2012年全国硕士研究生入学统一考试数学一试题

更新时间:2024-04-01 18:26:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2012年全国硕士研究生入学统一考试数学一试题

文都名师:汤家凤的全面解析

一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项

符合题目要求的,请将所选项前的字母填在答题纸指定位置上.

x2?x(1)曲线y?2渐近线的条数(

x?1(A)0

(B)1

(D)3

(C)2

解析:C

由limy?1,得y?1为水平渐近线

x??x?1由limy??得x?1为垂直渐近线 由lim

(2)设函数(

n?11y???,得x??1非垂直渐近线,选(C) x??12f(x)?(ex?1)(e2x?2)…(enx-n),其中(n?1)! n!

(B)(?1)(D)(?1)nn为正整数,则

f?(0)=

(A)(?1)(C)(?1)(n?1)! n!

n?1n

解析: A

?f?(x)?ex(e2x?2)?(enx?2)?(ex?1)?2e2x?(enx?n)?(ex?1)(e2x?2)?nenx?f?(0)?1?(?1)???(1?n)?(?1)n?1(n?1)!选(A)

(3)如果函数

f(x,y)在(0,0)处连续,那么下列命题正确的是(

f(x,y)(A)若极限lim存在,则f(x,y)在(0,0)处可微

x?0x?yy?0(B)若极限limx?0x?0f(x,y)存在,则f(x,y)在(0,0)处可微 22x?yx?0y?0(C)若

f(x,y)在(0,0)处可微,则极限limf(x,y)存在

x?yf(x,y)(D)若f(x,y)在(0,0)处可微,则极限lim2存在

x?0x?y2x?0

解析:(B)

f(x,y)lim2?k x?0x?y2y?0f(0,0)?0? ????z?f(x,y)?f(0,0)?0?x?0?y??(?)?f(x,y)在(0,0)处可微.

(4)设Ik(A)I1

??e0k?x2sinxdx(k?1,2,3)则有(

(B)I3)

(D)I2?I2?I3

2??I2?I1

2?(C)I2?I3?I1 ?I1?I3

解析: D

I2?I1??esinxdx?I1??e|sinx|dx?I1.

??x2x2I3?I1??e|sinx|dx??esinxdx.

?2?x23?x2而

?????e?223?exsinxdxx???t??e(t??)sintdt

?(x??)222?2?2|sinx|dx??e|sinx|dx.

?2?x2?I3?I1.?I3?I1?I2.

?1??0??0???1?????????其中

(5)设?1?0,?2?1,?3??1,?4?1,c1,c2,c3,c4为任

?????????c??c??c??c??1??2??4??3?意常数,则下列向量组线性相关的为( )

(A)α1, α2, α3 (B)α1, α2, α 4(C)α1, α3, α4

(D)α2, α3, α4

解析:C

?0??,

?3??4??0????3??4与?1成比例.

?c?c??34???1与?3+?4线性相关,??1,?3,?4线性相关,选C

0或?1,?3,?4?0c11?1?11?0 c3c4??1,?3,?4线性相关,选C

?100????1(6)设A为3阶矩阵,P为3阶可逆矩阵,且pAP?010.若P=(α1, α2, α3),

???002???Q?(?1??2,?2,?3).则Q-1AQ=( )

?100???(A)020 ???001???

?100???(B)010 ???002????200???(C)010 ???002????200???(D)020 ???001???解析:(B)

?100??

Q?(?1+?2,?2,?3)?P?110???001????100??100??P?1AP?110?

Q?1AQ??110?????001??001??????1?100??1??100??1???1??110???1?

???110?????????001????2??2??????001???

(7)设随机变量X与Y相互独立,且分别服从参数为1与参数为4的指数分布,则P{x

(A)15

(B)

123 (C)

45(D)

5

解析:(A)

X~E(1),Y~E(4)?f?e?x,x?0x(x)??. f?4e?4y,?0,x?0Y(y)???0,?X,Y独立.

?4e?x?f(x,y)??e?4y,x?0,y?0

?0,其他P(X?Y)??

x??f(x,y)d?y????0dx???x4e?xe?4ydy ????e?xdx???0xe?4yd(4y) ????0e?x?e?4xdx ????e?5x0dx

?15.

(8)将长度为1m的木棒随机地截成两段,则两段长度的相关系数为( ) (A) 1

(B)

12 (C)

12 (D)

?1

解析:设一段长X,另一段Y?1?X,

y?0y?0. 由??cov(X,Y)DXDY

DX?D(1?X)?DY

cov(X,Y)?EX(1?X)?EX?E(1?x)

?E(X?X2)?EX?[1?EX] ?EX?EX2EX?(EX)2 ??EX2?(EX)2??DX

???1,选项D

二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上. (9)若函数f(x)满足方程f(x)=_________.

f?(x)?f?(x)?2f(x)?0及f?(x)?f(x)?2ex,则

解析:?2???2?0??1??2,?2?1

f?(x)?f?(x)?2f(x)?0?f(x)?C1e?2x?C2ex,

代入

f?(x)?f(x)?2ex得C1?0,C2?1.

?f(x)?ex

(10)

?20x2x?x2dx?________

解析:

? 2220?

20x2x?xdx???(x?1)?1?1?(x?1)2d(x?1)

121?1?1??(x?1)1?xdx???z?(11)grad?xy??y??1?xdx?2?1?xdx?0212?2.

(2,1,1)?_______

解析:{1,1,1}

?grad?xy???grad?xy?? (12)设

z??z1??y,x?,? ??2y??yy?z?1,1,1} (2,1,1)?{?y?yz?1,?x0,?y0,?z0}???{(,x,y)z|x?,则

2yd??s?_____ . ?3解析:.

12z?1?x?y,D:x?y?1(x?0,y?0)

??yds???y?3d??3?dx?2D02211?x0y2dy

3133341?(1?x)dx??(1?x)?

?0031212(13)设X为三维单位向量,E为三阶单位矩阵,则矩阵E???的秩为_________.

解析:2. 设A??E?XXT,A2?A

?r(A)?r(E?A)?3.

?r(E?A)?r(XXT)?r(X)?1

?r(A)?2.

(14)设A,B,C是随机事件,A,C互不相容,

11P(AB)?,P(C)?,23则

P(??C)=_________.

3解析:

4解:P(AB|C)?P(ABC)P(AB)?P(ABC) ?1?P(C)P(C)?AC??,?ABC??.

1P(AB)32?P(AB|C)???. 1?P(C)243

三、解答题:15~23小题,共94分,请将解答写在答题纸指定位置上.

(15)(本题满分 分)

x21?x证明xln+cosx?1+(-1

21?x1?xx2?cosx?1?.?(0)?0. 证明:令?(x)?xln1?x2?’(x)?ln1?x2x??sinx?x 21?x1?x1?x1?x2?ln?x?sinx 21?x1?x1?x21?xx?x,又sinx?x. 0?x?1时. ln?0,21?x1?x??’(x)?0;

1?x21?xx?x,又sinx?x. ?1?x?0时,ln?0,21?x1?x??’(x)?0.

?x?0为?(x)在(-1,1)内最小点,而?(0)=0

?当-1

1?xx2xln?cosx?1?

1?x2(16)(本题满分 求函数f(x,y)?xe

分)

x2?y2?2的极值

解析:

?????x2?y2?'2fx?(1?x)e2?0?x??1?x?1x2?y2?得?及? '2fy??xye?0?y?0?y?0x2?y2?2x2?y2?2''fxx?(x3?3x)e''fxy??y(1?x2)e''fyy?x(y2?1)e?

x2?y2211???x??1当?时,A?2e2,B?0,C?e2. ?y?0?x??12为极小点. ?AC?B?0且A?0,???y?0极小值为

f(?1,0)??e.

?1211???x?1当?时,A??2e2,B?0,C??e2, ?y?0?x?12为极大点 ?AC?B?0且A?0,???y?0极大值为

f(1,0)?e?12

(17)(本题满分 分)

an?1求幂解:由lim?1得R=1.

x??an4n2?4n?3??(n??) 当x??1时. ?2n?1?x??1时级数发散.收敛域为(-1,1)

4n2?4n?32n令S(x)??x

2n?1n?0?2?2n????(2n?1)?x

?2n?1?n?0??x2n=?(2n?1)x?2? n?0n?02n?1?2n??x2n?2n?1????x??2? n?02n?1?n?0??’1?x2?x????2S1(x)??2S1(x) 2?22(1?x)?1?x?当x=0时,S(0)=3.

’x2n?1当x≠0时,xS1(x)=?

n?02n?1??xS1(x)?’??x2n?n?0?11?x2

11?x11?xxS1(x)?ln,?S1(x)?ln.

21?x2x1?x3???S(x)??1?x211?x?(1?x2)?xln1?x?(18)(本题满分 已知曲线

分)

),其中函数f (t)具有连续导数,且f (0)=0,

,x?0,?1?x?1且x?0

?x?f(t)??L:?(0t<

2?y?costf??t?>0(0

?),若曲线L的切线与x轴的交点到切点距离值恒为1,求函数f (t)的表2达式,并求此曲线L与x轴无边界的区域的面积.

解析:

①k?dydy/dt?sint??. dxdx/dtf?(t)sint(x?f(t)),令y?0? 切线为y?cost??f??t?x?f(t)?f??t)?cott,切线与x轴交点为(f(t)?f?(t)cost,0).

由题意

f?(t)cot2t?cos2t?1

22sin4t?f?(t)?. 2costsin2t?f?(t)?0.?f?(t)??sect?cost.

costf(t)?ln|sect?tant|?sint?C

?f(0)?0,?f(t)?ln|sect?tant|?sint

??②A???20ydx??2cost?f?(t)dt

0??2sin2t?I2?01????. 224分)

222?y2?2x到点(2,0),再沿圆周x?y?4

(19)(本题满分

已知L是第一象限中从点(0,0)沿圆周x到点(0,2)的曲线段,计算曲线积分I??3x2ydx?(x3?x?2y)dy

L解析:

补充

L0:x?0(y1?2,y2?0)I?L?L0????

L02??而

L?L0???(3x?1?3x)d????d???(4?x2?2x?x2)dx

22DD0?2014?x2dx?4????

41?2x?xdx????(依据定积分几何意义)

222?

20?????L?L0???0?2??2.

L0??(?2y)dy?4.

2?I??2?4.

分)

(20)(本题满分

?1?0已知A=??0??aa1000a100??1???1?0??,????

?0?a????1??0?(1)计算行列式|A|;

(2)当实数a为何值时,方程组Ax??有无穷多解,并求其通解.

解析:

(I)A?1?(?1)a?a?1?a534级数

?n?0?4n2?4n?32n

x的收敛域及和函数

2n?1(II)当a?1及a??1时,Ax=?有无穷多个解.

当a?1时,

????1????1??????????????????????????????????????? ?=????????????????????????????????????????????????????1?0???0??0010001?2?0?1??1????? 11?0??00?0???1??2??1???1?通解为x?k?????

??1??0??????1??0?当a??1时.

?1?100?01?10????001?1???1001?1??0??1???1?通解为x?k?????

?1??0??????1??0?

(21)(本题满分11分)

?1??1?0??1?????0??0???0??001000?10?11?100?0???1?? ?0???0??1?0已知A????1??001?11????,二次型f(x1,x2,x3)?x(??)x的秩为2, 0a??a?1?(1) 求实数a的值;

(2) 求正交变换x=Qy将f化为标准型.

解析:

?1?10?10??0??T?AA=010a???11a?1???1???0?01?11?? 0a??a?1?0?22??01?a??1?a1?a?1?a?1?a?? 3?a2???xT(ATA)x秩为2. ?r(ATA)?2(也可以利用r(ATA)?r(A)?2)

?ATA?0?a??1 ( ?ATA?(a2?3)(a?1)2)

?202???T(II)令AA=B=022

???224?????????由?????????????????????????

???????解???0,???2,???6

??1???当???时,由(0E?A)x?0即Ax?0得?1??1. ???1?????1???当??2时,由(2E?A)x?0????1. ???0????1???当??6时,由(6E?A)x?0????1. ???2???取r1=??1???1??1?1??1??1???1?,r2?1?,r3?1?. ???3??2??6???1??0??2?1?21201??6?1?.?6?2??6?22?1??3??1Q???3令??1??3?

f?x?x??x?Qy??2y2?6y3(22)(本题满分11分)

设二维离散型随机变量X、Y的概率分布为 0 0 1 0 2 1 40 1 40 1 1 30 2 (Ⅰ)求P{X1 121 12?2Y}; ?Y,Y).

(Ⅱ)求cov(X解析: Y 0 1 2 X 0 1 11 0 44 2 0 1 0 311 0 1212(1)P(X?2Y)?P(X?0,Y?0)?P(X?1,Y?2)?11?0? 44(2)cov(X?Y,Y)?cov(X,Y)?cov(Y,Y)

12??012?,Y~?111?. 11????312??333??EXY?EXEY?DY

?0X的边缘分布X~?1??212212?EX???,EY???1

363331152DY?EY2?(EY)2?1??22??1??1?

333311142EXY?1?1??2?2????

3123123cov(X?Y,Y)?2222??1???. 33332(23)(本题满分 分)

设随机变量X与Y相互独立且分别服从正态分布N(?,?是未知参数且σ>0。设Z=X-Y. (1)求Z的概率密度

)与N(?,2?2),其中σ

f(z,?2);

2

.

?(2)设Z1,Z2,…,ZN为来自总体Z的简单随机样本,求σ2的最大似然估计量??为σ2的无偏估计量. (3)证明?解析:

2X~N(?,?2),Y~N(?,2?2),X,Y独立,??0,未知Z?X?Y.

解:(1)Z的密度

f(z,?2)

X~N(?,?2),Y~N(?,2?2),X,Y独立. Z?X?Y~N(0,3?2)

?f(z,?2)?12?3?2ez2?2?3?2?1e6??z2?26?

(2)设Z1…Zn样本.

n?1?1??i6?2 似然出数L(Z1,…Zn,?)??e?6????11n22lnL(Z1…Zn,?)?nln?2?Zi

6??6?i?1?Zi2n2??nln6???16?2?Zi?1n2i

n??nln6??nln??16?22Z?i i?1dlnL?0.2d? 1n?n12211?2???(?)??Zi???4??0,?26i?1????Zi2????3n2

?(3)即证E?2??2,

Zi?03?2?Zi~N(0,3?2),?n2~N(0,1),Zi是简单随机样本.

2?Z?Zi?222iE?Z?3?n. ?E?n ,~?(n),i?2??3?i?1?3??

X~N(?,?2),Y~N(?,2?2),X,Y独立. Z?X?Y~N(0,3?2)

?f(z,?2)?12?3?2ez2?2?3?2?1e6??z2?26?

(2)设Z1…Zn样本.

n?1?1??i6?2 似然出数L(Z1,…Zn,?)??e?6????11n22lnL(Z1…Zn,?)?nln?2?Zi

6??6?i?1?Zi2n2??nln6???16?2?Zi?1n2i

n??nln6??nln??16?22Z?i i?1dlnL?0.2d? 1n?n12211?2???(?)??Zi???4??0,?26i?1????Zi2????3n2

?(3)即证E?2??2,

Zi?03?2?Zi~N(0,3?2),?n2~N(0,1),Zi是简单随机样本.

2?Z?Zi?222iE?Z?3?n. ?E?n ,~?(n),i?2??3?i?1?3??

本文来源:https://www.bwwdw.com/article/9kir.html

Top