Comments on AdS2 solutions of D=11 Supergravity
更新时间:2023-08-20 00:44:01 阅读量: 高等教育 文档下载
- comments推荐度:
- 相关推荐
We study the supersymmetric solutions of 11-dimensional supergravity with a factor of $AdS_2$ made of M2-branes. Such solutions can provide gravity duals of superconformal quantum mechanics, or through double Wick rotation, the generic bubbling geometry of
PreprinttypesetinJHEPstyle-HYPERVERSION
arXiv:hep-th/0607093v2 15 Jul 2006NakwooKimandJong-DaeParkDepartmentofPhysicsandResearchInstituteofBasicScience,KyungHeeUniversity,Seoul130-701,KoreaE-mail:,Abstract:Westudythesupersymmetricsolutionsof11-dimensionalsupergravitywithafactorofAdS2madeofM2-branes.Suchsolutionscanprovidegravitydualsofsuperconfor-malquantummechanics,orthroughdoubleWickrotation,thegenericbubblinggeometryofM-theorywhichare1/16-BPS.Weshowthat,whentheinternalmanifoldiscompact,itshouldtaketheformofawarpedU(1)- brationoveran8-dimensionalK¨ahlerspace.Keywords:
We study the supersymmetric solutions of 11-dimensional supergravity with a factor of $AdS_2$ made of M2-branes. Such solutions can provide gravity duals of superconformal quantum mechanics, or through double Wick rotation, the generic bubbling geometry of
1.Introduction
Itisoneofthemostintriguingissuesinstringtheorytoprove/disprovetheso-calledMaldacenaconjecturebetweenanti-de-Sittergravityandconformal eldtheories
[1].Alotofremarkableagreementshavebeenencounteredsofar,soitwouldbemoreappropriatetosayonewouldliketodeterminetheregionofvalidityaspreciseaspossible.
ThisinevitablyleadsustothestudyoflesssupersymmetricsolutionsofString/M-theory.Thespectrumofsupersymmetricsolutionsisrichenoughtoprovideexampleswithrealisticfeaturessuchascon nementandasymptoticfreedom(see[2]forexample),andyetthankstothepowerofsupersymmetrywecanperformexplicitchecksusingprotectedquantities.
InthispaperwewillemployatechniquewhichisfoundtobeverypowerfulandatthesametimeilluminatinginthesearchfornewsupersymmetricbackgroundsofString/M-theory.BasedontheexistenceofKillingspinors,onecanconstructvariousdi erentialformsasspinorbilinearsanddeterminethelocalformofthemetricandthegauge eldsexploitingthedi erentialandalgebraicrelationsbetweenthedi erentialformswhichcanbederivedusingtheKillingspinorequations.AsampleofworkswhichmakeuseofthistechniquecanbefoundinRef.[3].
Inthispaper,asasequeltothepreviousone[4],weanalyzetheconsequencesofsu-persymmetryin11-dimensionalsupergravity,combinedwiththeansatzofAdS2factor,i.e.SO(2,1)isometry.Inparticular,forsimplicity,weconsiderpureM2-branecon gurations.AconvenientwayofseeingthemisasM2-braneswrappedontwo-cyclesinaCalabi-Yau5-fold,andthereadersarereferredto[5]forstudiesalongalternativeavenuesonsimilarcon gurations.Inthepresentwork,itwillbeshownthat,the9-dimensionalinternalmani-foldshouldtaketheformofawarpedU(1)- brationonaK¨ahlerbase.Wealsowritedownthe8-dimensionalnonlinearpartialdi erentialequationforthecurvaturetensor,whichisrequiredifthesupersymmetriccon gurationistosolvetheequationsofmotion.
We study the supersymmetric solutions of 11-dimensional supergravity with a factor of $AdS_2$ made of M2-branes. Such solutions can provide gravity duals of superconformal quantum mechanics, or through double Wick rotation, the generic bubbling geometry of
Thispaperisorganisedasfollows.InSection2,wesetuptheproblemandderivethe9-dimensionalKillingequationsfromthe11-dimensionalone.InSection3,weconsiderthespinorbilinearsandtheirderivativesto xthelocalformofthemetric.InSection4weillustratethatthewell-knownsolutionswhichhaveAdS2factorscanbeindeedcastintheformaswehavepresentedinthispaper.InSection5weconcludewithcommentsanddiscussionsonfurtherworks.
2.Ansatz
InthisarticleweconsidersupersymmetricsolutionsofD=11supergravity,whoseLa-grangiandensityinthebosonicsectorisgivenasfollows,
L=R 1 1
6C∧G∧G,(2.1)
whereCisthe3-formpotentialandG=dC.
Byde nition,supersymmetricbackgroundsallownontrivialsolutionstotheKillingspinorequationwhichisobtainedbysettingthesupersymmetrytransformationtozero.ForD=11supergravity,wethushave,forpurelybosonicbackgrounds,
δψM= M +1
We study the supersymmetric solutions of 11-dimensional supergravity with a factor of $AdS_2$ made of M2-branes. Such solutions can provide gravity duals of superconformal quantum mechanics, or through double Wick rotation, the generic bubbling geometry of
Wenowneedtointroducethebasisforthegammamatriceswhichisconvenientforthedimensionaldecompositionwehavechosentoconsider.Withtangentspaceindices,theyare
Γµ=γµ 1,
Γa=γ3 γa,µ=0,1,a=2,···,10,(2.6)(2.7)
whereγµ’sarethe2dimensionalgammamatrices,whileγa’sdenote9dimensionalones.Forsimplicitywetakethebasiswhereallγµandγaarereal,andofcourseΓM’sarealsorealmatrices.
AstheansatzfortheKillingspinor ,weassumeits2dimensionalpartsatis es
¯µε=a
γµγ3ε,butin2dimensionsthisjustcorrespondstotheparity
inversionsoforde nitenesswechooseEq.(2.8).
We
canthentakethe11dimensionalspinor =ε η+c.c.,whereηisa9dimensionalspinor.
Combiningtheingredientsgivenabove,itisstraightforwardtoderivethe9dimensionalKillingspinorequations,whichcanbepresentedasfollows.2
1aie Aη+/ Aη
bcb 2A(2.10)γaFbc 4Fabγη=0.e24
Inthefollowingwewillanalyzehowtheaboveequationsrestrictthelocalformofthe9-dimensionalinternalmetric.
3.Spinorbilinearsandtheconsequencesofsupersymmetry
Wenowconsiderthevariousspinorbilinearsmadeoutofη,andexploittheKillingspinorequationsto ndthelocalformofthemetric.Wecanconsiderthereal-valueddi erentialformssuchas
f=η η,
K=η γaηdxa,
aiY=(3.1)(3.2)
3
= aAη η,e 2AFacη γcη(3.4)(3.5)
implyingthatonecansetη η=eA.Weproceedinthesamewayand ndthat aKb+ bKa=0,i.e.Kde nesaKillingvectorintheinternalspace,and
d(eAK)=F+Y.(3.6)
We study the supersymmetric solutions of 11-dimensional supergravity with a factor of $AdS_2$ made of M2-branes. Such solutions can provide gravity duals of superconformal quantum mechanics, or through double Wick rotation, the generic bubbling geometry of
Forthetwo-formY,wegetsimply
dY=0.(3.7)
NowwecanchoosethecoordinatesystemwhereK= ψandthemetricoftheinternalspaceis
ds2=e2φ(dψ+B)2+gijdyidyji,j=1,2,···,8.(3.8)
φ,Barerespectivelyascalarandavector eldde nedonthe8dimensionalspaceM8withcoordinatesyi.
Nowweclaimthat,whenthe9dimensionalinternalspaceiscompact,ηisachiralspinoronM,andasaresultφ=A.WewillneedtomakeuseofthefollowingidentitieswhichholdforanarbitraryDiracspinorηin9-dimensions.
(ηTη)2=(ηTγaη)2,
|ηTη| |ηTγaη|2=2(η γaη)2 2(η η)2,(3.9)(3.10)
whosederivationcanbefoundinRef.[6].WeconsiderthespinorbilinearηTη,whichiscomplex-valued.FromtheKillingequa-tionsweget
a(e AηTη)=aie 2AηTγaη.(3.11)
ForD=e AηTη,wethushave( aD)2= e 4A(ηTγaη)2= e 2AD2.Onecanalsoshowthat,fromtheKillingequationsEq.(2.9)andEq.(2.10),
2(e AηTη)=ai a(e 2AηTγaη)
= 2e 3AηTη,(3.12)
i.e. 2D+2e 2AD=0.Fromtheserelations,itiseasytoseethat 2(D 1)=0providedDisnotzero.Iftheinternalspaceiscompact,thisispossibleonlyifDisconstant,butitmeansD=0,sowehaveacontradiction.WethusconcludeηTη=ηTγaη=0,andfromEq.(3.10)ηischiralonM8andwehaveK2=e2φ=e2A.
Obviouslytheaboveargumentrequirestheinternalspaceshouldbecompact,andAshouldnotshowasingularbehavior.Butinthenextsectionwewillshowthat,fortheimportantclassofsolutionssuchasAdS4×SE7andthebubblinggeometryofRef.[7],eventhoughtheinternalmanifoldsarenotcompact,thesolutionscanberewritteninthemannerwewillconcludeinthissection.Weguessthatitmightbepossibletoimproveourproofforthechiralityofη,withoutassumingcompactinternalspace.
Nowthatηischiral,Yisaclosedtwo-forminM8,whichcanbeusedtode neanalmostcomplexstructure.Inordertoseewhetherthiscomplexstructureisintegrableornot,oneneedstochecktheexteriorderivativeofthecomplex-valued(4,0)-form ,de nedas
abcd=ηTγabcdη.(3.13)
Thechiralityofηagainrestricts tobeafour-formonM8,andasusualwithSU(n)-structures,J, satisfy
VolM8=e 4A16¯, ∧ J∧ =0.(3.14)
We study the supersymmetric solutions of 11-dimensional supergravity with a factor of $AdS_2$ made of M2-branes. Such solutions can provide gravity duals of superconformal quantum mechanics, or through double Wick rotation, the generic bubbling geometry of
UsingtheKillingequationsoneobtains
d(eA )= aie AK∧ .(3.15)
Forω≡eAe iaψ andusingK=e2A(dψ+B),wehave
dω= aiB∧ω,(3.16)
whichisan8dimensionalequationonM8.FromthegeneralresultofSU(n)-structuresandtheclassi cationoftorsionclasses,wearriveattheconclusionthatthecomplexstructuregivenbyYisintegrableanddB=RistheRicciformoftheK¨ahlermanifoldM8.ConsideringY2~(η η)2~e2Aandω2~e2A|ηTη|2~e4Awhenevaluatedusingthemetricg,itistherescaledmetricg¯ij=eAgijwhichisK¨ahler.
OnecanrephraseEq.(3.6)toget
F=F¯+3eAdA∧K,(3.17)
e3AR=F¯+Y,(3.18)
whereF¯isthetwo-form eldFrestrictedtoM8.NowifwecontractEq.(2.9)withη ,wehaveF¯ijYij= 6e 2A.WethushavetheexpressionforthescalarcurvatureRofM8whoseK¨ahlermetricisgivenasg¯,
R=2e 3A.(3.19)
Considerationofotherspinorbilinearsdoesnotgenerateindependentequations,butweneedtoimposetheBianchiidentityandtheequationofmotionforF,toguaranteethatthesupersymmetriccon gurationreallysatis esalltheequationsofmotion[10].ItturnsoutthatdF=0isaconsequenceofsupersymmetry,ascanbeeasilyseenfromEq.(3.6)andEq.(3.7).UsingtheequationofmotionforF, a(e 2AFab)=0,andEq.(3.4),onecanderivethefollowingequationforthescalarcurvatureofM8.
R 1
We study the supersymmetric solutions of 11-dimensional supergravity with a factor of $AdS_2$ made of M2-branes. Such solutions can provide gravity duals of superconformal quantum mechanics, or through double Wick rotation, the generic bubbling geometry of
isawell-knownexample,whichisgivenasthenear-horizonlimitofthreeM2-branesintersectingoverapoint.Assuch,thepreservedsupersymmetryisinfact1/4forthissolution.
WenextconsiderAdS4×SE7solutionswhereSE7isa7dimensionalSasaki-Einsteinmanifold.Theycanbeconsideredasthenear-horizonlimitofM2-branesolutionswhenputonasingularityofCalabi-Yau4-folds.Assuch,ingeneralthesesolutionsare1/8-BPS.
Itiswellknownthatincanonicalform,anySasaki-EinsteinmanifoldscanbewrittenasaU(1)- brationoveraK¨ahler-Einsteinmanifold.ForSE7,usingthestandardconvention,
σds2=(dα+
=
=4112ds2AdS4+dsSE7
coshρ 4coshρ4cosh2ρdφ+2+ds2
KE6)+ 4dα +σ/4 2+ds2KE6sinh2ρ4 2 ,(4.2)
whereweputα→α +φ/2.
ComparedtothegeneralformofthesolutiongiveninEq.(3.21),evidentlyweexpectthatthe8-dimensionalmetric 2coshρsinh2ρ22ds=(4.3)+dsKE6+44
shouldbeK¨ahler,andtheRicci-formisgivenas dα +σ/4R=d2
,(4.5)cosh3ρ
and nally,Eq.(3.20)shouldbesatis ed.
Inordertocheckthis,itismoste cienttoconstructthealmostK¨ahlerformJandthe(4,0)-form ,andcomputetheirexteriorderivatives.AreasonableguessforJis
coshρ1+J=4
8 σcoshρdρ+2isinhρdα +
We study the supersymmetric solutions of 11-dimensional supergravity with a factor of $AdS_2$ made of M2-branes. Such solutions can provide gravity duals of superconformal quantum mechanics, or through double Wick rotation, the generic bubbling geometry of
Onecanalsocheckthat,asrequiredbyEq.(4.4),
d =2i
4)∧ .(4.8)
AndEq.(3.20)isindeedsatis ed.
Thenextexampleisthe1/2-BPSbubblinggeometryofM-theorygiantgravitonsobtainedin[7].Thisclassofsolutionsdescribegeneric1/2-BPSoperatorsofM2-braneorM5-braneconformal eldtheories.Fromsuperalgebraarguments,suchcon gurationsshouldpossessSO(3)×SO(6)symmetry,whicharerealizedasaS2×S5factorinthemetric.S2canbetreatedasaWick-rotatedAdS2to tintoourresult.AnothercommentinorderisthatnowthecanonicalKillingvectormadeoutoftheKillingspinorbecomestime-like,sooursolutionscandescribemagnetic,orM5-branes,aswellaselectricorM2-branecon gurations.Thesolutionsaresummarizedasfollows.
ds2
11= 4e2λ(1+y2e 6λ)(dt+Vidxi)24λ
+e
y(1 y yD)
Vi=1
2 3[d( yD)+( yD)2dy]
F=dBt∧(dt+V)+BtdV+dB
Bt= 4y3e 6λ
dB =2 3[(y 2
yD+y( yD)2 yD)dy+y i yDdxi]
=2 3[y2( y1
3)2+ds2
KE4]
4e2λ(1+y2e 6λ)(dt+V)2
e 4λ
+
We study the supersymmetric solutions of 11-dimensional supergravity with a factor of $AdS_2$ made of M2-branes. Such solutions can provide gravity duals of superconformal quantum mechanics, or through double Wick rotation, the generic bubbling geometry of
Ifwede neα=α +t,thenthemetriccanberewrittenas
ds2
11=ye
+
42 4λe6λ22 4λ d 2 4ye[dt y(1+y2e 6λ)(dα +σ3 (1+y2e 6λ)V)]24ye 6λ
4 y(eD)dx1∧dx2+1
3 V)+yJKE4,(4.13)
whereJKE4istheK¨ahlerformofKE4.OnecaneasilyshowthatJisclosed,andforthe(4,0)-formgivenas
σD/2 yDdy+2i(dα + =4ye
y2(dα +σ
y2V∧ .(4.15)
5.Discussions
InthisworkwehavestudiedsupersymmetricM2-branecon gurationswhichhaveafactorofAdS2.Theycanbeinterpretedasthenear-horizonlimitofM2-branes,whoseworldvol-umeiswrappedona2-cycleinaCalabi-Yau5-fold.Ingeneral,theyarethus1/16-BPS.Itturnsoutthattheinternal9-dimensionalmanifoldshouldtakeaformofU(1)- brationwhosebasemanifoldisgivenbyaK¨ahlermanifold.ThereisarestrictionontheK¨ahlerbaseimposedbysupersymmetry:wehavefoundaLaplace-likeequationforthescalarcurvatureandRiccitensor,asgiveninEq.(3.20).Theresultpresentedinthisarticleisamusinglyverysimilartotheresultof[4],wherepureD3-branecon gurationswithAdS3arestudied.Inthatcase,theinternalmanifoldis7-dimensional,whichagaintakestheformofwarpedU(1)- brationona6-dimensionalK¨ahlermanifold.TheK¨ahlerbasecannotbearbitrary,ithastosatisfyanonlinearpartialdi erentialequationforthecurvature.
Itiscertainlyofgreatinterestto ndnewAdSsolutions,bydirectlytryingtosolveEq.(3.20).Infact,recentlyanewclassofAdS3solutionsinIIBsupergravityhasbeenpresented[8].Theauthors rststudiedAdS3solutionsof11-dimensionalsupergravity,andthen,throughT-dualityoperations,obtainedAdS3solutionsofIIBsupergravity,whereonlythe ve-form uxesareturnedon.ThisisofcourseverysimilartothediscoveryofthecelebratedSasaki-EinsteinsolutionsYp,qaspartofAdS5solutionsinIIBsupergravity
[9].Inparticular,itwasarguedthatthenewsolutionscanbeindeedwrittenintheform
We study the supersymmetric solutions of 11-dimensional supergravity with a factor of $AdS_2$ made of M2-branes. Such solutions can provide gravity duals of superconformal quantum mechanics, or through double Wick rotation, the generic bubbling geometry of
aspresentedin[4].Therelevant6-dimensionalK¨ahlermanifoldtakesaformofS2-bundleovera4-dimensionalK¨ahler-Einsteinmanifold.Itwillbeveryinterestingtointroducesuchaconcreteansatz,andsolveEq.(3.20).Weexpect,asisthecasewithYp,q,themetricoftheK¨ahlerbasemightbeingeneralnotcomplete,buttheentire9-dimensionalinternalmanifoldcanbemadecomplete.Weplantopresentthenewsolutionsandtheglobalanalysisinafuturepublication.
Anotherinterestingdirectionistointerpretoursolutionsasgeneralizedbubblingge-ometry.ForthecaseofAdS5×S5solutionsinIIBsupergravity,the1/2-BPSbubblingsolutionsgivenin[7]canbedescribedintermsofadistributionfunctioninthephasespaceof1-dimensionalfreefermions.ForM-theory,determiningthesolutionsisinsteadreducedtosolvingaTodaequationin3-dimensions,andwebelievethedynamicsof1/2-BPSop-eratorsmustbeencodedtherein.Thesupergravitysolutionsdualtolesssupersymmetricgiantgravitonoperatorsareconsideredfor1/8-BPSinRef.[4]andfor1/4-BPSinRef.[11].Theybothconcludethatthe10dimensionalsolutionisbasedonaK¨ahlerspacewhichis6and4-dimensional,respectively.Naturallyoneexpectstheyoriginatefromthesymplecticstructureoftheeigenvaluedynamics.Likewise,Eq.(3.20)canbeinterpretedastheequa-tiongoverningthedynamicsofgenericsupersymmetricoperatorsofM-branesconformal eldtheory.Oneimportantfeaturewehavebeenignoringinthispaperistheglobalprop-ertyandtheboundaryconditionsofthesolutions.Sinceouranalysisisgeneralenoughtoencompassthe1/2-BPS uctuationsoflesssupersymmetricconformal eldtheoriesonM-branes,aswellaslesssupersymmetric uctuationsofmaximalconformal eldtheoriesonM-branes,wewill rstneedto xtheboundaryconditionaccordingtotheconformal eldtheoryweareinterestedin,andthensolveEq.(3.20)to ndgravitydualstoBPSoperators.
Acknowledgments
WearegratefultoHo-UngYeeandSang-HeonYifordiscussions.TheresearchofNakwooKimissupportedbytheScienceResearchCenterProgramoftheKoreaScienceandEn-gineeringFoundation(KOSEF)throughtheCenterforQuantumSpacetime(CQUeST)ofSogangUniversitywithgrantnumberR11-2005-021,andbytheBasicResearchProgramofKOSEFwithgrantNo.R01-2004-000-10651-0.NakwooKimandJong-DaeParkarebothsupportedbytheKoreaResearchFoundationGrantKRF-2003-070-C00011.References
[1]J.M.Maldacena,ThelargeNlimitofsuperconformal eldtheoriesandsupergravity,Adv.Theor.Math.Phys.2(1998)231[Int.J.Theor.Phys.38(1999)1113]
[arXiv:hep-th/9711200].
S.S.Gubser,I.R.KlebanovandA.M.Polyakov,Gaugetheorycorrelatorsfromnon-criticalstringtheory,Phys.Lett.B428(1998)105[arXiv:hep-th/9802109].
E.Witten,Anti-deSitterspaceandholography,Adv.Theor.Math.Phys.2(1998)253
[arXiv:hep-th/9802150].
We study the supersymmetric solutions of 11-dimensional supergravity with a factor of $AdS_2$ made of M2-branes. Such solutions can provide gravity duals of superconformal quantum mechanics, or through double Wick rotation, the generic bubbling geometry of
O.Aharony,S.S.Gubser,J.M.Maldacena,H.OoguriandY.Oz,LargeN eldtheories,stringtheoryandgravity,Phys.Rept.323(2000)183[arXiv:hep-th/9905111].
[2]I.R.KlebanovandM.J.Strassler,Supergravityandacon ninggaugetheory:Duality
cascadesandχSB-resolutionofnakedsingularities,JHEP0008,052(2000)
[arXiv:hep-th/0007191].
J.M.MaldacenaandC.Nunez,TowardsthelargeNlimitofpureN=1superYangMills,Phys.Rev.Lett.86,588(2001)[arXiv:hep-th/0008001].
[3]K.Tod,AllMetricsAdmittingSupercovariantlyConstantSpinors,Phys.Lett.B121(1983)
241.
J.P.Gauntlett,J.B.Gutowski,C.M.Hull,S.PakisandH.S.Reall,Allsupersymmetricsolutionsofminimalsupergravityin vedimensions,Class.Quant.Grav.20(2003)4587
[arXiv:hep-th/0209114].
J.P.GauntlettandJ.B.Gutowski,Allsupersymmetricsolutionsofminimalgauged
supergravityin vedimensions,Phys.Rev.D68,105009(2003)[Erratum-ibid.D70,089901(2004)][arXiv:hep-th/0304064].
D.MartelliandJ.Sparks,G-structures, uxesandcalibrationsinM-theory,Phys.Rev.D68(2003)085014[arXiv:hep-th/0306225].
J.B.Gutowski,D.MartelliandH.S.Reall,Allsupersymmetricsolutionsofminimal
supergravityinsixdimensions,Class.Quant.Grav.20,5049(2003)[arXiv:hep-th/0306235].M.M.CaldarelliandD.Klemm,AllsupersymmetricsolutionsofN=2,D=4gaugedsupergravity,JHEP0309(2003)019[arXiv:hep-th/0307022].
U.Gran,J.GutowskiandG.Papadopoulos,ThespinorialgeometryofsupersymmetricIIBbackgrounds,Class.Quant.Grav.22,2453(2005)[arXiv:hep-th/0501177].
J.B.GutowskiandW.Sabra,Generalsupersymmetricsolutionsof ve-dimensional
supergravity,JHEP0510(2005)039[arXiv:hep-th/0505185].
U.Gran,J.Gutowski,G.PapadopoulosandD.Roest,SystematicsOfIIBSpinorial
Geometry,Class.Quant.Grav.23,1617(2006)[arXiv:hep-th/0507087].
[4]N.Kim,AdS3solutionsofIIBsupergravityfromD3-branes.JHEP0601(2006)094,
[hep-th/0511029]
[5]J.P.Gauntlett,N.Kim,S.PakisandD.Waldram,Membraneswrappedonholomorphic
curves,Phys.Rev.D65(2002)026003[arXiv:hep-th/0105250].
T.Z.Husain,M2-braneswrappedonholomorphiccurves,JHEP0312,037(2003)
[arXiv:hep-th/0211030].
[6]N.Kim,Sasaki-Einsteinmanifoldsandtheirspinorialgeometry,J.KoreanPhys.Soc.48
(2006)197.
[7]H.Lin,O.LuninandJ.Maldacena,BubblingAdSspaceand1/2BPSgeometries,JHEP
0410(2004)025[arXiv:hep-th/0409174].
[8]J.P.Gauntlett,O.A.P.MacConamhna,T.MateosandD.Waldram,Supersymmetric
AdS(3)solutionsoftypeIIBsupergravity,arXiv:hep-th/0606221.
[9]J.P.Gauntlett,D.Martelli,J.SparksandD.Waldram,SupersymmetricAdS(5)solutions
ofM-theory,Class.Quant.Grav.21(2004)4335[arXiv:hep-th/0402153].
J.P.Gauntlett,D.Martelli,J.SparksandD.Waldram,Sasaki-EinsteinmetricsonS(2)xS(3),Adv.Theor.Math.Phys.8(2004)711[arXiv:hep-th/0403002].
We study the supersymmetric solutions of 11-dimensional supergravity with a factor of $AdS_2$ made of M2-branes. Such solutions can provide gravity duals of superconformal quantum mechanics, or through double Wick rotation, the generic bubbling geometry of
[10]J.P.GauntlettandS.Pakis,ThegeometryofD=11Killingspinors,JHEP0304(2003)
039[arXiv:hep-th/0212008].
J.P.Gauntlett,J.B.GutowskiandS.Pakis,ThegeometryofD=11nullKillingspinors,JHEP0312,049(2003)[arXiv:hep-th/0311112].
[11]A.Donos,ADescriptionOf1/4BpsCon gurationsInMinimalTypeIIBSUGRA,
arXiv:hep-th/0606199.
正在阅读:
Comments on AdS2 solutions of D=11 Supergravity08-20
中国银河β趋势控制策略日报05-30
营养性维生素D缺乏性佝偻病案例12-06
每天15分钟冥想改善你的睡眠03-13
人教版三年级下册品德与社会期末考试卷105-12
天津东丽区教育系统公务交通费报销细则01-14
催化裂化事故分析与预防 - 图文04-19
苏教版一下语文复习备课05-12
感恩父母作文500字04-01
无线覆盖设计方案 - 图文12-25
- 2012诗歌鉴赏讲座 师大附中张海波
- 2012-2013学年江苏省苏州市五市三区高三(上)期中数学模拟试卷(一)
- 市政基础设施工程竣工验收资料
- 小方坯连铸机专用超越离合器(引锭杆存放用)
- 荀子的学术性质之我见
- 氩弧焊管轧纹生产线操作说明
- 小学科学六年级上册教案
- (商务)英语专业大全
- 外汇储备的快速增长对我国经济发展的影响
- 幼儿园中班优秀语言教案《小猴的出租车》
- 第七章 仪表与显示系统
- 身份证号码前6位行政区划与籍贯对应表
- 单位(子单位)工程验收通知书
- 浅谈地铁工程施工的项目成本管理
- 沉积学知识点整理
- 前期物业管理中物业服务企业的法律地位
- 2014微量养分营养试卷
- 地质专业校内实习报告范文(通用版)
- 内部审计视角下我国高校教育经费支出绩效审计研究
- 高次插值龙格现象并作图数值分析实验1
- Supergravity
- solutions
- Comments
- AdS2
- 11