广东省汕头市2017-2018学年高三第三次模拟考试数学(文)试题

更新时间:2024-04-01 07:42:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2017-2018学年汕头市普通高考第三次模拟考试试题

文科数学最新试卷十年寒窗苦,踏上高考路,心态放平和,信心要十足,面对考试卷,下笔如有神,短信送祝福,愿你能高中,马到功自成,金榜定题名。

第Ⅰ卷(共60分)

一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合A.

B.

C.

, D.

,则

( )

【答案】D 【解析】2. 若复数A. B. 【答案】B 【解析】则点睛:形如复数

为实数, 当

,故选B.

的数叫复数,其中a叫做复数的实部,b叫做复数的虚部;当时复数

为虚数,当

时复数

时,

在复平面内对应的点位于实轴上,则 C.

D.

,故选D. ( )

为纯虚数.

复数的几何意义为:表示复数z对应的点与原点的距离,表示两点的距离,即表示复

数与对应的点的距离.

3. 现有编号为,,,的四本书,将这4本书平均分给甲、乙两位同学,则,两本书不被同一位同学分到的概率为( ) A. B. C. D. 【答案】C

【解析】将4本书平均分给甲、乙两位同学,共有同学分到,则有

种,所以所求概率为

种不同的分法,,两本书不被同一位,故选C.

点睛:平均分配给不同人的分法等于平均分堆的分法乘以堆数的全排列.分堆到位相当于分堆后各堆再全排列,平均分堆不到指定位置,其分法数为:

.对于分堆与分配问题应注意:

一,处理分配问题要注意先分堆再分配;二,被分配的元素是不同的;三,分堆时要注意是否均匀. 4. 在A. 【答案】A

中, B.

, C.

,若点满足

D.

,则

( )

【解析】

如图所示, 在

,

选A. 5. 若椭圆( )

中,,又,

,故

上一点与椭圆的两个焦点、的连线互相垂直,则的面积为

A. 36 B. 16 C. 20 D. 24 【答案】B 【解析】设又

6. 运行如图所示的程序框图,输出的值等于

,即,故选B.

,则判断框内可以填( )

,

A. B. C. D.

【答案】C 【解析】

,输入

,则第一次循环:

第二

次循环:出S,应填7. 在A.

上, B. C.

…第十次循环:

,故选C.

D.

,则

边上的高等于( )

,此时输

【答案】A

【解析】设角,,所对的边分别为,,,因为化简得又

,由

,的面积

,所以,解得

.

,得

.故A.

的准线分别交于,( )

边上的高为,

8. 已知双曲线两点,为坐标原点,若

)的两条渐近线与抛物线

,则双曲线的离心率

A. B. C. D. 【答案】D

【解析】双曲线的渐近线方程是所以

,故选D.

9. 函数( )

,当,即

时,,即

(,,)的部分图象如图所示,则

A. B. C. D.

【答案】B 【解析】

,解得

,且

,又函数过

,

点睛:已知一,升降零点法,由点横坐标

,则令

,所以

,故选B.

的部分图象求其解析式,常用如下两种方法:

,即可求出;求时,若能求出离原点最近的右侧图象上升或下降的零

或,即可求出;二,代入最值法,将最值点坐标代入解析式,再结

合图象解出和. 10. 若A. 【答案】C 【解析】

上单增, 在小;增,所以由

,构造函数

上单减,故由

,构造函数,可得

,故选C.

无法判断

,解得的大,即

单调递,即

,为自然对数的底数,则下列各式中一定成立的是( )

B.

C.

D.

11. 如图,网格纸上小正方形的边长为,粗实线画出的是某多面体的三视图,此几何体的表面积为

,则实数

( )

A. B. C. 【答案】C

D.

【解析】由三视图可知,该几何体为底面为正方形的四棱锥,表面积为

,

,故选C.

12. 已知是定义在上的减函数,其导函数满足,则下列结论中正确的

是( )... A.

恒成立 B.

D. 当且仅当

C. 当且仅当【答案】A 【解析】由题意

,又

得:

恒成立,由

为减函数,故x<1时,

,综上可知,

可得:

,而当x>1时,由恒成立,故选A.

,令x=1得

,从而

点睛:本题考查利用导数研究抽象函数的单调性进而判断函数的最值问题.用导数判断函数的单调性时,首先应确定函数的定义域,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.导数值为0的点不一定是函数的极值点,函数在某点的导数值为0是函数在该点取得极值的必要不充分条件.

第Ⅱ卷(共90分)

二、填空题(每题5分,满分20分,将答案填在答题纸上)

13. 某中学计划派出名女生,名男生去参加某项活动,若实数,满足约束条件该中学最多派__________.

本文来源:https://www.bwwdw.com/article/9kjr.html

Top