GPS原理及应用 - 张勤 - 第六章GPS定位测量的数据处理

更新时间:2023-10-20 07:07:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第六章 GPS定位测量的数据处理

6.1 概述

与所有有测量任务相同,由GPS定位技术所获得测量数据,同样需要经过数据处理,方能成为合理而实用的成果。

常规测量通常将某点在空间的位置分解为平面位置和高程位置关系,即分别用两个相对独立的坐标系统——平面坐标系统(经纬度、平面直角坐标)和高程坐标系统(正常高或正高)迭加表述,这种表达理论的不够严密还能构成一个完整的空间三维坐标体,但即能满足大多数测量定位的需要,因此,成为长期以来,几乎所有测量定位的主要表述方法。 常规测量中,总的平面位置一般是用国家坐标系或地方独立坐标系表示,而高程则是用相对某一大地水准面的高程系来表示。

GPS卫星定位测量是用三维地心坐标系(WGS-84坐标系)为依据来测定和表示总的空间位置,它即可用地心空间坐标系(X,Y,Z)表示,也可用椭球大地坐标系为大地纬度、大地经度、大地高(B,L,H)表示。

在已有常规测量成果的区域进行GPS测量时,往往需要将由GPS测量获得的成果纳入到国家坐标系或地方独立坐标系,以保证已有测绘成果的充分利用,因此,GPS定位测量数据处理中,需要考虑如何将GPS测量成果由WGS-84世界地心坐标系转换至国家或地方独立坐标系。

同其它测量数据处理一样,平差计算仍是GPS测量数据处理的主要任务之一。由于GPS测量数据是空间三维坐标系下的成果,所以对其进行的平差应是三维平差。

另外,为了能和已有常规测量数据联合使用或处理,还需考虑GPS测量数据的二维平差。本章着重讨论的GPS网的三维平差和二维平差计算方法。

由于GPS测量是在WGS-84地心坐标系中进行的,GPS定位获得的大地高是空间点至椭球面的高,即大地高是以椭球面为基准的高程系统,所获得的高程为相对于WGS-84椭球的大地高HGPS,由于椭球面是一个用于计算的几何面,所以,大地高是一个几何量,不具有物理意义。

除了个别特殊用途外,要把GPS大地高转换为我国使用的正常高Hnormal或在实际工程中应用的正高Horthometric,即海拔高。因此,还必须研究如果由GPS大地高求得实用的正常高。

6.2 国家坐标系与地方独立坐标系

6.2.1 旋转椭球与参心坐标系

水准面:在地球重力场中,当水处于静止时的表面必定与重力方向(即铅垂线方向)处处正交。我们称这个与铅垂线正交的静止水平面为水准面。 大地水准面:假设海水面处于静止平衡状况,并将它一直沿伸到地球陆地内部形成一个闭合的水准面,用来表示地球的形状,我们将这个水准面称为大地水准面。

大地水准面是对地球的物理逼近,它可以较真实地反映地球的形状,但是地壳内部物质密度分布的不均匀,造成地面各点重力大小和方向不同,因此,与铅垂线处处正交的大地水准面是起伏不平的,因而它也很难以用简单的数学模型描述。要用它作为各种地面测量数据的计算基准面比较困难,必须寻找一个简单的适合测量计算的基准面。

大地水准面相当接近于一个规则的具有微小扁率的数学曲面——旋转椭球。旋转椭球可用两个几何参数确定,即为椭球的长半径a和扁率f。这两个参数解

决了椭球的形状和大小。

为了将地面测量数据归算到椭球面上,仅仅知道它的形状和大小是不够的,还必须确定它与大地水准面的相关位置,也就是所谓的椭球定位和定向。另外,为了从几何特性和物理特性两个方面来研究全球的形状,则还要使椭球与全球大地水准面结合最为密切。

现代大地测量中,采用四个参数来描述椭球的几何和物理特性。这四个参数是:

(1) 椭球的长半径 α(解方程,用弧度测量的传统方法求出)。 (2) 地球重力场二阶带谐系数 J2 (J2与扁率存在一定解析 关系)(卫星大地测量与卫星激光测距求出)。

(3) 地心引力常数与地球质量的乘积 GM (卫星大地测量解算)。 (4) 地球自转角速度 ω(天文观测求出)。 地心坐标系,就是一个将椭球中心与地球质心重合,且与全球大地水准面最为密合的旋转椭球。为了研究局部球面的形状,且使地面测量数据归算至椭球的各项改正数最小,各个国家和地区分别选择和某一局部区域的大地水准面最为密合的椭球建立坐标系。这样选定和建立的椭球称为参考椭球,对应的坐标系称为参心坐标系。显然,该坐标系的中心一般和地球质心不一致,所以参心坐标系又称为非地心坐标系、局部坐标系或相对坐标系,由于参心坐标系处理局部区域数据带来的变形较小,所以,参心坐标系至今对大地测量仍有重要作用。 同样,参心坐标系可分为参心空间直角坐标系和参心大地坐标系。 参心空间直角坐标系参心空间直角坐标系是: (1)以参心O为坐标原点;

(2)Z轴与参考椭球的短轴(旋转轴)相重合; (3)X轴与起始子午面和赤道的交线重合;

(4)Y轴在赤道面上与X轴垂直,构成右手直角坐标系O-XYZ。 地面点P的点位用(X,Y,Z)表示。 参心大地坐标系

参心大地坐标系是以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合。

大地纬度B—以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B; 大地经度L—以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L;

大地高H—地面点沿椭球法线至椭球面的距离为大地高H(如图)。 地面点的点位用(B,L,H)表示。

确定参考椭球是建立参心坐标系的主要依据。通常包括确定参考椭球的形状和大小,确定它的空间位置(参考椭球的定位与定向),以及确定大地原点T的大地纬度BT、大地经度LT及它至一相邻点的大地方位角AT。 参考椭球的定位和定向是通过确定大地原点的大地经纬度、大地高和大地方位角来实现的,参考椭球一般采用“双平行”定向条件,即要求椭球的短轴与地球某一历元的自转轴平行,起始大地子午面与起始天文子午面平行。 6.2.2 P54北京和C80西安国家坐标系 6.2.2.1 1954年北京坐标系

1954北京坐系采用了前苏联的克拉索夫斯基椭球体,其椭球参数是:

长半轴a为6 378 245m,扁率f为1/298.3,其原点为原苏联的普尔科沃。

1954年北京坐标系虽然是苏联1942年坐标系的延伸,但也还不能说它们完全相同。因为该椭球的高程异常是以苏联1955年大地水准面重新平差结果为起算数据,按我国天文水准路线推算而得。而高程又是以1956年青岛验潮站的黄海平均海水面为基准。

1954年北京坐标系建立之后,在这个系统上,30多年来,我国用该坐标系统完成了大量的测绘工作,获得了许多的测绘成果,在国家经济建设和国防建设的各个领域中发挥了巨大作用。

但是,随着科学技术的发展,这个坐标系的先天弱点也显得越来越突出,难以适应现代科学研究、经济建设和国防尖端技术的需要,它的缺点主要表现在: (1)克拉索夫斯基椭球参数同现代精确的椭球参数相比,误差较大,长半径约大105~109m,这不仅对研究地球几何形状有影响,特别是该椭球参数只有两个几何参数,不包含表示物理特性的参数,不能满足现今理论研究和实际工作的需要,对于发展空间技术也带来诸多不便。

(2) 椭球定向不明确,即不指向国际通用的CIO极,也不指向目前我国使用的JYD极,椭球定位实际上采用了前苏联的普尔科沃定位,该定位椭球面与我国的大地水准面呈系统性倾斜。东部高程异常达60余米。而我国东部地势平坦、经济发达,要求椭球面与大地水准面有较好的密合,但实际情况与此相反。 (3) 该坐标系统的大地点坐标是经局部平差逐次得到的,全国天文大地控制点坐标值实际上连不成一个统一的整体。不同区域的接合部之间存在较大隙距,同一点在不同区的坐标值相差1~2m,不同区域的尺度差异也很大。而且坐标传递是从东北至西北西南,前一区的最弱点即为后一区的坐标起算点,因而坐标积累误差明显,这对于发展我国空间技术、国防建设和国家大规模经济建设不利,因此有必要建立新的大地坐标系统。 6.2.2.2 1980年西安坐标系

1978年,我国决定建立新的国家大地坐标系统,并且在新的大地坐标系统中进行全国天文大地网的整体平差,这个坐标系统定名为1980年西安大地坐标系统。

1980年西安坐标系的大地原点设在我国的中部,处于陕西泾阳永乐镇,椭球参数采用1975年国际大地测量与地球物理联合会推荐值,它们为: 椭球长半径 a=6378140m;

重力场二阶带球谐系数 J2=1.08263×10-3; 地心引力常数 GM=3.986005×1014m3/s; 地球自转角速度 ω=7.292115×10-5rad/s。

因而可得80椭球两个最常用几何参数为:a=6378140m; f=1/298.257。

椭球定位按我国范围高程异常值平方和最小为原则求解参数。椭球的短轴平行于由地球质心指向1968.0地极原点(JYD)的方向,起始大地子午面平行于格林尼治天文台子午面。长度基准与国际统一长度基准一致。高程基准以青岛验潮站1956年黄海平均海水面为高程起算基准,水准原点高出黄海平均海水面72.289 m。

1980年西安大地坐标系建立后,利用该坐标进行了全国天文大地网平差,提供全国统一的、精度较高的1980年国家大地点坐标,据分析,它完全可以满足1/5000测图的需要。

6.2.2.3 新1954年北京坐标系

由于1980年西安坐标系与1954年北京坐标系的椭球参数和定位均不同,因而大地控制点在两坐标系中的坐标存在较大差异,最大的达100m以上,这将引起成果换算的不便和地形图图廓和方格线位置的变化,且已有的测绘成果大部分是1954年北京坐标系下的。所以,作为过渡,产生了所谓的新1954年北京坐标系。

新1954年北京坐标系是通过将1980年西安坐标系的三个定位参数平移至克拉索夫斯基椭球中心,长半径与扁率仍取克拉索夫斯基椭球几何参数。而定位与1980年大地坐标系相同(即大地原点相同),定向也与1980椭球相同。因此,新1954年北京坐标系的精度和1980年坐标系精度相同,而坐标值与旧1954年北京坐标系的坐标接近。 6.2.3 地方独立坐标系

在我国许多城市测量与工程测量中,若直接采用国家坐标系,则可能会由于远离中央子午线,或由于测区平均高程较大,而导致长度投影变形较大,难以满足工程上或实用上的精度要求。另一方面,对于一些特殊的测量,如大桥施工测量、水利水坝测量、滑坡变形监测等,采用国家坐标系在实用中也会很不方便。因此,基于限制变形,以及方便实用、科学的目的,在许多城市和工程测量中,常常会建立适合本地区的地方独立坐标系。 建立地方独立坐标系,实际上就是通过一些元素的确定来决定地方参考椭球与投影面。

地方参考椭球一般选择与当地平均高程相对应的参考椭球,该椭球的中心、轴向和扁率与国家参考椭球相同,其椭球半径α1增大为:α1=α+Δα1, Δα1=Hm+ζ0式中:Hm为当地平均海拔高程,ζ0为该地区的平均高程异常。

而地方投影面的确定中,选取过测区中心的经线或某个起算点的经线作为独立中央子午线。以某个特定方便使用的点和方位为地方独立坐标系的起算原点和方位,并选取当地平均高程面Hm为投影面。 6.2.4 高斯平面直角坐标系和UTM

大地测量建立的大地坐标的重要作用之一是为测图服务,传统地图均为平面图,作为测图控制的大地点的坐标也必须是平面坐标。因此,需要将椭球面上各点的大地坐标,按照一定的数学规律投影到平面上成为平面直角坐标。

由于地球椭球面是不可展的曲面,无论采用什么数学规律投影都会产生变形。因此,只能按照满足某种特定需要与用途,对一些变形加以限制,使其减小到适当程度,甚至为零。按变形性质,我们可以将投影分为等角投影、等面积投影、等距离投影以及任意投影。 等角投影也叫正形投影、相似投影。即该投影在小区域范围内使平面图形与椭球面上的图形保持相似。目前世界各国采用最广泛的高斯投影和墨卡托投影(UTM)均是正形投影。高斯投影和墨卡托(UTM)投影具有如下特征: (1)椭球面上任一角度,投影到平面上后保持不变。 (2)中央子午线投影为纵坐标轴。

(3)高斯投影的中央子午线长度比 m0=1,而UTM投影的m0=0.9996。

6.3 GPS定位测量中的坐标转换

不同的测量成果均对应于各自的坐标系。GPS定位结果属于协议地球地心坐标系,即WGS-84坐标系,且通常以空间直角坐标(X,Y,Z)s或以椭球大地坐标(B,L,H)s的形式给出。而实用的常规地面测量成果或是属于国家的参心大

地坐标系,或是属于地方独立坐标系。因此必须实现GPS成果的坐标系的转换。 另外,GPS相对定位所求得的GPS基线向量通常是以WGS-84坐标差的形式表示,对于这种特殊的坐标表示形式,应考虑其相应的转换模型。 为了与传统测量成果一致,常将GPS成果投影到平面,形成GPS二维坐标系成果,因此还应考虑二维坐标转换。 6.3.4 联合平差确定转换参数

无论利用哪种坐标转换模型,均必须已知相应的转换参数。如果不知道两个坐标系间的转换参数,则需根据两坐标系在共同点(公共点)的坐标(X,Y,Z)iS和(X,Y,Z)iT(i=1,2,3??),代入转换模型反求两个坐标系间的转换参数,然后利用所求得的转换参数再回代到模型中对另一部分点进行坐标转换。一般常用联合平差的方法求转换参数。

可以将布尔莎转换模型写成如下形式:

6.4 GPS网的三维平差

GPS网是由GPS相对定位求得的基线向量构成的空间基线向量网,并在GPS网平差时,将这些基线向量及其协方差作为网平差的基本观测量。 GPS空间三维基线向量网平差常采用以下几种平差类型:

(1) 三维无约束平差:GPS基线向量本身已隐含尺度基准和方位基准,因此在三维平差中可只选某一点的固定坐标进行网平差,即所谓的无约束平差。三维无约束平差是GPS网平差中不可缺少的步骤,它可发现基线向量中存在的粗差、系统误差。通过检验发现基线向量随机模型误差,可客观评价GPS网本身的内符合精度。

(2) GPS网三维约束平差:以国家大地坐标系或地方坐标系的某些点的固定坐标、固定边长和方位为网的基准,将其作为平差中的约束条件,并在平差中考虑GPS网与地面网之间的转换系数。因此,这种形式的平差是在地面参考坐标系中进行的,故称为GPS三维约束平差。该平差后获得网的坐标已是国家大地坐标系或地方坐标系的坐标,因而约束平差是目前GPS网成果转换行之有效的方法。

(3) 三维联合平差:平差中除了GPS基线向量观测值和地面基准约束数据外,还包含了地面常规网观测值,如边长、方向、天文方位角、天顶距、水准高差乃至天文经纬度,将这些数据一并进行平差,也就是GPS网和地面观测数据的联合平差,其平差后网中点的坐标仍属地面坐标系框架下的。

GPS网三维平差中,首先应进行三维无约束平差,平差后通过观测值改正数检验发现基线向量中是否存在粗差,并剔除含有粗差的基线向量,再重新进行平差,直至确定网中没有粗差后,应对单位权方差因子进行χ2检验,判断平差的基线向量随机模型是否存在误差,并对随机模型进行改正,以提供较为合适的平差随机模型。在对GPS网进行约束平差或联合平差后,还应对平差中加入的转换参数进行显著性检验,对于不显著的参数应剔除,以免破坏平差方程的性态。

6.5 GPS基线向量网的二维平差

GPS基线向量网二维平差应在某一参考椭球面上,或是在某一投影平面坐标系上进行。因此,平差前,首先须将GPS三维基线向量观测值及其协方差阵转换投影至二维平差计算面。也就是从三维基线向量中提取二维信息,在平差计算面上构成一个二维GPS基线向量网。

GPS基线向量网二维平差也可分为无约束平差、约束平差和联合平差三类,平差原理及方法均与三维平差相同。由二维约束平差和联合平差获得的GPS平面成果,就是国家坐标系下或地方坐标系下具有传统意义的控制成果。在平差中的

本文来源:https://www.bwwdw.com/article/9obf.html

微信扫码分享

《GPS原理及应用 - 张勤 - 第六章GPS定位测量的数据处理.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
下载全文
范文搜索
下载文档
Top