高考数学专题复习函数隐性零点的处理技巧
更新时间:2023-05-07 06:59:01 阅读量: 实用文档 文档下载
- 高考数学云朵函数推荐度:
- 相关推荐
1
高考数学专题复习函数隐性零点的处理技巧
近些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的, 不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。
本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。
一、隐性零点问题示例及简要分析:
1.求参数的最值或取值范围
例1(2012年全国I 卷)设函数f (x )=e x ﹣ax ﹣2.
(1)求f (x )的单调区间;
(2)若a=1,k 为整数,且当x >0时,(x ﹣k )f ′(x )+x+1>0,求k 的最大值.
解析:(1)(略解)若a≤0,则f ′(x )>0,f (x )在R 上单调递增; 若a >0,则f (x )的单调减区间是(﹣∞,lna ),增区间是(lna ,+∞).
(2)由于a=1,所以(x ﹣k )f′(x )+x+1=(x ﹣k )(e x ﹣1)+x+1. 故当x >0时,(x ﹣k )f ′(x )+x+1>0等价于k <1
1-+x e x +x (x >0)(*), 令g (x )=1
1-+x e x +x ,则g′(x )=2)1()2(---x x x e x e e , 而函数f (x )=e x ﹣x ﹣2在(0,+∞)上单调递增,①f (1)<0,f (2)>0, 所以f (x )在(0,+∞)存在唯一的零点.故g ′(x )在(0,+∞)存在唯一的零点.
设此零点为a ,则a ∈(1,2).当x ∈(0,a )时,g ′(x )<0;当x ∈(a ,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)的最小值为g (a ).
2
③所以g (a )=a+1∈(2,3).由于(*)式等价于k <g (a ),故整数k 的最大值为2.
点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。
2.不等式的证明
例2.(湖南部分重点高中联考试题)已知函数f (x )=2
)
(ln a x x
+,其中a 为常数.
(1)若a=0,求函数f (x )的极值;
(2)若函数f (x )在(0,﹣a )上单调递增,求实数a 的取值范围; (3)若a=﹣1,设函数f (x )在(0,1)上的极值点为x 0,求证:f (x 0)<﹣2.
解析(1)略解f (x )极大值=f (e )=
e
21
,无极小值; (2)可得a≤﹣
e
2
;
(3)证明:a=﹣1,则f (x )=
2
)1(ln -x x
导数为f′(x )=
3
)
1(1
ln 21---x x x ,
①设函数f (x )在(0,1)上的极值点为x 0,②可得01
ln 210
0=-
-x x ,
即有0
01
1ln 2x x -
=,要证f (x 0)<﹣2,即
2
00)1(ln -x x +2<0,由于
2
00
)1(21
1--
x x +2=)1(21
00-x x +2=)
1(2)21(002
0--x x x ,由于x 0∈(0,1),且x 0=21,2lnx 0=1﹣01x 不
3
成立,
③则02)1(ln 200
<+-x x ,故f (x 0)<﹣2成立.
点评:处理函数隐性零点的三个步骤清晰可见。
3.对极值的估算
例3.(2017年全国课标1)已知函数f (x )=ax 2﹣ax ﹣xlnx ,且f (x )≥0.
(1)求a ;
(2)证明:f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣2.
解析(1)因为f (x )=ax 2﹣ax ﹣xlnx=x (ax ﹣a ﹣lnx )(x >0),则f (x )≥0等价于
h (x )=ax ﹣a ﹣lnx≥0,求导可知h ′(x )=a ﹣x
1.则当a≤0时h ′(x )<0,即y=h (x )在(0,+∞)上单调递减,所以当x 0>1时,h (x 0)<h (1)=0,矛盾,故a >0. 因为
当0<x <a 1时h ′(x )<0,当x >a 1时h ′(x )>0,所以h (x )min =h (a
1),又因为h (1)=a ﹣a ﹣ln1=0,所以
a 1=1,解得a=1; (另解:因为f (1)=0,所以f (x )≥0等价于f (x )在x >0时的最小值为f
(1),
所以等价于f (x )在x=1处是极小值,所以解得a=1;)
(2)证明:由(1)可知f (x )=x 2﹣x ﹣xlnx ,f′(x )=2x ﹣2﹣lnx , 令f′(x )=0,可得2x ﹣2﹣lnx=0,记t (x )=2x ﹣2﹣lnx ,则t′(x )=2﹣x
1, 令t′(x )=0,解得:x=21,所以t (x )在区间(0,21)上单调递减,在(2
1,+∞)上单调递增,所以t (x )min =t (2
1)=ln2﹣1<0,从而t (x )=0有解,即f ′(x )
正在阅读:
高考数学专题复习函数隐性零点的处理技巧05-07
隧道硬岩爆破技术(修改稿2)06-03
运动训练真题09-26
学前游戏论简答题答案01-24
我们的学校作文300字02-05
文华财经海龟交易系统01-02
艺用解剖学课程教学大纲06-28
国际结算期末计算大题01-07
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 隐性
- 零点
- 函数
- 复习
- 数学
- 高考
- 技巧
- 处理
- 专题
- 【最新】七年级英语上册unit8说课稿人教新课标版
- 初三英语句型转换练习
- 教师应怎样与学生沟通
- 2020事业单位转正工作总结.doc
- 地质环境治理修复实施方案
- 《高大上的“正”字计数法》阅读练习及答案
- 2010年国家公务员行测考试真题含参考答案及解析
- 2021届高三物理人教版一轮复习考点练习卷:相互作用
- 最新业务经理的个人述职报告
- 计数第06讲_标数法(学生版)A4
- 家长课程学习心得体会
- 污水处理厂设计文献综述
- 2020小学生开学第一课主题班会
- 信息论与编码习题参考答案
- 2019-2020学年高中数学 1.1.1集合的含义与表示第一课时教案 新人教A版必修1.doc
- 医院微生物室危险性化学品使用管理程序
- 大学英语四六级词汇表
- 分析幼儿分享行为的现状和尝试解决办法
- “以人为本”理念在班级管理工作中的体现
- 单片机c语言教程全集