Simultaneous determination of catechol and hydroquinone by carbon paste electrode modified
更新时间:2023-05-28 19:28:01 阅读量: 实用文档 文档下载
JSolidStateElectrochem(2012)16:3747–3752DOI10.1007/s10008-012-1813-5
ORIGINALPAPER
DirectelectrochemistryofglucoseoxidaseimmobilizedonTiO2–graphene/nickeloxidenanocompositefilmanditsapplication
Chun-XuanXu&Ke-JingHuang&Xue-MinChen&Xiao-QinXiong
Received:2April2012/Revised:23June2012/Accepted:2July2012/Publishedonline:13July2012#Springer-Verlag2012
AbstractAnovelelectrochemicalplatformbasedonnickeloxide(NiO)nanoparticlesandTiO2–graphene(TiO2–Gr)wasdevelopedforthedirectelectrochemistryofglucoseoxidase(GOD).Theelectrochemicalbehaviorofthesensorwasstudiedusingcyclicvoltammetryandchronoamperom-etry.Theexperimentalresultsdemonstratedthatthenano-compositewellretainedtheactivityofGODandthemodifiedelectrodeGOD/NiO/TiO2–Gr/GCEexhibitedex-cellentelectrocatalyticactivitytowardtheredoxofGODasevidencedbythesignificantenhancementofredoxpeakcurrentsincomparisonwithbareGCE.Thebiosensorrespondedlinearlytoglucoseintherangeof1.0–12.0mM,withasensitivityof4.129μAmM 1andadetectionlimitof1.2×10 6Munderoptimizedconditions.Theresponsetimeofthebiosensorwas3s.Inaddition,thedevelopedbiosensorpossessedgoodreproducibilityandstability,andtherewasnegligibleinterferencefromotherelectroactivecomponents.
KeywordsTiO2–graphene.Nickeloxidenanoparticles.Glucose.Glucoseoxidase.Biosensor
Introduction
Increasingattentionhasbeenfocusedonthestudyofthedirectelectrochemistryofproteinsbecauseofitssignifi-canceinbothprobingthenatureofenergyconversionprocessesinbiologicalsystemsanddevelopmentofthird-generationbiosensors[1,2].However,itisdifficultfor
C.-X.XuK.-J.Huang(*)X.-M.ChenX.-Q.XiongCollegeofChemistryandChemicalEngineering,XinyangNormalUniversity,Xinyang464000,China
e-mail:kejinghuang@
proteinstoexchangeelectronsdirectlywithbaresolidelec-trodesbecausetheelectroactivecenterofproteinsisdeeplyburied.Thedirectelectrontransferbetweenglucoseoxidase(GOD)andelectrodecannotbeachievedeasily.Nanomate-rialshavebeenwidelyusedforconstructionofbiosensorduetotheintrinsicadvantages,suchaslowcost,goodthermalstability,andlargesurfacearea.Especially,metalnanoparticlescanprovideasuitablemicroenvironmentforbiomoleculesimmobilizationretainingtheirbiologicalac-tivityand,tofacilitateelectrontransferbetweentheimmo-bilizedproteinsandelectrodesubstrates,haveledtoanintensiveuseofthosenanomaterialsfortheconstructionofelectrochemicalbiosensorswithenhancedanalyticalperfor-mancewithrespecttootherbiosensordesigns.Duetotheiruniquechemicalandphysicalproperties,manykindsofmetalnanoparticles,suchasgoldnanoparticles,platinumnanoparticles,andAgnanoparticles,havebeenusedinthefabricationofbiosensorsforglucoseanalysis[3–7].
Nickeloxide(NiO)nanoparticleshavereceivedconsid-erableattentioninrecentyearsduetotheircatalytic,optical,electronic,andmagneticproperties[8,9].Theeasyprepa-ration,electroinactivityinphysiologicalpHsolutions,andhighporosityareadvantagesofNiOnanomaterialsfortheentrapmentofelectrontransfermediators.TheycanbeusedfortheimmobilizationofdifferentmoleculesbasedontheuniquepropertiesofNiOnanoparticles.Forexample,theuseofNiOnanoparticlesfortheimmobilizationofbiomo-leculesandtheirapplicationsforhydrogenperoxideandglucosedetectionhasbeenreported[10,11].
Graphene(Gr)isamonolayeroftightlypackedcarbonatoms.Itissuitedforelectrochemicalapplicationsduetoitshighelectricalconductivity,largesurfacearea,uniquehet-erogeneouselectrontransferrate,andlowproductioncosts.Recently,Grhasbeenwidelyutilizedinchemical,electron-ic,information,energy,materials,biologicalmedicine,andotherfields[12,13].However,manyoftheinterestingand
3748uniquepropertiesofGrcanonlyberealizedafteritisintegratedintomorecomplexassemblies.SomeGr-basedhybridmaterialshaveshowngreaterversatilityasadvancedelectrodematerialsforthefabricationofelectrochemicalsensorsandbiosensors[13,14].TiO2isametaloxideandhasbeenwidelyusedinthefabricationofelectrochemicalsensorsandbiosensorsduetoitsgoodbiocompatibilityandhighconductivity[15,16].Mostrecently,wereportedtheTiO2–graphene(TiO2–Gr)nanocompositeusedinelectro-chemicalbiosensorconstructionandtheirapplicationinsomebiomoleculesensing,suchasdopamine,glucose,ad-enine,andguanine[17–19].TiO2–Gr-basedanalyticalmethodsshowedexcellentperformance,suchashighselec-tivity,broaddynamicrange,andlowdetectionlimit,whichowedtothecharacteristicsandadvantagesofTiO2–Grnanocomposite,anditopenedanewplatformforelectro-chemicalsensorsandbiosensorsdesign.
Herein,weemployedtheTiO2–GrandNiOcompositesasapropellantofdirectelectrontransferbetweenGODandtheelectrodesurface.Amediator-freeGOD-basedglucosebiosensorwasconstructedthoughalayer-by-layerassemblyapproach.Firstly,theNafion-stabilizedTiO2–GrcompositeswerecoatedonthesurfaceofGCE.Then,NiOwaselectro-depositedontheresultingelectrode.Finally,GODwasself-assembledonthelargeandspecificsurfaceofTiO2–Gr/NiO.Thebiosensorexhibitedspecificandsensitivedetec-tionforglucosewithshortresponsetime,lowdetectionlimit,andhighsensitivity.Preparation,characterization,performance,andfactorsinfluencingtheperformanceoftheobtainedbiosensorwereinvestigated.
ExperimentalMaterials
Graphitepowder,hydrazinesolution(50wt.%),andam-moniasolution(28wt.%)wereobtainedfromShanghaiChemicalReagentCorporation(Shanghai,China).GODwasobtainedfromSigma(SaintLouis,MO,USA).Ti-taniumisopropoxide(Ti(OiPr)4,98%)wasobtainedfromAladdinChemistryCo.,Ltd.Phosphate-bufferedsolutions(PBS)werepreparedbymixingthesolutionsofKH2PO4,Na2HPO4,andKCl.Double-distilledwaterwasusedthroughout.Instruments
CHI660Delectrochemicalworkstation(CHInstruments,Shanghai,China)andastandardthree-electrodecellwhichcontainedaplatinumwireauxiliaryelectrode,asaturatedcalomelreferenceelectrode(SCE),andthemodifiedelectrodeasworkingelectrodewereemployedforelectrochemical
JSolidStateElectrochem(2012)16:3747–3752
studies.AllofthepotentialsinthisarticlewerewithrespecttoSCE.ThepHmeasurementsweremadewithapHmeter(MP230,Mettler-Toledo,Greiffensee,Switzerland).PowderX-raydiffraction(XRD)datawerecollectedonaRigakuMiniFlexIIX-raydiffractometer.Scanningelectronmicros-copy(SEM)imageswereobtainedonaHitachiS-4800scan-ningelectronmicroscope.
PreparationofTiO2–Grnanocomposite
Grapheneoxide(GO)waspreparedfromgraphitepowderbythemodifiedHummersmethod[20].Graphitewasputintoamixtureof12mLconcentratedH2SO4,2.5gK2S2O8,and2.5gP2O5.Thesolutionwasheatedto80°Cwithcontinuousstirringfor5husingoilbath.Next,themixturewasdilutedwithdeionizedwater(500mL).Theproductwasobtainedbyfilteringusing0.2-μmNylonfilmanddriednaturally.Theproductwasre-oxidizedbyHummersandOffemanmethodtoproducethegraphiteoxide.Exfoliationwascarriedoutbysonicating0.1mgmL 1graphiteoxidedispersionfor1h.TiO2–Grnanocompositewaspreparedaccordingtothepreviouswork[17].Inshort,20mgofGOwasdispersedinamixedsolutionofH2O(10mL)andethanol(5mL)underultrasonicationfor1htogetaho-mogenouscolloidalsuspensionofexfoliatedGO.Then,0.2mLofTi(OiPr)4wasaddedtotheGOsuspensionandultrasonicatedforanother1h.Theresultantmixturewastransferredtoa25-mLTeflon-sealedautoclaveandkeptat130°Cfor12h.Thefinalproductwasisolatedbyfiltrationandrinsedthoroughlywithwaterandethanol,respectively.Then,theproductwasdriedinvacuum.TheTiO2–Grnano-compositewasobtainedintheformofblackpowder.Fabricationofmodifiedelectrode
Atotalof1.0mgoftheas-preparedTiO2–Grnanocompo-sitewasdispersedin10.0mL0.25-wt.%Nafionsolutionsunderultrasonicationfor30mintoobtainahomogeneous,well-distributedsuspensionofNafion-TiO2–Grcomposite.Priortothemodification,thebareGCE(3mmindiameter)wascarefullypolishedtoobtainamirror-likesurfacewith0.3and0.05μmaluminaslurry,followedbysuccessivesonicationinwaterandethanolfor5minanddryinginair.Subsequently,20μLofpreparedNafion-TiO2–GrwasdroppedonthecleanedGCEanddriedunderaninfraredlamptopreparetheTiO2–Gr/GCE-modifiedelectrode.Modificationoftheelectrodewasaccomplishedbytrans-ferring10μLof2mMnickelnitratesolutiontothesurfaceofTiO2–Gr/GCEanddryingunderaninfraredlamp.Theelectrodewasthenconditionedbypotentialcyclinginalimitedrange(0.1–0.6V)in0.10MNaOHsolution,assupportingelectrolyte,untilasteadystatevoltammogramwasobtained.ThemodifiedelectrodeNiO/TiO2–Gr/GCE
JSolidStateElectrochem(2012)16:3747–37523749
wasobtained.Atotalof5μLGODsolution(10mgmL 1)wasthencoatedontheNiO/TiO2–Gr/GCE(GOD/NiO/TiO2–Gr/GCE)anddriedat4°C.ThemodifiedGCEwasimmersedinPBStoremovethelooselyabsorbedGODandwasstoredat4°Cinarefrigeratorwhennotinuse.
thanthatofTiO2,whichresultsintheshieldingofthegraphenepeaksbythoseofTiO2[21].
Electrochemicalbehaviorsofmodifiedelectrodes
Theelectrochemicalbehaviorsofdifferentmodifiedelectro-deswereinvestigated.TheresultsshowedthatanodicandcathodicpeaksdonotappearatGCE,TiO2–Gr/GCE,NiO/GCE,andNiO/TiO2–Gr/GCEin0.1MPBS(pH7.0).AftercombiningwithGOD,apairofwell-defined,quasireversi-bleredoxpeakscanbeobservedatGOD/NiO/TiO2–Gr/GCEat 0.46and 0.41V,withapeak-to-peakseparationofabout50mV,revealingafastelectrontransferontheelectrode.
Figure2showsthecyclicvoltammetricresponsesobtainedatGOD/GCE,GOD/NiO/GCE,GOD/TiO2–Gr/GCE,andGOD/NiO/TiO2–Gr/GCE,respectively.Apairofbadlydefined,weakredoxpeakscanbeobservedatGOD/GCE.TheredoxpeaksobservedatGOD/NiO/GCEandGOD/TiO2–Gr/GCEobviouslyincreasedwhencom-paredtothatatGOD/GCE,revealingafastelectrontransferatbothmodifiedelectrodes.ThepeakcurrentofredoxpeaksofGOD/NiO/TiO2–Gr/GCEwasthehighestintheaformen-tionedelectrodes,whichwasduetothesynergisticeffectofNiOandTiO2–Gr.
ResultsanddiscussionCharacteristics
TheSEMimageofGr(Fig.1a)revealsthetypicalcrumpledandwrinkledGrsheetstructure.TheintegrationbetweenTiO2andGrcanbevisualizedinFig.1b,inwhichTiO2nanoparticleswithsizeofca.20–30nmareuniformlyandcompactlyembeddedontheGrsubstrate.Figure1cshowsthatNiOnanoparticlesareelectrodepositedonTiO2–Gr.TheXRDpatternsofTiO2–GraregiveninFig.1d.ThepeaksinthisdiffractionpatternscorrespondtotheanatasephaseofTiO2(JCPDSfileno.21–1272),suggestingthecompleteformationofanataseTiO2duringthehydrother-malprocess.However,thediffractionpeaksofGrarenotdistinguishableinXRDpatternsofTiO2–Gr.Thisphenom-enahasalsobeenobservedinotherrelevantworks,anditcanbeascribedtothemuchlowercrystallineextentofGr
Fig.1SEMimagesofGR(a),TiO2–Gr(b),andNiO/TiO2–Gr(c);XRDpatternsofTiO2–Gr(d)
cd
Intensity / a.u.
2500200015001000
004
200105211
204
101
20
40
60
80
2θ/ degree
116220215
500
3750
20
10
A
0μ / I-10-20
-30
E / V
Fig.2CVsofGOD/GCE(a),GOD/NiO/GCE(b),GOD/TiOGr/GCE(d)in0.1MPBS(pH7.0)
2–Gr/GCE(c),andGOD/NiO/TiO2–Electrochemicalimpedancespectroscopy(EIS)wasreportedasaneffectivemethodtomonitorthefeatureofsurface,allowingtheunderstandingofchemicaltransformationandprocessesassociatedwiththecon-ductiveelectrodesurface.Figure3showstheNyquistplotsofEISforthebareGCE,TiO2–Gr/GCE,NiO/GCE,NiO/TiO2–Gr/GCE,andGOD/NiO/TiO2–Gr/GCE.AtbareGCE,theredoxprocessofthe[Fe(CN)6]3 /4 probeshowedaveryweakelectrontransferresistance(curvea).TheEISincreasedwhenTiO2–Grwasmod-ifiedontheGCE(curveb).TheEISofNiO/GECobviouslyincreasedcomparedtobothoftheaforemen-tionedelectrodes(curvec).TheNiO/TiO2–Gr-modifiedGCEshowedamuchlowerresistancefortheredoxprobe(curved),implyingthatNiO/TiO2–Grwasanexcellentelectricconductingmaterialandacceleratedtheelectrontransfer.AfterGODwascoatedonNiO/TiO2–Gr/GCE,theresistanceincreaseddramatically
Ω
/ ''ZZ' / Ω
Fig.3EISspectraofbareGCE(a),TiO2–Gr/GCE(b),NiO/GCE(c),NiO/TiO2–Gr/GCE(d),andGOD/NiO/TiO2–Gr/GCE(e)in5mMFe(CN)63 /4 solutioncontaining0.1MKCl
JSolidStateElectrochem(2012)16:3747–3752
(curvee),suggestingthatthebulkyGODmoleculesblockedtheelectronexchangebetweentheredoxprobeandelectrodesurface.Differentscanratestudies
ThecyclicvoltammogramsofGOD/NiO/TiO2–Gr/GCEinPBSatdifferentscanrateswerestudied.BothIpaandIpcincreasedlinearlywithincreaseinscanratesfrom20to300mVs 1.ThisindicatedthattheelectrontransferprocessoccurringatGOD/NiO/TiO2–Gr/GCEwasasurface-confinedprocess.EffectofpH
TheeffectofpHonGODredoxcoupleatNiO/TiO2–Gr/GCEinvariousbuffersolutions(pH5.0to10.0)wasinves-tigated.TheredoxpeakcurrentincreasedwithincreaseofpHfrom5to6andthenremainedalmoststableinthepHrangeof6to8.ThepeakcurrentdecreasedwhenpHincreasedfrom8to10.So,pH7.0wasselectedastheoptimum.TheinfluenceofpHovertheanodicpeakpoten-tial(Epa)andcathodicpeakpotential(Epc)atNiO/TiO2–Gr/GCEwasstudiedanditshowedthatbothEpaandEpcexhibitedlineardependenceoverdifferentpHs.Thecorre-lationcoefficientwas0.998and0.995,respectively.TheslopevaluesofEpaandEpcwerefoundtobe 50.3and 50.5mVpH 1,respectively.Theslopeswereclosetothetheoreticalvalueof 58.6mVpH 1forareversiblereaction,whichindicatedanequalnumberofprotonandelectrontransferprocesses.
Amperometricresponseoftheglucosebiosensor
Theamperometriccurrent–timecurveofGOD/NiO/TiO2–Gr/GCEuponsuccessiveadditionofglucosetoacontinu-ouslystirredPBS(pH7.0)wasrecorded(Fig.4).Thebiosensorexhibitedarapidresponsefortheadditionofglucoseandachieved96%ofthesteady-statecurrentwithin3s.TheinsetofFig.4picturedthecalibrationcurveofGOD/NiO/TiO2–Gr/GCEforglucosedeterminationanditsequationwasI(μA)02.503+4.129Cglucose(mM)withacorrelationcoefficientof0.995.Agoodlinearrelationshipwasfoundbetweenthechronoamperometriccurrentandglucoseconcentrationfrom1to12mM.Meanwhile,thedetectionlimitof1.2μMwasestimatedatasignal-to-noiseratioof3.ThesensitivityofGOD/NiO/TiO2–Gr/GCEbio-sensor(4.129μAmM 1)wassuperiorthanreportedforbiosensorsofglucose,1suchasGOD/Chit-MWCNTs(0.45μAmM )[22],GrEC/Chit-CNT/GOD(1.38μAmM 1)[23],CS/glutaraldehyde/GOD(1.8μAmM 1)[24],andGOD/Au/CS-IL/MWNT(4.10μAmM 1)[25].ThehighsensitivityforGOD/NiO/
JSolidStateElectrochem(2012)16:3747–37527060
50
A
40μ/ I3020100
Time / s
Fig.4TheamperometricresponseofGOD/NiO/TiO 0.3Vuponsuccessiveadditionsofglucose(1mM)2in–Gr/GCE0.1MpHat7.0PBS.Inset,plotofamperometriccurrentvs.glucoseconcentration
TiO2–Gr/GCEwasexpectedtooriginatepresentinfromthematrix.
thecombinedinfluenceofTiO2–GrandNiOAplateauincurrentresponsewasobservedforaglucoseconcentrationbeyond12mM.ThissignifiedtheoperationoftheMichaelis–Mentenkineticmechanismfortheenzyme-catalyzedprocess.TheapparentMichaelis–Mentenconstant(KM),aparameterofimportanceinenzyme–sub-stratekinetics,wasobtainedfromtheLineweaver–Burkequation[26]:1/Iss01/Imax+KM/ImaxC,whereIssisthesteady-statecurrentaftertheadditionofsubstrate,Cisthebulkconcentrationofsubstrate,andImaxisthemaximumcurrentmeasuredundersaturatedsubstratesolution.Analysisoftheslopeandinterceptfortheplotofthereciprocalofthesteady-statecurrentversusreciprocalofglucoseconcentra-tionallowsthedeterminationofKM.TheKMvaluefortheenzymeelectrodewasfoundtobe7.3mM.ThevalueofKMforGODatGOD/NiO/TiO2–Gr/GCEwaslowerincompar-isontootherglucosebiosensorsbasedonGOD-immobilizedPMMA-MWCNT(PDDA)-NFE(KM010.12mM)[27]andPrussianblue/MWCNTnanocomposites(KM018mM)[28].ThelowerKMvalueshowsabetteraffinitybetweenglucoseandenzymeelectrode.
Stability,repeatability,andinterferencedeterminationThestabilityoftheproposedbiosensorwasinvestigated.Whennotinuse,theelectrodewassuspendedabove0.1MPBSat4°C.Theresponseofthebiosensorto1.0mMglucosewastestedintermittently.Thebiosensorlostabout5.2%and10.3%ofitsoriginalresponseafter10and20days,respectively.Thebiosensoralsoshowedgoodreproducibilityforthedeterminationofglucoseconcentra-tioninitslinearrange.Therelativestandarddeviation(RSD)was1.9%forsixsuccessiveassaysataglucose
3751
concentrationof1.0mM.ThiscanbeduetothegoodbiocompatibilityofNiO/TiO2–Grcomposite,whichpro-videsafavorablemicroenvironmentforGOD.
Theabilityofthesensortodiscriminatetheinterfer-ingspecieshavingelectroactivitiessimilartothetargetanalyteisoneofthemostimportantanalyticalfactorsforanamperometricbiosensor.Easilyoxidizablecom-poundssuchasascorbicacid,dopamine,anduricacidnormallyco-existwithglucoseinnaturalsamples.Theinterferenceeffectof5.0mMl-cysteine,5.0mMglycin,2.0mMascorbicacid,2.0mMuricacid,and2.0mMdopamineontheamperometricresponseof1.0mMglucosewasinvestigated.Thecurrentresponseforsuchelectroactive-interferingspeciestothatofglucosebythesensorwasbelow5%.Therefore,goodselectivitycanbeobtainedwiththepreparedsensor.Samplesanalysis
Inanattempttoexplorethedevelopedsensorforpracticalapplications,GOD/NiO/TiO2–Gr/GCEwasappliedtodeter-mineglucoseinhumanbloodserumsamplesofhealthypeople.Arapidandstableamperometricresponsewasac-quiredat 0.3Vwiththedirect 1additionof20μLofsamplesinto20mLof0.1molLPBS.ThecontentofglucoseinthesampleswascalculatedfromthecalibrationcurveandtheobtainedresultsareshowninTable1.TherecoveryofglucosewasdeterminedbystandardadditionofpureglucosetothesolutionscontainingtheserumsamplesandthecorrespondingresultsaregiveninTable1.Onecanseethatthesensoralsogivesexactrecovery(96.3–103.4%).TheresultsdemonstratedhererevealthepotentialapplicationsofGOD/NiO/TiO2–Gr/GCEfordeterminationofglucoseinbiologicalfluids.
Conclusions
Theconstructionofanelectrochemicalbiosensorbymodi-ficationofaglassycarbonelectrodewithafilmcontainingTiO2–GrandNiOwasreported.TheGOD/NiO/TiO2–Gr/GCEbiosensorwaspreparedtodetectglucoseusingNiO/
Table1Determinationofglucoseinhumanserumsamples(n04)SampleConcentration(nM)
RSD(%)Added(nM)Recovery(%)
13.451.5598.222.682.5596.334.561.95102.544.283.45103.45
2.15
4.1
5
97.6
3752TiO2–GrnanocompositetoimmobilizeGODasamodelenzyme.TheevaluationofGOD/NiO/TiO2–Grnanocomposite–Gr/GCEhadadem-onstratedthatNiO/TiO2goodabilitytoretainthebioactivityofGOD.Cyclicvoltammetryshowedapairofwell-definedredoxpeaks,correspondingtothedirectelectrontransferofGOD.ThepresenceoftheredoxpeaksindicatedthattheNiO/TiO2–GrnanocompositefacilitatedthedirectelectrontransferofGOD.Themethodpresentedcanbeusedfortheimmobilizationandevaluationofthedirectelectrontransferofotherenzymesorproteins.
AcknowledgmentsThisworkwassupportedbytheNationalNatu-ralScienceFoundationofChina(20805040),ProgramforScienceandTechnologyInnovationTalentsinUniversitiesofHenanProvince(2010HASTIT025),andExcellentYouthFoundationofHe’nanScientificCommittee(104100510020).
References
1.BayachouM,BoutrosJA(2004)JAmChemSoc126:12722–12723
2.DengC,ChenJ,NieZ,SiS(2010)BiosensBioelectron26:213–2193.LiGX(2006)Protein-basedvoltammetricsensors.In:Encyclope-diaofsensors.AmSci8:301–313
4.LiGX(2007)Protein-basedbiosensorsusingnanomaterials.Nanotechnologiesforlifesciences.Wiley,NanomaterBiosens8:278–310
5.ZhangHJ,ToshimaN(2011)ApplCatalA400:9–13
6.WuH,WangJ,KangXH,WangCM,WangDH,LiuJ,AksayIA,LinYH(2009)Talanta80:403–406
7.WangCY,ChenSH,XiangY,LiWJ,ZhongX,CheX,LiJJ(2011)JMolCatalB69:1–7
8.CarnesCL,KlabundeKJ(2003)JMolCatalA194:227–236
JSolidStateElectrochem(2012)16:3747–3752
9.IchiyanagiY,WakabayashiN,YamazakiJ,YamadaS,KimishimaY,KomatsuE,TajimaH(2003)PhysicaB862:329–333
10.SalimiA,SharifiE,NoorbakhashA,SoltanianS(2007)Biophys
Chem125:540–548
11.SalimiA,SharifiE,NoorbakhashA,SoltanianS(2007)Biosens
Bioelectron22:3146–3153
12.GuoSJ,WenD,ZhaiY,DongSJ,WangEK(2010)ACSNano
4:3959–3968
13.ZhouM,ZhaiYM,DongSJ(2009)AnalChem81:5603–561314.ZhaoJ,ChenGF,ZhuL,LiGX(2011)ElectrochemCommun
13:31–33
15.ZhouH,GanX,WangJn,ZhuXL,LiGX(2005)AnalChem
77:6102–6104
16.ZhouH,LiuL,YinK,LiuSL,LiGX(2006)ElectrochemComm
8:1168–1172
17.FanY,LuHT,LiuJH,YangCP,JingQS,ZhangYX,YangXK,
HuangKJ(2011)ColloidsSurfB83:78–82
18.FanY,HuangKJ,NiuDJ,YangCP,QingJS(2011)Electrochim
Acta56:4685–4690
19.SunJY,HuangKJ,ZhaoSF,FanY,WuZW(2011)Biochem
82:125–130
20.KovtyukhovaNI,OllivierPJ,MartinBR,MalloukTE,Chizhik
SA,BuzanevaEV,GorchinskiyAD(1999)ChemMater11:771–778
21.ZhangH,LvX,LiY,WangY,LiJ(2010)ACSNano4:380–38622.WuBY,HouSH,YuM,QinX,LiS,ChenQ(2009)MaterSci
EngC29:346–349
23.GhicaME,PauliukaiteR,FilhoOF,BrettCMA(2009)Sens
ActuatorsB142:308–315
24.LiangRP,FanLX,WangR,QiuJD(2009)Electroanalysis
21:1685–1691
25.RagupathyD,GopalanAI,LeeKP(2009)ElectrochemCommun
11:397–401
26.LiJ,TanSN,GeH(1996)AnalChimActa335:137–145
27.ManeshKM,KimHT,SanthoshP,GopalanAI,LeeKP(2008)
BiosensBioelectron23:771–779
28.ZhuL,ZhaiJ,GuoY,TianC,YangR(2006)Electroanalysis
18:1842–1846
正在阅读:
Simultaneous determination of catechol and hydroquinone by carbon paste electrode modified05-28
九年级化学下册第八单元金属和金属材料复习教案(新版)新人教版.doc05-02
内控指引17之制度详解 - 内部信息传递09-17
历年《社会工作综合能力(初级)》练习题含答案(第十三篇)(四川省)11-24
鉴赏诗歌的题目教案05-10
最伤感的生日的相关文章推荐02-14
高考地理 精准复习综合过关规范限时检测1 必修 - 209-17
德化县姓氏志05-26
- 1carbon杂志最新的Checklist-20150216
- 2Ndoped carbon nanomaterials are durable catalysts for oxygen
- 3Prediction of methane and carbon dioxide solubility in water
- 4Honeycomb Carbon A Review of Graphene 石墨烯综述
- 5Liquid-phase microextraction–gas chromatography–mass spectrometry for the determination
- 6Water soluble carbon nanoparticles Hydrothermal synthesis and excellent photoluminescence properties
- 7Liquid-phase microextraction–gas chromatography–mass spectrometry for the determination
- 806-AM-Structure-Dependent Electrical Properties of Carbon Nanotube
- 9碳捕捉(Carbon capture and storage,简称CCS)
- 10Honeycomb Carbon A Review of Graphene 石墨烯综述
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- determination
- Simultaneous
- hydroquinone
- electrode
- catechol
- modified
- carbon
- paste
- 员工行为规范通知
- 公民享有的政治自由有哪些 公民依法享有政治自由教案下载(二)
- C语言程序设计江宝钏著清华大学出版社第6章参考答案
- 控制及信息协议(CIP)
- 农业银行2015年考试真题
- 河南省生产安全考核统一试题
- 《电线电缆》2007年第1~6期总目次
- ISO9000品质管理系统 要求简报
- 幼儿园学前班下学期班务计划正式样本
- 城市饮用水源地评价方法初步分析
- 三化(硬化道路、亮化、绿化)施工组织设计
- 2001年6月大学英语四级考试试题听力原文和参考答案
- 机械工程系大学生辩论赛策划书(修改版)
- 《红水河》杂志2007年征订启事
- 医学科研基本原理与方法
- 高二数学导数的习题课
- 2015年世界大学排名前一百
- 城乡结合部土地利用研究
- 2012高考英语二轮专题演练:阅读理解【03】
- 联通ZXV10 H108L家庭网关配置说明