析
1.某公司8个所属企业的产品销售资料如下: 企业编号 1 2 3 4 5 6 7 8
产品销售额(万元) 170 220 390 430 480 650 850 1000
销售利润(万元) 8.1 12.5 18.0 22.0 26.5 40.0 64.0 69.0
要求:(1)画出相关图,并判断销售额与销售利润之间对相关方向;(2)计算相关系数,指出产品销售额和利润之间的相关方向和相关程度;(3)确定自变量和因变量,求出直线回归方程;(4)计算估计标准误差 ;(5)对方程中回归系数的经济意义作出解释;(6)在95%的概率保证下,求当销售额为1200万元时利润额的置信区间。 2.某公司的10家下属企业的产量与生产费用之间关系如下: 产量/万件 单位生产费用/元
40 150
42 140
48 138
55 135
65 120
79 110
88 105
100 98
120 88
140 78
要求:(1)画出相关图,并判断产量与单位生产费用之间对相关方向;(2)计算相关系数,指出产量与单位生产费用之间的相关方向和相关程度;(3)确定自变量和因变量,拟合直线回归方程;(4)计算估计标准误差 ;(5)对相关系数进行检验(显著性水平取0.05);(6)对回归系数进行检验(显著性水平取0.05);(7)在95%的概率保证下,求当产量为130万件时单位生产费用的置信区间。 3. 设有某企业近年来总成本与产量的资料,见下表。 年 份 1993
总成本Y 32900
产量X 400
年 份 1999
总成本Y 86300
产量X 900
1994 1995 1996 1997 1998
52400 42400 62900 74100 100000
600 500 700 800 1000
2000 2001 2002 2003 2004
139000 115700 154800 178700 203100
1200 1100 1300 1400 1500
(1)试拟合以下总成本函数:
(2)试根据以上结果推算总产量为1350时的单位产品平均成本。
4. Ex10_1中存放着在一项身高和体重的关系的研究中抽查的12个人的身高(单位: 厘米)和体重(单位: 公斤)的数据, 以前的研究表明, 人的体重和身高之间存在线性关系。 (1) 计算体重和身高间的Pearson相关系数 为( ) A. 0.9922 B. 0.8389 C. 0.6442 D. -0.9922
(2) 由第(1)题计算的Pearson相关系数判断两者间的相关程度和相关方向为( ) A. 高度负相关 B. 中度负相关 C. 高度正相关 D. 中度正相关
(3) 假如要建立体重(因变量)对身高(自变量)的线性回归模型,求得其经验回归直线为( ) A. B. C. D.
(4) 检验回归系数是否为0即 , 则( ) (显著性水平 ) A. , 回归系数 B. , 回归系数 C. , 回归系数 D. , 回归系数
(5)该线性回归模型的可决系数为( ) A. 0.9900 B. 0.8326 C. 0.6667 D. 0.4150 第十一章 时间序列分析
1. 某企业1992-2007年的产品销售数据如下: 年份 1992 1993 1994
销售额(万元) 60 54 72
年份 2000 2001 2002
销售额(万元) 101 89 115
1995 1996 1997 1998 1999
80 83 87 89 95
2003 2004 2005 2006 2007
125 130 140 154 163
要求:(1)用3年、4年、7年移动平均法计算趋势值,并比较移动的效果;(2)直接以年份为t,用最小二乘法配合趋势直线,并计算出各年的趋势值;(3)将年份序列定义为t=1,2,3,……,用最小二乘法配合趋势直线,并计算出各年的趋势值。 2. 某商店2003~2006年各季度毛线销售量(单位:百斤)资料如下: 时 间 2003 2004 2005 2006
一季 30 29 32 31
二季 10 11 11 12
三季 15 18 17 20
四季 80 92 85 91
要求:(1)作图判断该数据应该用什么方法来测定季节变动;(2)计算各季的季节比率。
3. 某旅游风景区1997-1999年各月的旅游收入额(单位:万元)资料如下: 月份 1 2 3 4 5 6 7 8 9 10
1997年 16 154 220 392 642 1642 2810 1204 384 183
1998年 145 210 312 520 684 1872 3120 1382 482 248
1999年 180 245 325 535 710 1923 3350 1576 625 437
11 12
125 95
130 112
258 166
要求: (1)作图判断该数据应该用什么方法来测定季节变动;(2)计算各月的季节比率。
4.Ex11_1是某纱厂棉纱1988~2007的年销售额。
(1)测定长期趋势线性方程的系数分别为a( ),b( )。时刻序列为t为定义…-7,-5,-3,-1,1,3,5,7…..
A.a=100.45,b=3.32 B.a=-920.72,b=4.656 C.a=1226.347,b=1.656 D.a=4545.66,b=0.83
(2)预测2009年销售额
A.142.31 B.176.998 C.172.76 D.181.18
5.Ex11_2为某市场2001~2003年背心月销售量的相关资料。 (1)分析数据是否存在季节变动,是否存在长期趋势? A.存在, 不存在 B.不存在,存在 C.存在,存在 D.不存在,不存在
(2)用移动平均法计算季节指数则,1~4月份的季节指数为( )(四舍五入保留四位小数)
A. 一月份(1.5425) 二月份(3.0463)三月份(2.8646)四月份(1.5284) B. 一月份(0.4944)二月份(0.3128)三月份(0.1939)四月份(0.1771). C. 一月份(0.1701)二月份(0.2562) 三月份(0.5598) 四月份(0.8539) D. 一月份(0.5638)二月份(0.3557)三月份(0.2016)四月份(0.1556)
(3)对季节调整后的数据进行趋势测定,趋势方程中的系数分别为a( ),b( )。 时刻序列t为定义1,2,3,4…..
A. a=35.679,b=3.067 B.a=30.136,b=1.746 C. a=67.72,b=0.88 D.a=36.753,b=3.568 第十二章 指数
1. 某商场三种商品的价格和销售量资料如下表所示:
价格(元)
商品名称 单位
基期
皮鞋 布上衣 呢帽
双 件 顶
200 50 10
报告期 180 60 12
销售量(千) 基期 3 4 1
报告期 4 5 1.1
要求计算:
(1)三种商品的个体价格指数(即价比) (2)拉氏、派氏价格指数 (3)拉氏、派氏销售量指数 (4)用马艾公式计算价格指数 (5)用理想公式计算价格指数
2.某商店三种商品的销售量与销售额资料如下: 商 品 计 量 名 称 单 位 甲 乙 丙
打 只 盒
销 售 量 基 期 250 180 500
报告期 290 160 540
基期销售额 (万元) 180 220 150
要求:计算三种商品销售量总指数和由于销售量变动对销售额的影响额。 3.根据指数之间的关系计算回答下列问题:
(1)某企业2005年产品产量比2004年增长了14%,生产费用增长了10.8%,问2006年产品单位成本变动如何?
(2)某公司职工人数增加7%,工资水平提高了8.4%,工资总额增长多少? (3)商品销售额计划增长10%,而销售价格却要求下降10%,则销售量如何变化? (4)价格调整后,同样多的货币少购买商品10%,问物价指数是多少?
4. 某国制造业工人周工资和消费物价指数资料如下: 年份 2001 2005 要求:
(1)按美元面值计算,2005年平均周工资比2001年增长了多少? (2)考虑物价因素,2005年平均周工资比2001年增长了多少? 5.
《联合国统计年鉴(1971年)》发表的世界出口贸易价格指数(1963=100)如下: 年份 1965 1966 1967 1968 1969 1970 指数 103
105
105
104
108
112
平均周工资(美元) 消费物价指数(2000=100) 200 215
105 118
《联合国统计年鉴(1978年)》发表的世界出口贸易价格指数(1970=100)如下: 年份 1970 1971 1972 1973 1974 1975 指数 100
106
114
142
199
213
要求:(1)以1963年为基期,编制1965-1975年的世界出口贸易价格指数数列;(2)以1970年为基期,编制1965-1975年的世界出口贸易价格指数数列。
6.Ex12_1中的数据库存放着2004年居民消费价格指数,分为全国、城市与农村三项。每个总指数是通过综合八个类指数得到的,以上年为100。
(1)根据给出的权数,计算城市的“交通和通信”类指数,该指数为:__________ (2)根据给出的权数,计算城市的居民消费价格指数,该指数为:__________ (3)农村“交通和通信”类指数为99.77,意味着( )。
A.在该项目上,物价上涨了2.3‰。与去年比,购买同样的项目,支出增加。 B.在该项目上,物价上涨了2.3‰。与去年比,购买同样的项目,支出减少。 C.在该项目上,物价下跌了2.3‰。与去年比,购买同样的项目,支出增加。 D.在该项目上,物价下跌了2.3‰。与去年比,购买同样的项目,支出减少。
(4)一个农民去年花费在“交通和通信”上是50元,如果维持去年的消费项目,他今年需要支付( )。
A.50.12元 B.49.12元 C.50.88元 D.49.88元
7. Ex12_2中的数据库上半部分存放着各地区农业生产资料价格分类指数,下半部分存放着部分地区各类指数的权重。总指数是通过综合十个类指数得到的。 不考虑十个类指数的重要性,计算江苏、浙江、安徽的总指数。 (1)江苏的总指数为__________。 A.109.70 B.111.52 C.110.51 D.109.63 (2)浙江的总指数为 __________。 A.109.70 B.111.52 C.110.51 D.109.63 (3) 安徽的总指数为 __________。 A.109.70 B.111.52 C.110.51 D.109.63
考虑十个类指数的重要性,计算江苏、浙江、安徽的总指数。 (4) 江苏的总指数为 __________。
A.109.70 B.113.18 C.112.18 D.111.83 (5) 浙江的总指数为 __________。
A.109.70 B.113.18 C.112.18 D.111.83 (6) 安徽的总指数为 __________。
A.109.70 B.113.18 C.112.18 D.111.83
(7) 安徽某地区的农民用1亿元来购买农业生产资料,根据加权指数,与全国水平相比,总体上说,他们( )。
A.多花1千万 B.多花1百万 C.少花1千万 D.少花1百万
(8) 根据加权指数,从支出角度看,江苏、浙江、安徽和福建四省农民的境况较好的是( )。
A.江苏 B.浙江 C.安徽 D.福建
答案
第三章 统计表与统计图
1. 根据数据集03,按“性别”和“教育程度”计算相应的平均工资。用标准的统计表表现用Excel操作所得出的结果。
按“性别”和“教育程度”分类的平均工资
性 别
受教育年限
女
8 12 14 15 16 17 18 19 20 21 总计
21475.00 24145.71
27050.00 40153.54 29100.00
26037.59
男 28213.04 29441.12 31625.00 33546.41 52682.71 62570.00 65127.77 71779.62 64312.50 65000.00 41283.90
24399.06 25892.07 31625.00 31665.88 47586.10 59527.27 65127.78 71779.63 64312.50 65000.00 34341.97 合计
答:(1)男性的平均工资为41283.90;女性的平均工资为26037.59。
(2)平均工资最低的是受教育年限为8年的女性;平均工资最高的是受教育年限为19年的男性。
2. 根据数据集03,按“教育程度”和“性别”计算2007年考核时各个档次的人数。用标准的统计表表现按“教育程度”和“性别”分类的2007年考核为“优”的人数。
性 别
受教育年限
女
8
7
男 6
13
合计
12 14 15 16 17 18 19 20 21 总计
26 12 9 54
22 2 23 10 5 3 8 1 1 81
48 2 35 19 5 3 8 1 1 135
3. 根据王小毛、吴燕燕和朱青新三人的一年的销售记录,汇总出各种产品的销售量。答:
(1)一月份A产品的销售总量是486,其原始资料共有四笔:王小毛123,吴燕燕123,95,朱青新145
(2)八月份F产品的销售总量是24,其原始资料共两笔:王小毛12,吴燕燕12 (3)十一月份F产品的销售总量是22,其原始资料只一笔:王小毛22
4. 根据数据集01中C列的“国内生产总值”指标,绘制1952-2006年GDP的趋势图。根据Excel作出的图形,手绘出该趋势图的大概形状。
5. 仿照例题3.3,根据数据集01中的相关资料,编制1953、1963、1973、1983和1993年的饼图,比较这六年产业结构的变化状态,并根据这六年的资料绘制三维百分比堆积柱形图。根据Excel作出的图形,手绘出1953年的饼图和六年的三维百分比堆积柱形图的大概形状。 第四章 数据的描述性分析 1. 零件分组 (个) 40-50
工人数
组中值 标志总量
xf 900
7605
(人) x 20
45
50-60 60-70 70-80 80-90 合 计 (1)
40 80 50 10
55 65 75 85
2200 5200 3750 850
3610 20 5512.5 4202.5
200 - 12900 10950.0
(2) (分)
2.(1)产量计划完成百分比: (2)实际优质品率: 3. (1)
(2)乙菜场比甲菜场平均价格高0.16元,原因是销售结构不同,乙菜场价格高的蔬菜销售的比重占得较大。 4.(1) ; ; (2) (3)、(4) 平均数 标准差
原数列 54.0556 27.7438
原数列+10 原数列-10 原数列×10 原数列/10 64.0556 27.7438 43.31%
44.0556 27.7438 62.97%
540.5556 277.4381 51.32%
5.4056 2.7744 51.32%
标准差系数 51.32% 5.(1)、(2)
最高分 98 91
专业 一班
最低分 45 56
平均数 72.73 72.65
标准差 10.92 8.98
二班
(3)、(4) f 一班成绩 60分以下 60-70 70-80 80-90
98 45 72.82 12.70
向上累计频
比重(%) 向上累计次数
率 11.29 19.35 43.55 24.19 1.61 100.00
7 19 46 61 62 -
11.29 30.65 74.19 98.39 100.00 -
向下累计次向下累计频数 62 55 43 16 1 -
率 100.00 88.71 69.35 25.81 1.61 -
7 12 27 15
90以上 1 合计
62
二班成绩 f 60分以下 60-70 70-80 80-90
向上累计频
比重(%) 向上累计次数
率 13.33 26.67 25.00 25.00 10.00 100.00
8 24 39 54 60 -
13.33 40.00 65.00 90.00 100.00 -
向下累计次向下累计频数 60 52 36 21 6 -
率 100.00 86.67 60.00 35.00 10.00 -
8 16 15 15
90以上 6 合计
60
6.(1)A (2)E (3)C (4)D (5)D (6)B (7)C (8)B (9)D (10)C 第五章 参数估计 1.
该产品直径平均数的置信区间: 置信上限的单侧置信区间: 2. (1)
月份
季节比率 1 0.200022991 0.22720 0.2136 2 0.281784636 0.30250 0.2921 3 0.412289395 0.39444 0.4034 4 0.681036835 0.63858 0.6598 5 0.892416418 0.83431 0.8634 6
2.439485258 2.23974 2.3396 7 4.25140 4.054361362 4.1529 8 1.80060 1.789093263 1.7948 9 0.56903 0.622370474 0.5957 10 0.26754 0.319742143 0.2936 11 0.18088 0.167238422 0.1741 12
0.13525
0.143490098 0.1394
11.9224
4. (1)A (2)B 5. (1)C (2)C 6. (1) 第十二章 指数
1. (1)公式: 皮鞋、布上衣、呢帽的个体价格指数分别为: (2) 拉氏价格指数公式: 派氏价格指数公式: (3) 拉氏销售量指数公式: 派氏销售量指数公式: (4) 马艾价格指数: (5) 理想价格指数: 2.
调整后 0.2150 0.2940 0.4060 0.6641 0.8690 2.3548 4.1799 1.8065 0.5996 0.2956 0.1752 0.1403 12.0000
销售量变动对销售额的影响额: (万元) 3. 根据:
(1) ,单位成本下降2.81% (2) ,工资总额增长15.99%。 (3) ,销售量应增长22.22% (4) ,物价指数为111.11%。 4. (1)2005年平均周工资比2001年增长: (2)2005年平均周工资比2001年增长:
结论:从面值看,工资是增长的,但如果考虑物价上涨的因素,则实际工资水平是下降的。
5.调整换算系数=112/100=1.12
年份 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 指数 91.96 93.75 93.75 92.86 96.43 100
年份 1965 1966 1967 1968 1969 1970 1971 1972 指数 103
105
1973
1974
1975
106
114
142
199
213
105 104 108 112 118.72 127.68 159.04 222.88 238.56
6.(1)97.8971 (2)103.2945 (3)D (4)D
7.(1)D (2)A (3)B (4)C (5)B (6)D (7)B (8)C
(2)
3. 平均数双侧检验: 平均数单侧检验: 上侧: 下侧:
方差双侧检验: 上限: 下限: 标准差双侧检验: 上限: 下限: 4. 5. . 6.
7. 取 的最大值计算如下: 重复抽样: 不重复抽样: 8. 9.
10.(1)2969.562; (2) 849.8273; (3) 258; (4) 2887.377~3051.746; (5) 58.89%~68.20%
11.(1)5.72-6.12 (2)7.80-8.51 (3)(-2.73)-(-1.75) 第六章 假设检验
1. 依题意建立假设 : 325 : 325 检验统计量:
由标准正态分布表,得 。Z<1.96,从而拒绝 ,即不能认为这批钢索的平均断裂强度为 。
2. 依题意建立假设 : 3140 : 3140 检验统计量:
由 分布表,得 。t<2.8609,从而不能拒绝 ,即没有足够的证据说明新生婴儿的体重有显著变化。
3.依题意 S=11.04 : :
检验统计量
由 分布表,得 。t>-1.833,从而不能拒绝 ,即没有足够的证据说明这批保险丝的平均熔化时间小于65s。 4. 依题意建立假设 : :
由标准正态分布表,得 。从而拒绝 ,即认为处理前后羊毛含脂率有显著变化。 5. 依题意 ; : : 检验统计量
,t<-2.552,从而拒绝 ,即认为改进后的新方法能使得率显著提高。 6. 依题意 : 30% : 30% 根据检验统计量 因为 ,从而拒绝 。 7. 依题意建立假设 根据检验统计量
显著性水平 , , 。由于27.26>19.02因此,拒绝原假设 。 8. (1)A (2)D (3)C (4)D (5)B 9. (1)D (2)D (3)A (4)B (5)B 第七章 方差分析
1.原假设: ;备择假设: 不全等 差异源 SS 组间 组内 总计
df
MS
F
P-value
F crit
162.8571 2 686
11
81.42857 1.305705956 0.309879107 3.982307817 62.36364
848.8571 13
因为 ,所以接受原假设,即三种广告对销售量的增长没有影响。
2.对化肥因素,原假设: ;备择假设: 不全等 对土地因素,原假设: ; 不全等 差异源 行(化肥) 列(土地) 误差 总计
SS 38
df 2
MS 19
F
P-value
F crit 6.944276
10.36364 0.026168
10.66667 2 7.333333 4 56
8
5.333333 2.909091 0.165981 1.833333
6.944276
① 因为 ,所以拒绝原假设,即化肥对作物产量有影响。 ② 因为 ,所以不能拒绝假设,即土地类型对作物产量没有影响。 3.对化肥因素: ; 不全为零;对土地因素: ; 不全为零 对因素化肥和土的交互效应: ; 不全为零 差异源 样本 列 交互 内部 总计
SS
Df
MS
F
P-value
F crit
116.77778 2 15.444444 2 15.555556 4 26.5
9
58.388889 19.830189 0.000503271 4.2564947 7.7222222 2.6226415 0.126640152 4.2564947 3.8888889 1.3207547 0.333435063 3.6330885 2.9444444
174.27778 17
① 因为 ,所以拒绝原假设,即化肥对作物产量有影响。 ② 因为 ,所以不能拒绝假设,即土地类型对作物产量没有影响。 ③ 因为 ,所以不能拒绝原假设,即交互作用对作物产量没有影响。 4.(1)C; (2)A; (3)B; (4)A; (5)D 第八章 非参数检验
1. 原假设:两变量独立,即态度和年龄没有关系 期望数据
16.333333 9.3333333 14.333333 40 16.333333 9.3333333 14.333333 40 16.333333 9.3333333 14.333333 40 49
28
43
临界值=9.4877 故:不能拒绝原假设 2. 斯皮尔曼等级相关系数: n=10
临界值为0.546,故样本等级相关系数有统计意义。 肯德尔等级相关系数: n=10
临界值为0.467,故样本等级相关系数有统计意义。 第九章 相关与回归分析
1.(1)正相关(2)r = 0.9865,呈高度正相关;(3)自变量为产品销售额,y = -8.41+0.078x;(4)4.08(5)0.078
2. (1)负相关(2)r = -0.9835,呈高度正相关;(3)自变量为产量,因变量为单位生产成本,y = 170.42-0.6978x;(4)4.66(5)临界值为0.632,故计算得到的样本相关系数有统计意义(6)检验统计量t=-15.38,对应概率为3.18E-07,小于0.05,故回归系数有统计意义。
4.(1)C; (2)D; (3)A; (4)B; (5)D 第十一章 时间序列分析 1. 年份 1992 1993 1994
销售额(万元) 3年移动平均 60 54 72
62.00 68.67
4年移动平均 7年移动平均 趋势值
69.38
52.87 59.46 66.05
1995 1996 1997 1998 1999 2000 80 83 87 89 95 101 78.33 83.33 86.33 90.33 95.00 95.00 76.38 82.63 86.63 90.75 93.25 96.75 75.00 80.00 86.71 89.14 94.14 100.14 72.65 79.24 85.83 92.42 99.02 105.61 2001 89 101.67 103.75 106.29 2002 115 109.67 111.13 113.57 2003 125 123.33 121.13 122.00 2004 130 131.67 132.38 130.86 2005 140 141.33 142.00 2006 154 152.33
2007
163
直接以年份为t,用最小二乘法配合趋势直线:
将年份序列定义为t=1,2,3,……,用最小二乘法配合趋势直线: 2.
该数据适合用按季平均法计算季节比率: 时 间 一季 二季 三季 2003 30 10 15 2004 29 11 18 2005 32 11 17 2006 31 12 20 季平均 30.5 11 17.5 季节比率 83.56%
30.14%
47.95%
6.
该数据适合用趋势剔除法计算季节比率:
112.20 118.79 125.39 131.98 138.57 145.16 151.76
四季 80 92 85 91 87 238.36%
正在阅读:
武汉大学习题活页及答案11-17
生物工程工厂设计-物料衡算10-03
实验五 细菌鉴定中常见的生理生化反应05-09
湖南最新各地区企业名录07-21
网络考试复习题(五)05-29
南京城市规划历史变迁介绍02-02
形容美人醉酒后的诗句11-10
2016-2022年中国中药饮片市场深度调查研究报告 - 图文06-13
打乒乓球作文400字07-06
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 武汉大学
- 活页
- 习题
- 答案
- 2017-2018学年衡水一中附属九年级第一次联考人教版数学试卷(含详细答案和评分标准)
- 2012年高考文科数学分类汇编 - 圆锥曲线
- 合肥新华电脑学校名师蔡善媛
- 人教版小学四年级上册语文生字表含组词
- 电解铝厂安全规程
- 中学高中地理必修3检测试题 - 图文
- 淮工体育理论考试题库
- 资本成本练习题
- 传热第九章
- 农村生产和消费情况调查报告
- 证券投资实训报告 - 图文
- 2018年黑龙江省龙东地区中考化学试题及参考答案(word解析版)
- 报告
- 创业创新与领导力超星尔雅满分 答案
- 新版代资考复习题型
- 《展望》文章北京展览馆(5.7)
- 中国重症加强治疗病房患者镇痛和镇静治疗指导意见
- 史上最牛逼的电商管理知识,没有之一! - 图文
- VB程序设计的常用算法
- 入党申请书