50-Hz electromagnetic fields enhance cell proliferation and

更新时间:2023-04-24 09:13:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

BiochimicaetBiophysicaActa1743(2005)120–

129

/locate/bba

50-HzextremelylowfrequencyelectromagneticfieldsenhancecellproliferationandDNAdamage:Possibleinvolvement

ofaredoxmechanism

FedericaI.Wolfa,*,AngelaTorselloa,BeatriceTedescoa,SilviaFasanellaa,AlmaBoninsegnaa,

MarcelloD’Ascenzob,ClaudioGrassib,GianBattistaAzzenab,AchilleCittadinia

b

InstituteofGeneralPathologyandGiovanniXXIIICancerResearchCenter,L.goF.Vito,1-00168Rome,Italy

InstituteofHumanPhysiology,CatholicUniversityofSacredHeart,FacultyofMedicine,L.goF.Vito,1-00168Rome,Italy

Received11March2004;receivedinrevisedform2September2004;accepted8September2004

Availableonline19September2004

a

Abstract

HL-60leukemiacells,Rat-1fibroblastsandWI-38diploidfibroblastswereexposedfor24–72hto0.5–1.0-mT50-Hzextremelylowfrequencyelectromagneticfield(ELF-EMF).Thistreatmentinducedadose-dependentincreaseintheproliferationrateofallcelltypes,namelyabout30%increaseofcellproliferationafter72-hexposureto1.0mT.ThiswasaccompaniedbyincreasedpercentageofcellsintheS-phaseafter12-and48-hexposure.TheabilityofELF-EMFtoinduceDNAdamagewasalsoinvestigatedbymeasuringDNAstrandbreaks.Adose-dependentincreaseinDNAdamagewasobservedinallcelllines,withtwopeaksoccurringat24and72h.AsimilarpatternofDNAdamagewasobservedbymeasuringformationof8-OHdGadducts.TheeffectsofELF-EMFoncellproliferationandDNAdamagewerepreventedbypretreatmentofcellswithanantioxidantlikea-tocopherol,suggestingthatredoxreactionswereinvolved.Accordingly,Rat-1fibroblaststhathadbeenexposedtoELF-EMFfor3or24hexhibitedasignificantincreaseindichlorofluorescein-detectablereactiveoxygenspecies,whichwasbluntedbya-tocopherolpretreatment.CellsexposedtoELF-EMFandexaminedasearlyas6haftertreatmentinitiationalsoexhibitedmodificationsofNFnB-relatedproteins(p65-p50andInBa),whichweresuggestiveofincreasedformationofp65-p50orp65-p65activeforms,aprocessusuallyattributedtoredoxreactions.TheseresultssuggestthatELF-EMFinfluenceproliferationandDNAdamageinbothnormalandtumorcellsthroughtheactionoffreeradicalspecies.ThisinformationmaybeofvalueforappraisingthepathophysiologicconsequencesofanexposuretoELF-EMF.D2004ElsevierB.V.Allrightsreserved.

Keywords:8-OHdG;Singlestrandbreak;Cellcycle;DCF;NFnB;InB;a-Tocopherol

1.Introduction

Environmentalexposuretoextremelylowfrequency(ELF)electromagneticfields(EMF)isstronglyincreasedindevelopedcountriesasaconsequenceofthedistributionanduseofelectricity.

SinceWertheimerandLeeper[1]arguedthatthefrequencyofchildhoodcancercorrelatedtotheelectrical

*Correspondingauthor.FedericaI.WolfInstituteofGeneralPathology,CatholicUniversityofSacredHeart,FacultyofMedicine,L.goF.Vito,1-00168Rome,Italy.Tel.:+39063016619;fax:+39063012753.

E-mailaddress:fwolf@rm.unicatt.it(F.I.Wolf).0167-4889/$-seefrontmatterD2004ElsevierB.V.Allrightsreserved.doi:10.1016/j.bbamcr.2004.09.005

wiringconfigurationrunningnearbytheirhouses,thecorrelationbetweenELF-EMFexposureandcancerriskhasbecomeamatterofpublicconcern.Asaconsequence,thepossibleeffectsofELF-EMFonbiologicalsystemswereextensivelyinvestigated.Someepidemiologicalstud-iesofferedpositiveevidenceforacorrelationbetweenexposuretoELF-EMFandincreasedincidenceofbrain,breastandhematologicalmalignancies,buttheseresultshavenotbeenconfirmedinotherstudies[2–5].Studieswithlaboratoryanimalssimilarlyproducedinconclusiveorcontradictoryresults;thesmallnumberofanimalsexam-inedandthelackofproperlystandardisedexposureparametersmayhavecontributedtosuchnegativeor

F.I.Wolfetal./BiochimicaetBiophysicaActa1743(2005)120–129121

inconsistentresults[6,7].InvitrostudieshaveexploredthepotentialeffectsofELF-EMFoncellproliferation[8],apoptosis[9,10],differentiation[11],genotoxicity[12]andproto-oncogenemodulation[13–15];again,theresultsremainedinconclusiveoropentodebate.ItisunclearhowELF-EMFwouldinfluencecellularbehavior,butaplausiblehypothesisisthatELF-EMFaffectmembranestructureandpermeabilitytosmallmolecules.Inarecentstudy,wehaveshownthatinneuroendocrinecellsELF-EMFexposureincreasedCa2+currentsduetooverexpres-sionofvoltage-gatedCa2+channels,anoccurrencethatmaywellbecorrelatedwithproliferativeevents[16].AnotherinterestinghypothesisisthatELF-EMFinterferewithchemicalreactionsinvolvingfreeradicalproduction(seeRef.[17]forreview).

Itiswellestablishedthatfreeradicalshavepleiotropiceffectswhichmayvaryfromcytotoxictomitogenicresponsesdependingonthedoseintensity,thedurationofexposure,andthetypeofcellortissue[18].Freeradicals,e.g.,hydroxylradicals,caninteractwithDNAandformprimarily8-OHdGadducts,resultinginsinglestrandbreaks[19].Adductsorstrandbreaksarerecognisedandusuallyremovedquiteefficientlybyspecificrepairmechanisms.Nevertheless,DNAdamagecouldbecomeasiteofmutationandakeysteptocarcinogenesisifthedamagewereextensiveenoughtoovercometherepaircapacityofthecell[20,21].Ontheotherhand,ithasbeendemonstratedthatlowlevelsofreactiveoxygenspeciestriggerintracellularsignalsthatinvolvethetran-scriptionofgenesandleadtoresponsesincludingproliferation[22,23].Oneofthebestcharacterizedredox-modulatablesignalsinvolvesNFnB,whichcantriggerproliferationorapoptosis[24,25].NFnB/Relproteins,primarilycomposedofheterodimersofp50/p65,arepresentinthecytoplasmintheirinactiveformassociatedwithIkBs.Activationoccursafterphosphor-ylationofInBaandtranslocationofp50/p65intothenucleuswhere,afterfurtherphosphorylationofthep65subunit,itbindstoDNAandfunctionsasatranscriptionfactor.Inseveralstudies,overexpressionandnucleartranslocationofp65wereshowntocorrelatewiththetranscriptionactivityofNFkB[26].ActivationofNFnBthroughphosphorylationofInBhasalsobeeninvestigatedindetailandshowntobeassociatedwithreceptor-mediatedsignalslikeCTLA4[27].Otheractivationmechanisms,mediatedbyredoxreactions,havealsobeendescribed.

Inthisstudyweevaluatedtheeffectsof50-HzELF-EMFoncellproliferation,cellcycledistributionandDNAdamageinnormalcells(embryonichumanlungfibroblasts,WI-38),neoplasticcells(humanpromyelocyticleukemiacells,HL-60),andimmortalizedcells(ratfibroblasts,Rat-1).Weshowthat24–72-hexposureto0.5–1-mTELF-EMFincreasedcellproliferationandDNAdamageinallcelltypes,andthattheseeffectsmightbemediatedbyformationofreactiveoxygenspecies.

2.Materialsandmethods2.1.Cellculture

HumanpromyelocyticHL-60cellsweregrownat378Cin5%CO2/airatmosphereinRPMI1640(SigmaItalia,Milano)supplementedwith10%heat-inactivatedfetalbovineserum(FBS)(LifeTechnologiesItalia,Milano).Rat-1fibroblastswereculturedat378Cin5%CO2/airatmosphereinEMEMmedium(Sigma)supplementedwith10%fetalbovineserum(FBS)(LifeTechnologies).WI-38diploidfibroblastsderivedfromembryonichumanlungprimaryculturewerepurchasedfromIstitutoZooprofilatticodell’Emilia-Romagna(Brescia,Italy).Cellswerereceivedfromtheproviderat11populationdoublings(PDs)andweregrownat378Cunder5%CO2/airatmosphereinEaglebasalmedium(BME)(SigmaItalia)supplementedwith10%fetalbovineserum(FBS)(LifeTechnologiesItalia)and1mMsodiumpyruvate.Cellswereusedforexperimentswithin21PDs.

Experimentswereroutinelycarriedoutontriplicatecultures.AtspecifiedtimescellswereharvestedandduplicatehemocytometercountswithCoulterZ1wereperformed.Thetrypanblueexclusiontestwasusedtoevaluatethepercentageofviablecells.Inallcases,cellswereusedforexperimentsonlywhenviabilitywasN95%.2.2.Anti-oxidanttreatment

Whereindicated,cellswereexposedtotheantioxidantdl-a-tocopherol(FlukaChemika-bioChemika,Buchs,Swit-zerland).After24hthemediumwasreplacedandcellswereexposedtoELF-EMF.dl-a-Tocopherolwasdeliveredtothecellsusingtetrahydrofuran(THF)or96%ethanol(Fluka)asasolvent.WhenTHFwasused0.25g/LBHTwasaddedtoavoidtheformationofperoxides.Stocksolutionsofa-tocopherolwerepreparedimmediatelybeforeeachexperi-mentandjudged~98%purebyHPLC.Aliquotsofstocksolutionswererapidlyaddedtotheculturemediumtoachieveafinalconcentrationof10AM.Controlexperimentsshowedthat10AMwasthelowestconcentrationatwhicha-tocopherolinterferedwithELF-EMFwhilenotelicitinganydirecteffectoncellproliferation(datanotshown).TheamountofTHFaddedtothecellsneverexceededN0.5%(v/v).ControlexperimentsshowednodifferencebetweenuntreatedculturesandthosetreatedwithTHForethanolaloneintermsofcellnumber,viability,andoxidativeevents(ROSproductionand8-OHdGformation).Whereindicated,bcontrolcellsQthereforereferstountreatedcells.2.3.Electromagneticfieldexposure

Asolenoidfieldgeneratorproducingsinusoidalwave-formwithamplitudeof0.05–1.0mTandfrequencyof1–100Hzwasplacedinatissuecultureincubator.Fortechnicaldetails,seeRef.[16].Controlandexposedcellswereplacedinthesameincubatoroutsideorinsidethe

122F.I.Wolfetal./BiochimicaetBiophysicaActa1743(2005)120–129

Fig.1.EffectofELF-EMFexposureto1.0mT/50Hzfor72honproliferationofHL-60cells,Rat-1andWI-38fibroblasts.Afterplatingcellsweregrownfor72hundercontinuousELF-EMFexposure(closedsymbols)orincontrolcondition(opensymbols).Every24hcellswereevaluatedbyanautomaticCoultercounter.Insertsreport%netgrowthincreaseofexposedcomparedtocontrolcells.DataaremeanFS.D.offiveseparateexperiments;*Pb0.05vs.controlcellsbyStudent’st

test.

solenoid,respectively.Cellswereexposedtoasinusoidal50-Hzelectromagneticfieldat0.50,0.75and1.0mTfor3–72hinculturedishesinsertedintoplexiglascylinderplacedinsidethesolenoid.AthermometricprobeplacedincellculturedishesinsideandoutsidetheELF-EMFgeneratorrevealednosignificanttemperaturedifferencebetweenculturemediaofexposedorunexposedcells.Aftertreat-ment,cellswerewashedandrapidlyusedfortheassays.2.4.Assaysfor8-OHdGandDNAstrandbreaks

Cytospinsampleswerepreparedaccordingtothefollowingprocedure.Cellsweredilutedinsucrosebuffer(0.25Msucrose,1.8mMCaCl2,25mMKCl,50mMTris,pH7.5)atadensityofabout2Â106cells/ml.Next,50Alwasaddedtocarbowax-ethanolbuffer(carbowaxstock:77-mlPEG-1000in50-mlwater,1-mlstockin74-ml70%ethanol)(SigmaItalia)andmixed.Aliquotsof150Alwereplacedintocytospinfunnelsandcentrifugedat300rpmfor5min.Slideswerecoatedwithaminopropyl-triethoxysilane(Kindler,Freiburg,Germany).Sampleswereair-driedfor10–30min,fixedin95%coldethanol(À208C)for10min,andstoredatÀ208C.

Detectionof8-OHdGbyimmunocytochemistrycoupledwithDAB(Vector,Burlingham,USA)wascarriedoutessentiallyasdescribedbyYabouroughetal.[28].Themonoclonalantibodyfor8-OHdG1F7waskindlyprovidedbyDr.R.M.Santella,ColumbiaSchoolofPublicHealth,NY.Semi-quantitativeevaluationofthestainingwascarriedoutbyanopticalmicroscope(ECLIPSEE600,Nikon,at400Â)connectedtoanImage-ProplusVersion4.1(MediaCybernetics,USA).Nuclearstainingwasevaluatedinapproximately100cellsofrandomlychosenimagesbyoperatorswhowereblindtothestatusofcelltreatment,asrecommendedinRef.[28].Negativeandpositivecontrols(untreatedand0.5mMH2O2-treatedcells,respectively)wereincludedwithineachbatchofslides.Dataarereportedasunitsofopticaldensity(OD)Â1000.

DetectionofSSBbysinglecellmicrogelelectrophoresiswasperformedbythemethodofSingh[29],withminormodifications[30].Dataarereportedastailmoment[31],evaluatedbyImage-ProplusVersion4.1.Atleast50randomlyselectedrepresentativecometswerecalculatedforeachblindsample.

2.5.CytofluorimetricanalysisofcellcycledistributionTrypsinizedcellswerecollectedandwashedtwicewithPBS.About1Â106cellsweresuspendedin1-mlPBS,fixedin5mlof70%ethanolandstoredat48C.Atthetimeofanalysis,cellswerecollectedbycentrifugationandthepelletswereresuspendedin0.2mg/mlpropidiumiodideinPBScontaining0.6%NonidetP-40andRNAase(1mg/ml);suspensionswereincubatedinthedarkatroomtemperaturefor30min.ThecellsuspensionswerethenfilteredandanalyzedforDNAcontentonCoulterEPICS753

flow

Fig.2.EffectofELF-EMFexposurefrom0.5to1.0mT/50Hzfor48honproliferationofHL-60cells,Rat-1andWI-38fibroblasts.CellswereexposedtoELF-EMFof0.5,0.75,and1.0mT/50Hzfor48handtheirgrowthratecomparedtomatchedcontrolcultures.Data(meanFS.D.offiveexperiments)areexpressedas%growthincrease.

F.I.Wolfetal./BiochimicaetBiophysicaActa1743(2005)120–129

Table1

EffectofELF-EMF(1mT–50Hz)oncellcycledistributioninRat-1cells

Cellcycledistribution(%)12hG0/G1

ControlELF-EMF

50.626.3

S

31.5

38.8*(+23%)

24hG0/G167.763.5

S

20.1

23.5(+17%)

48hG0/G155.452.2

S

27.5

34.3*(+25%)

72hG0/G157.467.3

S

123

24.0

17.0(À30%)

Dataaremeansofthreeexperiments,S.D.beingb15%.*Pb0.05byStudent’st

test.

cytometer.ThepercentageofcellsinthedifferentphasesofthecellcyclewasdeterminedusingtheMulticyclesoftwareversion2.53.

2.6.Westernblotanalysesofproteinexpression

Cells(10Â106)wereharvestedandpelletsweresus-pendedinlysisbuffer(150mMNaCl,50mMTris–HCl,pH8.0,0.05%NaN3,1%Tritonand1mMPMSF)for30minat48C.Afterincubationsampleswerecentrifugedat14,000rpmfor15minat48C.ThesupernatantswereassayedforproteincontentbytheBioradproteinassaymethod(BioradlaboratoriesGmbH,Munchen,Germany)andstoredatÀ808C.Westernblotanalysiswasperformedwithequalamountsofproteinsfromeachsample(generallyb100Ag),separatedbySDS-PAGE(12%)andtransferredtoimmobilon-Pmembranes(Millipore,Bedford,MA)at100Vfor1h.Immunodetectionwasperformedusingtheenhancedchem-iluminescencekitforwesternblottingdetection(AmershamPharmaciaBiotech,Freiburg,Germany).Thepolyclonalantibodiestop65,p50andInBa(1:1000dilution)werefromSantaCruzBiotechnology(SantaCruz,CA).Thepolyclonalantibodytoh-actin(1:200)(SantaCruzBiotechnology)wasusedasinternalcontrol.2.7.IntracellularROSevaluation

IntracellularROSweredetectedindichlorodihydrofluor-escein-diacetate(H2DCF-DA)-loadedcells(MolecularProbe,Leiden,Netherlands),usingaCytofluor2300/2350(Millipore,Billerica,MA).Samplesof2Â106cellsplacedon

Corning6-wellsplateswerepreincubatedwith5AMH2DCF-DAfor1hat378C.Plateswerecentrifugedat1200rpmfor10minandthefluorescenceofcontrolandtreatedcellswasreadintheCytofluor(excitationat504nm,emissionat526nm).Alpha-tocopherolattheconcentrationof10AMdidnotalterthebasalfluorescenceofDCF(BackgroundofDCFwasusually60–70relativefluorescentunits/F.U.).2.8.Statisticalanalysis

DataaregivenasmeansFS.D.ofatleastthreeseparateexperiments.Inthefigures,S.D.areindicatedbyverticalbars;valueswithoutverticalbarshaveS.D.withinthesymbols.StatisticalanalyseswereperformedbyunpairedStudent’sttest,anddifferenceswereconsideredsignificantwhenPb0.05.

Multifactorialtwo-wayanalysisofvariance(ANOVA)wasadoptedtoassessdifferencesamongmultiplesetsofdataobtainedwithuntreatedortreatedcellsatdifferenttimesofcultureandexposure.Whensignificantvalueswerefound(Pb0.05),posthoccomparisonsofmeansweremadeusingtheTukey’sHonestlySignificantDifferencestest.Otherdetailsaregiveninthelegendstofiguresandtables.

3.Results

3.1.EffectofELF-EMFonproliferation

Weinvestigatedtheeffectsof50HzELF-EMFexposuresofdifferentintensities(from0.5to1.0mT)forupto72hon

Fig.3.EffectofELF-EMFexposureat0.5–1.0mT/50Hzfor72honDNAdamageevaluatedasstrandbreaksinHL-60cells,Rat-1andWI-38fibroblasts.CellswereexposedfordifferentextentoftimetoELF-EMFfrom0.5to1.0mT/50HzandsinglestrandbreakswereevaluatedbyCometassay.Data(meanFS.D.ofthreeexperiments)areexpressedastailmoment.Valuesofbasaldamageweresubtractedfromallpoints.SeeMaterialsandmethodsfortechnicaldetails.

124F.I.Wolfetal./BiochimicaetBiophysicaActa1743(2005)120–129

Table2

Effectofa-tocopherolpretreatmentofELF-EMF-inducedproliferation

Increaseofcellgrowth(%)HL-60

Exposure(h)244872

a

Rat-1

+a-Ta

1.4(À15.6)**24.029.0

ELF-EMF14.020.024.3

+a-T6.5(À7.5)*12.2(À7.8)*24.0

WI-38ELF-EMF17.223.031.0

+a-T2.0(À15.2)**8.7(À14.3)**2.2(À28.8)**

ELF-EMF17.024.029.1

Cellswerepreincubatedwith10AMa-tocopherolfor24hpriortoexposuretoELF-EMF.Notethat10AMa-tocopheroldidnotinfluenceproliferationrateinnon-exposedcontrolcellsduring24–72-hincubations.*Pb0.05byStudent’sttest.**Pb0.005byStudent’st

test.

theproliferationrateofHL-60leukemiacells,Rat-1immortalizedfibroblasts,andWI-38diploidfibroblasts.Fig.1showsthat1-mTELF-EMFincreasedtheproliferationofthethreecelltypesinatime-dependentmanner,reachingastatisticalsignificancevs.unexposedcellsafter48-hexposure(Pb0.05).Theincreasesinproliferationratewereproportionaltotheexposuretime,asshownintheinsetsinwhichdatawereexpressedaspercentrelativetounexposedcells.At72h,thegrowthrateincreased20–30%inallcells.Fig.2showsthatinallcelltypesELF-EMFenhancedcellproliferationinadose-dependentmanner.After48-hexposureto0.75mTtheaveragecellgrowthincreasedbyapproximately15–20%.SincetheeffectofELF-EMFwasproportionaltothedoseintensity,allsubsequentexperi-mentswereperformedat1.0mT,soastomaximizetheeffectsinducedbyELF-EMF.

Toconfirmdataobtainedbycellcounts,wemeasuredtime-relatedchangesincellcycledistributionduringthecourseof72-hexposuretoELF-EMF(1mT/50Hz)paredtocontrols,ELF-EMF-exposurecausedasignificantincreaseofthepercentageofcellsinSphaseat12handat48h.At72hthecellsinSphasedecreasedby30%suggestingthat,undertheseconditions,theexposedcellsreachedconfluenceearlierthancontrols.SimilarresultswereobtainedwithHL-60cellsandWI-38fibroblasts(datanotshown).

3.2.EffectofELF-EMFonDNAdamage

Fig.3reportsDNAdamage,measuredasDNAstrandbreaksbythecometassay,inthethreecelllinesafter72-hexposureto0.5–1.0-mTELF-EMF.Attime0,thebasallevelsofstrandbreaksweresubstantiallyhigherinHL-60cellsthaninRat-1andWI-38fibroblasts,asonewouldexpecttofindinahyperdiploidneoplasticpopulation[32].IrrespectiveofthebasallevelsofDNAdamage,however,24-hexposuretoELF-EMFincreasedstrandbreaksinallcelllinesinadose-dependentmanner.Thiseffectwasmuchevidentat1.0-mTELF-EMF,especiallyinnon-neoplasticcellslikeRat-1(eightfoldincrease)andWI-38fibroblasts(16-foldincrease).Inthefollowing24hofexposure,strandbreaksreturnedtobasallevelsbutincreasedagainat72h.ItisworthnotingthatDNAdamageappeared12hafterthepeakofSphase(cf.Table1).TherepairofDNAdamageafter72-hexposuretoELF-EMFwasalsoinvestigated.After24hofpost-exposurerecoveryRat-1cellsshowedlevelsofDNAdamagethatwerereducedbyabout92%comparedtothelevelsdeterminedattheendof72-hexposuretoELF-EMF(nettailmoments,30vs.399).UndercomparableconditionsHL-60cellsshowedlevelsofDNAstrandbreaksthatdecreasedonly44%(nettailmoments,234vs.414).Thislatterfindingdidnotcomeunexpected,aswe

Fig.4.EffectofantioxidanttreatmentonDNAdamageinducedbyELF-EMFat1.0mT/50Hzupto72hinHL-60cells,Rat-1andWI-38fibroblasts.Cellswerepretreatedwith10AMa-tocopherolfor24h.Afterremovalofexcessantioxidant,treatedcellswereexposedtoELF-EMFfrom24to72h.DataexpressedastailmomentaremeanFS.D.ofthreedifferentexperiments.Valuesofbasaldamageweresubtractedfromallpoints.

F.I.Wolfetal./BiochimicaetBiophysicaActa1743(2005)120–129125

Fig.5.EffectofantioxidanttreatmentonoxidativeDNAdamageevaluatedas8-OHdG,inducedbyELF-EMFat1.0mT/50Hzupto72hinHL-60cells,Rat-1andWI-38fibroblasts.Cellswerepretreatedwith10AMa-tocopherolfor24hpriortoexposuretoELF-EMFfrom24to72h.8-OHdGadductsidentifiedbythemonoclonalantibody1F7coupledwithDABwerequantifiedevaluatingopticaldensity(OD)(seeMaterialsandmethodsforfurtherdetails).Basalstainingwassubtractedfromexperimentaldata.DataaremeansFS.D.ofthreedifferent

experiments.

havepreviouslyshownthatneoplasticcellsarecharac-terizedbyinsufficientrepairmechanisms[32].

3.3.EffectofantioxidantonELF-EMFproliferationandDNAdamage

CellsweretreatedwithanantioxidantpriortotheirexposuretoELF-EMF.a-Tocopherolat10AM,addedasdescribedunderMaterialsandMethods[33],preventedstimulationofcellproliferationinallcellpopulationsexaminedafter24-hexposuretoELF-EMF(Table2).After48-hexposurethesameeffectwaspresentinRat-1andWI-38cells,butnotinHL-60cells;after72-hexposure,a-tocopherolinhibitedproliferationonlyinWI-38cells(seealsoTable2).Similarresultswereobtainedwhentheeffectsofa-tocopherolonDNAdamagewereevaluated.Fig.4showsthata-tocopherolsignificantlyreducedDNAstrandbreaksinallcellstrains,andthiseffectwasmorepersistentinRat-1andWI-38cellsthaninHL60.

TobettercharacterizewhetherDNAwasdamagedbyoxygen-centeredfreeradicals,wemeasuredthelevelsof8-OHdGadducts,whichindicateoxidativedamagebyhydroxylradicalsorhydroxylradical-typespecies[20].Fig.5showsthatinallcelltypes8-OHdGlevelspeakedat24and72hafterexposuretoELF-EMF,similartothatdeterminedbythecometassay(seeFig.4).Alpha-tocopherolprevented8-OHdGformationby~50%through-outELF-EMFtreatmentinallcelltypes.

3.4.InvolvementofROSinELF-EMFinducedDNAdamageandproliferation

HavingshownthattheeffectsofELF-EMFoncellproliferationandDNAdamagewereinhibitedbyantiox-idants,weperformedexperimentstoobtaindirectevidencethatELF-EMFcausedtheformationoffreeradicalspecies.

WethereforemeasuredintracellularROSinDCF-loadedRat-1fibroblasts.Fig.6(panelA)showsthatthecellularlevelsofROSincreased~18%asearlyas3hafterexposuretoELF-EMFandthatsuchanincreasepersistedafter24-hexposure.Undercomparableconditions,a

-tocopherol

Fig.6.EffectsofELF-EMFexposureat1.0mT/50HzonROSproductioninRat-1fibroblastswithorwithouta-tocopherolpretreatment.DCF-detectableROSweremeasuredincontrolorELF-EMF-exposedcells(3-and24-hexposures).Valueswereexpressedasrelativefluorescenceunits.PanelAshowsthattreatment/timeinteractionwassignificant(Pb0.05).Valuesnotsharingthesamesuperscriptweresignificantlydifferent(candd:Pb0.05vs.aandb,respectively).PanelBshowstheeffectof24-hpretreatmentwith10AMa-tocopherolonELF-EMF-inducedROSproduction.DataarereportedaspercentofDCFfluorescenceincreasevs.relativecontrolsat3and24hofexposuretoELF-EMF(b:Pb0.05vs.a;c:Pb0.001vs.a)(Tukey’stest).

126F.I.Wolfetal./BiochimicaetBiophysicaActa1743(2005)120–129

almostcompletelypreventedROSincreaseat3-hexposure,andreducedROSincreaseby~50%at24-hexposure(Fig.6,panelB).

3.5.EffectofELF-EMFonredox-mediatedsignalsandproliferation

Wedeterminedpossiblechangesintheexpressionlevelsofproteinsthatareinvolvedinredox-mediatedsignals.Fig.7AshowstheexpressionofNFnBp65andp50inRat-1cells.ItcanbeobservedthatbothNFnBp65andp50expressionwasincreasedat12hofexposureto1mT/paredtocontrols,p65expressionincreased120%at12handremainedhighupto24h.Theincreaseofp50expressionwasrelativelysmallerbutstillevidentandpersistentatboth12and24h.Undercomparableconditions,pretreatmentwith10AMa-tocopheroldidnotmodifyp65expressionincontrolandexposedcells(Fig.7B).TheeffectsofELF-EMFonthelevelsofthetotalinhibitorysubunitInBawerealsoinvestigated.WhereasincontrolcellstotalInBatendedtoincreasefrom6to24h,incellsexposedtoELF-EMFInBaunderwentasignificantdecrease;ofnote,pretreat-mentofcellswitha-tocopherolincreasedtotalInBaboth

intheabsenceandpresenceofELF-EMF(Fig.8A).Tobetterevaluatethefunctionalimplicationsofthemodu-lationoftotalInBa,wedeterminedthep65/InBaratioasanindexofNFkBactivity.Fig.8Bshowsthat(i)cellsexposedtoELF-EMFdisplayedasignificantincreaseoftheactiveformofNFnB,whichpeakedat6handremainedhigherthanincontrolcellsat12and24hexposure;(ii)pretreatmentofcellswitha-tocopherolalwaysabolishedtheincreasedratioofp65toInBainducedbyELF-EMF.Thesedataconfirmedthatredox-mediatedsignalswereinvolvedinthecontrolofcellproliferationinducedbyELF-EMF.

4.Discussion

Inthisstudyweutilizedhumanlymphoblasticleukemia(HL-60cells),immortalizedbutnottransformedfibroblasts(Rat-1),andhumandiploidfibroblasts(WI-38cells)withtheaimofinvestigatingtheeffectofELF-EMFonnormalandtumorcells.OurresultsshowedthatELF-EMFdose-dependentlyincreasecellproliferation,leadingtoa30%increaseofcellnumberafter72hexposure(cf.Figs1and2).Increasedproliferationwasparalleledbya

significant

Fig.7.Expressionlevelsofp65andp50NFkB-relatedproteinsinRat-1cellsexposedtoELF-EMF1mT/50Hzfordifferentextentoftime.Effectofantioxidantpretreatment.ProteinsfromcontrolandELF-EMF-exposedcellsfrom3to36hwererunonagelelectrophoresisandstainedwithmonoclonalantibodiesforp65-Rel1,p50anda-actinashousekeepingprotein.PanelAshowstheexpressionofp65andp50from3-to36-hincubationincontrolandexposedcells(70-Agproteinwasloadedintothegel).Ontheleft,densitometricevaluationsshowthepercentageincreaseofproteinexpressioncomparedtovaluesat3hforp65andat6hforp50,respectively.PanelBreportstheeffectof24-hpretreatmentwith10AMa-tocopherolontheexpressionlevelofp65from6-to24-hincubations(40-Agproteinloadedintothegel).Resultsconfirmedbytwoseparateexperiments.

F.I.Wolfetal./BiochimicaetBiophysicaActa1743(2005)120–129127

Fig.8.ExpressionlevelsofInBa,theNFkB-inhibitorysubunit,inRat-1cellsexposedtoELF-EMF1mT/50Hzwithorwithoutantioxidant.PanelA:TheexpressionlevelsofInBa,normalizedtoa-actindensitometricquantification,areexpressedaspercentageofthecontrolcellsat6-hculture.Whenindicated,cellswerepretreatedwith10AMa-tocopherolfor24hpriortoincubationwithorwithoutELF-EMFexposure.PanelB:Ratiooftheexpressionlevelsofp65toInBa(p65/InBa),anindexofNFkBactiveform.Resultsconfirmedbytwoseparateexperiments.

increaseofthepercentageofcellsintheSphase,whichreachedamaximumof25%inthecaseofRat-1cellsafter12-hexposure.Interestingly,theenhancedrecruitmentofcellsintheSphasedisplayedtwopeaksafter12-and48-hexposure.ParallelevaluationofDNAdamageshowedthatELF-EMFsignificantlyincreasedbothDNAstrandbreaksand8-OHdGlevels,whichreachedtheirmaximaaftertheSphasepeaks(cf.Figs3and4andTable1).ThisobservationsuggeststhattheexposuretoELF-EMFcausedatransientmitogeniceffectat12h,followedbyaDNAdamagingeffectat24h.

Fromapathogeneticviewpoint,itcanbehypothesizedthatshort-termexposurestoELF-EMF,andconsequentformationofROS,inducegrowthstimulationandincreasethenumberofDNAsynthesizingcells.Long-termexpo-surestoELF-EMFandcontinuousgenerationofROSeventuallycauseaccumulationofDNAdamage,whichslowsdowntheprogressionofthecellcycle.Collectively,thepercentageofcellsintheSphasewasinverselyrelatedtoDNAdamageanddirectlyrelatedtoDNArepair(cf.Table1andFig.3).TheseresultsareconsistentwiththerecentevidenceforarelationshipbetweencellcycledistributionandsusceptibilitytooxidativeDNAdamage[34].AccordingtothisinterpretationcellcyclearrestinG1protectsagainstoxidativeDNAdamage,demonstratinganinverserelationshipbetweencellproliferationandoxidativeDNAdamage.ReactiveoxygenspecieshavebeententativelyproposedtomediatetheeffectsofELF-EMF[35].WehaveextendedandvalidatedthisconceptbydemonstratingthatasizableincreaseofROSoccurredshortlyafterexposuretoELF-EMFandprecededactivationofmoleculareventsabletoinducecellproliferation(cf.Figs.6–8).Inaddition,wehaveshownthatanantioxidantlikea-tocopherolbluntedtheincreaseofROSandconsistentlypreventedproliferationandDNAdamageinducedbyELF-EMF(cf.Table2andFigs.4–7).Itisworthnotingthattheeffectofa-tocopherolwasmorepersistentinWI-38cellsthaninHL-60cells,andexhibitedanintermediatedurationinRat-1cells(cf.Table2andFig.4).Thismightbeattributedtocell-specificratesofincorporationandmetabolismofa-tocopherol,asshowninpreviousstudiesofotherantioxidants[36].

WealsoprovidenovelinformationaboutthemechanismwherebyROScanmediatetheeffectsofELF-EMFoncellproliferation.Infact,ourdatademonstratethatELF-EMFincreasethelevelsofNFnB-relatedproteins,mostnotablyp65,whilealsodecreasingthelevelsofInBa(cf.Figs7and8).Theincreasedlevelsofp65,inconjunctionwiththereducedlevelsoftotalInBa,haveafunctionalroleinregulatingtranscriptionprocesses,asp65-p65[37]homo-dimersorp50-p65heterodimers[26]areknowntoactivatetranscription.Antioxidantpretreatmentwitha-tocopheroldoesnotinterferewiththeeffectsofELF-EMFonp65orp50butincreasesthelevelsofInBainsuchamanner

that

128F.I.Wolfetal./BiochimicaetBiophysicaActa1743(2005)120–129

theratioofp65toInBareturnstoessentiallythesamelevelsofuntreatedcells.Bydoingso,a-tocopherolprecludesnucleartranslocationofp65-p50activecom-plexes[38].

TheprecisemechanismsthroughwhichELF-EMFincreasecellularROSproductionremainunknown.Like-wise,wecannotspeculatewhichparticularreactivespeciesmediatedtheproliferativeandDNA-damagingeffectsandhowsuchreactivespeciescouldbescavengedbya-tocopherol.DichlorofluoresceiniswidelyusedfordetectingcellularROS,andreportedlyexhibitsapeculiarspecificityforhydrogenperoxide[39];however,chemicalstudiesshowthatDCFactuallydetectsamuchbroaderarrayofreactiveintermediates[40].Alpha-tocopherolisoneofthemosteffectivelipid-solubleantioxidantsand,assuch,wouldbeexpectedtoscavengelipidcenteredradicalsratherthanhydrogenperoxideorthehydroxylradicalsthateventuallyform8-OHdGadductssuchasthosedetectedinourstudy.Nonetheless,previousstudiesshowedthata-tocopherolinhibitedtheformationofDCF-detectableROSincells[41],andwasabletodiminishDNAstrandbreaksinducedbyhydrogenperoxide[42].Ourfindingsthata-tocopheroldecreasestheyieldofDCF-detectableROSincellsexposedtoELF-EMF,whilealsodiminishingproliferationandDNAoxidativedamage,mustthereforebeappreciatedwithinthecontextofanoxidizingtoneinwhichmorethanoneoxidantwasinvolvedanda-tocopherolprobablyactedonmorethanonefreeradicalspecies.

ThebiologicaleffectsofELF-EMFremainamatterofdebate,asindicatedbyrecentpaperssupporting[8,43–46]ordisproving[47–49]aneffectofELF-EMFoncellgrowthandDNAdamage.Thesediscrepanciesmightatleastinpartbeattributedtoexperimentalfactorslikeintensityanddurationofexposureorthecelltypesusedinthedifferentstudies.HerewehaveshownthatELF-EMFfirstincreaseproliferationandtheninducereversibleDNAdamageinnormalandleukemiccellculturescharacterizedbydifferentgrowthrates.Thus,ourmodelshowsthatbothcellgrowthandDNAdamagecanbeobservedincellpopulationsthatareexposedtoELF-EMFforasufficientlylongtimeandthenareallowedtorecoveraftertreatment.Theconsequen-cesofthesedualandtime-dependenteffectswoulddependontheDNArepaircapacityofcells,ortheaccumulationofpotentiallycarcinogenicmutations,orthecouplingofDNAdamagewithapoptosis.HavingoneconsequenceortheotherwillalsodependonenvironmentalornutritionalfactorsthatmodulatetheimpactofELF-EMFonthecell.Theseresultsmaythereforebeofvaluetodevelopresearchandnewinvestigationalmodelsonthepotentiallydelete-riouseffectsofELF-EMF.

Inconclusion,thedatareportedinthispaperconfirmthatELF-EMFinfluencecellproliferationandsusceptibilitytoDNAdamage,anduncovermechanismsthroughwhichROSmaybeimportantinthesesettings.Sucheffectsareseeninnormalortransformedcellswithverydifferentproliferationrates,andthushighlighttheimportanceof

characterizingtheroleofELF-EMFinthecomplexprocessofcarcinogenesisortumorprogression.

Acknowledgements

ThisworkwassupportedbyCOFINnos.2001064293and2003067599toF.I.Wolfand2002064819toC.G.byISPESL(IstitutoSuperioreperlaPrevenzioneelaSicurezzadelLavoro)andUCSC.

References

[1]N.Wertheimer,E.Leeper,Am.J.Epidemiol.109(1979)273–284.[2]M.S.Linet,E.E.Hatch,R.A.Kleinerman,L.L.Robison,W.T.Kaune,

D.R.Friedman,R.K.Severson,C.M.Haines,C.T.Hartsock,S.Niwa,S.Wacholder,R.E.Tarone,NewEngl.J.Med.337(1997)1–7.[3]L.M.Green,A.B.Miller,P.J.Villeneuve,D.A.Agnew,M.L.

Greenberg,J.Li,K.E.Donnely,Int.J.Cancer82(1999)161–170.[4]UKChildhoodCancerStudyInvestigators,Lancet354(1999)

1925–1931.

[5]A.Ahlbom,E.Cardis,A.Green,M.Linet,D.Savitz,A.Swerdlow,

Environ.HealthPerspect.109(2001)911–933.

[6]W.Z.Fam,E.L.Mikhail,CancerLett.105(1996)257–269.

[7]G.A.Boorman,D.L.McCormick,J.M.Ward,J.K.Haserman,R.C.

Sills,Radiat.Res.153(2000)617–626.

[8]M.DeMattei,A.Caruso,G.C.Traina,F.Pezzetti,T.Baroni,V.

Sollazzo,Bioelectromagnetics20(1999)177–182.

[9]M.J.RuizGomez,L.DelaPena,J.M.Pastor,M.MartineMorill,L.

Gil,Bioelectrochemistry53(2001)137–140.

[10]M.Simko,R.Kriehuber,D.G.Weiss,R.A.Luben,Bioelectromag-netics19(1998)85–91.

[11]K.J.McLeod,L.Collazo,Radiat.Res.153(2000)706–714.

[12]J.McCann,F.Dietrich,C.Rafferty,Mutat.Res.411(1998)45–86.[13]J.L.Phillips,W.Haggren,W.J.Thomas,J.T.Ishida,W.R.Adey,

Biochim.Biophys.Acta1009(1992)140–144.

[14]C.A.Morehouse,R.D.Owen,Radiat.Res.153(2000)663–669.[15]J.Zhou,C.Li,G.Yao,H.Chiang,Z.Chang,Bioelectromagnetics23

(2002)339–346.

[16]C.Grassi,M.D’Ascenzo,A.Torsello,G.Martinotti,F.I.Wolf,A.

Cittadini,G.B.Azzena,CellCalcium35(2004)307–315.

[17]cy-Hulbert,J.C.Metcalfe,R.Hesket,FASEBJ.12(1998)

395–420.

[18]K.J.Davies,IUBMBLife48(1999)41–47.

[19]L.J.Marnett,Carcinogenesis21(2000)361–370.[20]B.Epe,Biol.Chem.383(2002)467–475.

[21]A.L.Jackson,L.A.Loeb,Mutat.Res.477(2001)7–21.

[22]S.Dong-Yung,D.Yu-Ru,L.Shan-Lin,Z.Ya-Dong,W.Lian,FEBS

Lett.542(2003)60–64.

[23]M.Torres,Front.Biosci.8(2003)D369–D391.

[24]A.Bowie,L.A.J.O’Neill,Biochem.Pharmacol.59(2000)13–23.[25]Z.Estrov,S.Shishodia,S.Faderl,D.Harris,Q.Van,H.M.Kantarjian,

M.Talpaz,B.B.Aggarwal,Blood102(2003)987–995.

[26]L.Vermuelen,G.DeWilde,S.Notebaert,W.VandenBerghe,G.

Haegeman,Biochem.Pharmacol.64(2002)963–970.

[27]C.Pioli,L.Gatta,D.Frasca,G.Doria,Eur.J.Immunol.29(1999)

856–863.

[28]Y.J.Yaborough,T.Zhang,M.Hsu,R.M.Santella,CancerRes.56

(1996)683–688.

[29]N.P.Singh,M.T.McCoy,R.R.Tice,E.L.Schneider,Exp.CellRes.

175(1988)184–191.

[30]A.Sgambato,R.Ardito,B.Faraglia,A.Boninsegna,F.I.Wolf,A.

Cittadini,Mutat.Res.496(2001)171–180.

F.I.Wolfetal./BiochimicaetBiophysicaActa1743(2005)120–129

129

[31]B.Hellmann,H.Vaghef,B.Bostrfm,Mutat.Res.336(1995)

123–131.

[32]V.Covacci,A.Torsello,P.Palozza,A.Sgambato,G.Romano,A.

Boninsegna,A.Cittadini,F.I.Wolf,Chem.Res.Toxicol.14(2001)1492–1497.

[33]P.Palozza,S.Serini,A.Torsello,A.Boninsegna,V.Covacci,N.

Maggiano,F.O.Ranelletti,F.I.Wolf,G.Calviello,Int.J.Cancer97(2002)593–600.

[34]R.C.Rancourt,D.D.Hayes,P.R.Chess,P.C.Keng,M.A.O’Reilly,J.

Cell.Physiol.193(2002)26–36.

[35]G.Katsir,A.H.Parola,mun.252(1998)

753–756.

[36]P.Palozza,S.Serini,A.Torsello,F.DiNicuolo,E.Piccioni,V.

Ubaldi,C.Pioli,F.I.Wolf,G.Calviello,J.Nutr.133(2003)381–388.[37]P.A.Ganchi,S.C.Sun,W.C.Greene,D.W.Ballare,Mol.Cell.Biol.13

(1993)7826–7835.

[38]D.Li,T.Saldeen,J.L.Mehta,J.Cardiovasc.Pharmacol.36(2000)

297–301.

[39]S.Ostrovidov,P.Franck,D.Joseph,L.Martarello,G.Kirsch,F.

Belleville,P.Nabet,B.Dousset,J.Med.Chem.43(2000)1762–1769.

[40]C.P.LeBel,H.Ischiropoulos,S.C.Bondy,Chem.Res.Toxicol.5

(1992)227–231.

[41]W.H.Chan,H.J.Wu,J.Cell.Biochem.92(2004)200–212.

[42]J.Wu,K.Karlsson,A.Danielsson,J.Hepatol.3(1997)669–677.[43]V.Manni,A.Lisi,D.Pozzi,S.Rieti,A.Serafino,L.Giuliani,S.

Grimaldi,Bioelectromagnetics23(2002)298–305.

[44]M.Wei,M.Guizzetti,M.Yost,L.G.Costa,Toxicol.Appl.Pharmacol.

162(2000)166–176.

[45]J.B.Robinson,A.R.Pendleton,K.O.Monson,B.K.Murray,K.L.

O’Neill,Bioelectromagnetics23(2002)106–112.

[46]S.Ivancsits,E.Diem,O.Jahn,H.W.Rudiger,Int.Arch.Occup.

Environ.Health76(2003)431–436.

[47]H.Yoshizawa,T.Tsuchiya,H.Mizoe,H.Ozeki,S.kanao,H.Yomori,

C.Sakane,S.Hasebe,T.Motomura,T.Yamakawa,F.Mizuno,H.Hirose,Y.Otaka,Bioelectromagnetics23(2002)355–368.[48]K.-C.Chow,W.L.Tung,FEBSLett.478(2000)133–136.

[49]O.Cantoni,P.Sestili,M.Fiorani,M.Dacha,Biochem.Mol.Biol.Int.

38(1996)527–533.

本文来源:https://www.bwwdw.com/article/9mxq.html

Top