第四单元 分数的意义和性质

更新时间:2024-05-10 20:42:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第四单元 分数的意义和性质

第一课时 分数的意义

教学内容:

教科书第52例1和“练一练”,练习八的第1-4题。 教学目标:

知识与技能:使学生初步理解单位“1”和分数单位的含义,经历分数意义的抽象概括过程,进一步理解分数的意义。

过程与方法:使学生在建构分数意义的过程中,进一步培养分析、综合、抽象、概括的能力,发展数学思考。

情感态度价值观:使学生在解释实际情境中分数所表示的意义等活动中,进一步体会分数的应用价值,感受分数与生活的联系、增强学习数学的兴趣。

教学重点、难点:

重点:分数的意义,单位“1”的概念。 难点:单位“1”的概念。 教学准备:教学光碟 教学过程: 一、揭题

谈话:在三年级,我们曾经初步认识了分数。今天这节课,我们要进一步来认识分数。(板书课题:分数的意义)

二、新课

1、教学例1。

(1)教学单位“1”的含义。 出示例1中的四组图形。

提出要求:先来可看这几幅图形,请大家根据每幅图的意思,用分数表示各图中的涂色部分。写出分数后再想一想,每个分数各表示什么含义?

学生汇报所填写的分数,提问:这些图形分别是把什么平均分的?平均分成了几份?图下面的分数表示这样的几份?

学生回答后,进一步引导比较:最后一幅图和前面三幅图有什么不同? 说明:一个饼可以称为一个物体,一个长方形是一个图形,“1米”是一个计量单位,最后一幅图是把6个圆看作一个整体。一个物体、一个图形、一个计量单位或有许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫作单位“1”。

追问:在这几个图形中,分别是把什么看作单位“1”的?上面的分数分别是把单位“1”平均分成几份?表示这样的几份?

(2)概括分数的意义,揭示分数单位的含义。

组织讨论:这三个分数的含义有什么共同的地方?从这几个例子来看,什么样的数叫作分数?

在学生讨论交流的基础上,教师概括:把单位“1”平均分成若干份,表示这样一份或几份的数,叫作分数。

进一步指出:表示其中一份的数,叫作分数单位。

提问:上面每个分数的分数单位各是多少?各有几个这样的分数单位?在小组内互相说一说。

2、指导完成“练一练”。 (1)做第1题。

先让学生按要求各自填一填、说一说,再组织全班交流。学生汇报所填分数时,要让他们说清楚是把什么看作单位“1”?平均分成了几份?分数表示的是这样的几份?

(2)做第2题。 告诉学生:在直线上通常用0~1之间的线段表示单位“1”,也可以用1~2、2~3??之间的线段表示单位“1”。

提问:图中0~1之间被平均分成了几份?你能用分数表示其中的一份或几份吗?

学生填写后,追问:表示1/3的点还可以表示几分之几?表示4/6的点呢?

三、练习

1、练习八第1题。先让学生在每个图中涂色表示2/3,再引导他们说说是怎样涂的、怎样想的?提问:同样是2/3,为什么被涂色桃的个数不同?

2、练习八第2题。

先让学生在小组内读一读,再指名读一读,并要求说出每个分数的分数单位。

提问:每个分数的分数单位和分母有什么关系?

指出:分数单位是随着单位”1”被平均分成的份数而变化的,也就是随着分母的变化而变化的,分母是几,分数单位就是几分之一。

3、练习八第3题。

学生按要求各自填写后,强调:任何一个分数都是由一个或几个分数单位组成的。

4、练习八第4题。

先让学生说说第一小题中是把哪个数量看成单位“1”,平均分成多少份,会打乒乓球的学生有这样的几份。再让他们试着说说后两题每个分数的意义。

根据学生的回答进一步追问:2/3小时就是多长时间的2/3?既然2/3小时就是1小时的2/3,那么这里应该把哪个数量看作单位“1”? 想一想,1小时的2/3是多少分钟?

四、全课小结

这节课学习了哪些内容?通过学习,你有哪些收获?你还有什么不清楚的问题?

教学反思:

《分数的意义》这一课是苏教版数学五年级下册的教学内容,在此之前,学生在三年级已经对分数进行了初步的认识,但是,没有进行系统的理论性的认识。本节课正是在学生已有的知识经验基础上,进一步理解认识分数的意义,重点在于将感性认识上升到理性的认识,探究意义,掌握规律,完善分数知识体系。

第二课时:分数与除法的关系

教学内容:教科书53~54页例2、例3,以及随后的“试一试”和“练一

练”,练习八第5~8题。

教学目标:

1.知识与技能:使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示不同单位数量换算的结果。

2.过程与方法:使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,感受数学思考的逻辑性和严密性。

3.情感 度与价值观:使学生在探所海陆空习的过程中进一步感受克服困难、解决问题所带来的乐趣,体验数学学习的价值,增强积极思考、主动交流的自觉性。

教学重点:理解和撑握分数与除法的关系。 教学难点:理解和撑握分数与除法的关系。 教学过程中一: 一、导入

依次出示如下问题:

(1)把8块饼平均分给4个小朋友,每人分得多少块? (2)把4块饼平均分给4个小朋友,每人分得多少块? 学生口头列式并作答。 二、新课 1.教学例2。

把刚才呈现的题目改为:把1块饼平均分给4个小朋友,每人分得多少块?

提问:解决这个问题该怎样列式? 根据学生的回答,板书算式:1÷4。

引导:把1块饼平均分给4个小朋友,每人分得多少块?利用圆纸片动手分一分。学生交流灌报操作过程与结果。

说明:通过操作容易发现,把l块饼平均分成4份,每份是这块饼的,也就是 块,。所以l÷4的商也可以用来表示。完成板书:1÷4=(块)。

2.教学例3。

把例2改成例3:把3块饼平均分给4个小朋友,每人分得多少块?

141414提问:解决这个问题该怎样列式?根据学生的回答,板书算式:3÷4。 引导:把3块饼平均分给4个小朋友,每人能分到1块吗?

指出:每人分得的不满1块,结果也可以用分数表示。补充板书:3÷4= (块)。

提出要求:可以用什么样的分数表示每人分得的块数呢?拿出3张同样的圆形纸片,代表3块饼,先在小组里说说准备怎样分,再动手分一分。

学生操作,教师巡视。组织交流,呈现学生可能出现的各种方法,如: (1)一块一块地分,先把每个圆平均分成4份,每人每次分得块,结果每人分得3个块,也就是块。

(2)把3个圆叠在一起,平均分成4份,每人分得3块的,3块的是

3块。 41414143414结合学生的交流,呈现相应的示意图,帮助他们理解每种分法。 小结:把3块饼平均分给4个小朋友,每人分得块。完成板书:3÷4=(块)。

把例3进一步改为:把3块饼平均分给5个小朋友,每人分得多少块?。 学生口述算式,教师板书:3÷5= (块)。

提问:把3块饼平均分给5个小朋友,每人分得的结果该用什么分数来表示?请大家联系前面分圆片的过程进行思考,并把自己的想法在小组里交流。

结合学生的交流,小结:把3块饼平均分给5个小朋友,可以-块-块地分,每人分得3个块,也就是块;也可以把3块饼叠在一起分,每人分得3块的,3块的是块。完成板书:3÷5=(块)

1515353515353434

(2) 完成:练一练“第1题。

先看图说说题意,把那个数量看作单位“1“,再填空。 指名口答,并完整得说说是怎样想的。 (3) 完成“练一练“第2题。

提问把那个数良看作单位“1“,指名回答,并说说是怎样想的。 (4) 完成练习八第10题。 学生独立完成在教材上,集体订正。

同桌互相说说图中班哪个数量看作单位“1“,平均分成几份,另一个数量相当于这样的几份,是几个? 2、 拓展练习。 完成练习八第11题。

学生在教材上独立完成,集体订正,指名回答。 根据图提出不同的问题,先同桌互说,再全班交流。 四、 总结

通过今天的学习,你们有哪些收获?对自己的表现满意吗? 板书设计:

求一个数是另一个数的几分之几

例4:红彩带的与黄彩带一样长。 蓝彩带的长是红彩带的

教学反思:

本节课试图以两个数量的比较为主线,引导学生充分利用已有的知识和学习经验,由易到难,由浅入深,循序渐进地探索并掌握“求一个数是另一

()()14个数的几分之几”的基本思考方法。纵向来看,先让学生学习用“几分之一”表示两个数量比较的结果;再让学生依次学习用“几分之几”(真分数和假分数)表示两个数量比较的结果;最后让学生综合运用上述过程中所获得的认识,自主探索并体会“求甲数是乙数的几分之几”与“求乙数是甲数的几分之几”的联系和区别。这样的过程,凸显了分数意义在分析和解决问题过程中的作用,有利于学生在解决问题的同时,逐步拓展并加深对分数的理解,不断增强数感。

第四课时 练习八

教学内容:教科书第57页-58页联系八第12题-18题。 教学目标:

1、知识与技能:帮助学生体会分数与整数,以及不同单位分数间的内在联系;从不同角度丰富对分数意义的认识;

2、过程与方法:加深对求一个数是另一个数几分之几的基本思考方法的理解;巩固对分数与除法关系的理解,进一步掌握把低级单位的名数换算成分数表示的高级单位名数的思考方法;

3、情感与态度:练习中,更加全面地把握分数的不同应用,加深对分数的理解;进一步综合应用所学知识解决实际问题。 教学重点:加深对分数意义地理解

教学难点:综合应用所学知识解决实际问题。 教学准备:第57页-58页联系八第12题-18题幻灯片 教学过程:

1、练习八第12题。

(1)理解题意;

(2)独立完成

(3)组织交流明确:要在直线上表示二分之一和五分之一,先要把0到1这一段平均分成2(5)份,再从0起找到表示这样1份的点,再说这些分数的分数值与1相比,结果怎样? 2、联系八第13题。 (1)理解题意,独立完成

(2)重点让学生在交流和比较中认识到:解答这里的问题时,都要把12支铅笔看做单位“1”;要求每支铅笔是“1”的几分之几,就要把单位“1”平均分成12份。要求平均每人分得单位“1”的几分之几,则要把单位“1”平均分成2份。 3、练习八第14题。

(1)看图说说题中对分数的理解;

师:把哪个数看做单位“1”?平均分成几份?另一个数量相当于这样的几份?

师:如果列式计算,列出的式子为什么?

4、练习八第15—17题。

(1)独立完成 (2)集体订正 5、练习八第18题。 (1)独立完成

(2)集体订正:师把这堆煤看做单位“1”平均分成10份,每天所烧的是其中的几份?也就是它的几分之几?3天呢? 5、动手做。

(1)按要求进行操作;

讨论:第(1)题中的两个问题,在讨论中强调:把单位“1”平均分成几份?单位“1”里包含多少个相应的分数单位?平均分的分数越多,相应的分数单位就越小。(找一些相等的分数,看图完成填空)进一步思考:如果继续往下分,还能找到哪些与三分之一或二分之一相等的分数?

教学反思:

本节课十分注意通过一些具体的教学环节,启发学生体会“求一个数是另一个数的几分之几”与“求一个数是另一个数的几倍”这两类问题的内在联系,帮助学生逐步认识到“求一个数是另一个数的几分之几”,本质上就是用分数表示两个数量倍比的结果,从而为学生建立合理的认知结构提供了机会和保障。

第五课时 真分数和假分数

教学内容:第59~60页。 教学目标:

知识技能:结合具体事例,认识直分数、假分数,会读写假分数。 数学思考与问题解决:经历自学、交流、比较、操作、发现等数学活动,

培养学生分析、综合、抽象、概括等逻辑思维能力。

情感态度:感受数学与生活的联系,逐步养成用数学眼光观察并思考问题的习惯。

重点难点:

重点:认识真分数、假分数,经历认识真分数、假分数的过程,会读写假分数。

难点:假分数表示的意义。 教学教具: 水彩笔。 教学设计 一、 复习导入

1.什么叫分数?什么是分数单位?

2.你能说出一些分数,并说明这个分数表示什么意义吗? 二、尝试探究

1.认识真分数和假分数。 (1)出示例5。

学生涂色表示相应的分数。

把每个圆都看作单位“1”,都平均分成分份?每份是几分之几?涂色部分各表示几分之几?每个分数里有几个?

要表示5个,该怎样涂颜色?明确:用一个圆最多只能表示4个,表示5个要用两个圆。5个就是。

师:通过刚才的涂色,你们有什么发现?

141454141414

生:当涂色部分不满1个单位时,分数的分子比分母小;涂色部分正好满1个单位时,分数的分子和分母想等;涂色部分超过1个单位时,分数的分子比分母大。

(2)教学例6。 出示例6,学生涂色。

要表示每个分数,各要涂几个?分别用了几个圆?你有什么发现? (3)分数分类。

比较例5、例6中的这些分数,你能给它们分一分类吗?说说你是怎样分的。

(4)认识概念。

分子比分母小的分数叫真分数。分子和分母相等或者分子大于分母的分数叫假分数。和1相比,谁大?谁小?

你能分别举几个真分数或假分数?

你能再说说真分数、假分数的意义、特点吗? 2.练习。

(1)做“练一练”第1题。

请学生说一说分别把什么看作单位“1”。

(2)做“练一练”第2题。问:你是怎么判断的? (3)完成“练一练”第3题。

分别说一说每个分数的分数单位是多少。 三、课堂练习 1.“练习九”第2题。

15学生独立描点。

真分数集中分布在0和1之间的这一段上,而嘉分数则分布在从1开始(包括1)向右的部分,进而体会到真分数都小于1,假分数都不小于1。

2.“练习九第1、3、4题。 四、课堂总结

师:这节课我们学习了哪些内容?什么是真分数和假分数? 板书设计:

真分数和假分数

分子比分母小的分数叫真分数。

分子和分母相等或者分子大于分母的分数叫假分数。 真分数都小于1,假分数都大于或等于1。

课后反思:

本节课要通过真分数,假分数的认识,使学生能全面理解分数的概念。所以教学中我紧紧扣住直观图形和直线上的点表示的分数,使学生从直观上清晰地认识到真分数小于1,假分数等于或大于1的特征,这样学生概括真、假分数的概念和特征即为水到渠成。在学生掌握了真分数、假分数概念后,再通过设问,让学生讨论出假分数化整数的方法及算理。

第六课时:假分数化成整数或带分数

教学内容:教科书第60-61页例7、例8及相应的练习。 教学目标:

1、知识与技能:探索并掌握把假分数化成整数或带分数的方法, 知

道带分数是整数和真分 数合成的数。

2、过程与方法:进一步发展数感,培养观察、比较、抽象、概括等能

力。

教学重点:把假分数化成整数或带分数的方法。

教学难点:探索把假分数化成整数或带分数的方法的过程。 教学准备:教学光碟 教学过程:

一、谈话引入 1.说说下面分数哪些是真分数?哪些是假分数? 1 /2 3/ 3 4 /3 3 /4 4 /4 7 /4 9 /9 11/ 8 说说什么是真分数?什么是假分数? 如果让你把上面的假分数进行分类,你会怎么分? 二、交流共享 1.教学例 7。

(1)出示例 7。 你能把这些假分数化成整数吗? (2)独立完成,在小数中说说自己的方法。

(3)交流汇报方法: 根据分数与除法的关系,用分子÷分母, 4÷4=1 10÷5=2 28÷7=4 你喜欢用哪种方法转化?(分子÷分母) (4)观察一下,能化成整数的假分数有什么共同特点呢?(分子是分母的 倍数) 分子>分母 2.今天我们继续分数的有关知识。板书课题:把假分数化成整数或带分数。 (6)带分数的意义。 出示数轴。 你能在数轴上找到 这个点吗? 指出:分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常 叫做带分数。 2.教学例 8。 (1)出示例 8。 (2)怎样把 化成带分数呢? 4 尝试练习,巡视指导。 (3)交流汇报方法 (4)你认为哪一种方法化成带分数快速一些呢? 因此在实际运用中就可以用分子除以分母。=11÷4(=2??3)=2 (商作为带分数的整数部分,余数作为分子,分母不变) 说说把假分数转化成整数或带分数的方法。 114三、反馈完善 1.完成教材第 61 页“练一练”第 1 题。 学生独立完成并交流:你是怎样改写的?如果看图,你会直接用带分数表示 吗?你是怎样看的? 2.完成教材第 61 页“练一练”第 2 题。 学生独立完成,集体订正。 四、反思总结 通过本课的学习,你有什么收获? 板书设计: 假分数化成整数或带分数 41028=(1) =(2) =(4) 457能化成整数的假分数,它的分子是分母的倍数,是几倍,化成整数就是几 。 113=11÷4=2 44 教学反思: 本节课的教学重点是让学生能够熟练地将假分数化成整数或带分数,教学关键在于利用分数与除法的关系来完成化简过程。因此,复习铺垫时,有意安排这样的练习,帮助学生回顾旧知识,以便更好地为新知服务。教学准备安排合理,可以帮助学生自主探究解决所学知识,学生在小组交流中,感

受到与人合作的重要性和彼此分享的愉悦。整节课虽然课堂气氛热烈,但遗憾的是在教学把假分数化成带分数这一方法时,直观性方面显得很欠缺,虽然算法掌握的不错,但是没有真正理解了算理。练习密度大,有梯度,但是该让学生内化的东西没有很好地落实,说明在备课的时候,轻视了算理,太重视算法。在今后的教学设计中,一定不能忽视学生学习的思维和能力方面的训练。

第七课时 分数与小数的互化

教学目标:

1、知识与技能:经历分数与小数互化的探索过程,能熟练地进行分数与小数的互化。

2、过程与方法培养学生良好的学习习惯,树立学好数学的信心。 教学重点:掌握分数与小数互化的方法,并能准确地进行分数与小数的互化。

教学难点:分数与小数大小比较方法的探索过程。 教学准备:教学光碟 教学过程: 一、谈话引入

1.比较下面小数的大小。 0.5 0.75 1.3 0.987 0.85 0.805 说说怎么比较的? 2.今天我们一起来学习有关分数与小数的互化的知识。 板书课题:分数与小数的互化。 二、交流共享 1.教学例 9。 (1)出示例 9。 (2)要比谁用的彩带长?其实是比什么? (3)你有什么比较的好方法吗?在小组中说说。 小组讨论方法。 (4)汇报方法。 0.5 米是 1 米的一半, 1米比 1 米的一半多,所以 1米比 0.5 米长。333把 化成小数, =3÷4=0.75,0.75>0.5,0.5<指出:两种方法都可以444比较出 >0.5,哪一种方法更合适呢?为什么? 34(5)小结。 我们对分数和小数进行比较时,经常要把分数化成小数,谁来说说应该怎样 把分数化成小数呢?(用分数的分子除以分母的方法) 2.完成试一试。 如果除不尽,用四舍五入法保留三位小数。 独立完成。 集体核对。 3.教学例 10。 有时候我们也需要把小数化成小数。 (1)出示例 10。 这三个小数各是几位小数?

(2)一位小数表示几分之几? 二位、三位小数各表示几分之几呢? (3)你们能把这些小数该成分数吗?试试看。 学生尝试改写。 你是怎么想的?

(4)小结。 把小数化成分数时,如果是一位小数就写成十分之几,是两位小数就写成百 分之几,??同桌互相说说方法。 三、反馈完善

1.完成教材第 62 页“练一练” 。 出示题目,让学生自主读题后独立完成。指导学生交流反馈,注意方法的总结。

教师根据学生的回答小结:把分数化成小数,用分子除以分母,除不尽的保 留三位小数。

2.完成教材第 64 页“练习九”第 9 题。

出示题目。 谈话:仔细观察每组数,说说你准备怎样比较这几组数的大小? 注意引导学生根据实际情况灵活运用转化的方法。 学生独立完成。 教师指导学生交流自己是怎样比较的,为什么这样做。 四、反思总结 通过本课的学习,你有什么收获?

板书设计: 分数与小数的互化 3=3÷4=0.75 40.3=教学反思: 313213 0.13= 0.213= 101001000分数与小数的互化,是运用的小数的意义,分数与除法的关系,分数基本性质等,都是学过的旧知识。所以在教学小数化分数时,我采用让学生尝试做做小数化成分数的方式进行。 第八课时:练习九 教学目标: 1、知识与技能:进一步熟悉分数与小数互化的方法, 能综合运用分数与小数互化的知识解 决实际问题。 2、过程与方法:在运用已有的知识经验比较分数和小数大小的过程中, 体验解决问题的策 略多样性和自主解决问题的喜悦。 教学重点:进一步掌握分数与小数的互化方法。 教学难点:运用分数和小数互化的知识解决实际问题。 教学准备:教学光碟 教学过程: 一、知识再现

1.提问:谁来说说分数与小数互化的方法?

2.今天我们一起来学习“练习九” 。 (板书课题) 二、基本练习

1.完成教材第 65 页“练习九”第 11 题。 让学生独立填空。 指名口答,共同订正。

2.完成教材第 65 页“练习九”第 12 题。 让学生独立完成。 教师指导学生交流反馈,并说说把小数化成分数的方法。

3.完成教材第 65 页“练习九”第 13 题。 让学生独立完成。 教师指导学生交流反馈,并说说把分数化成小数的方法。 提醒:分子除以分母,除不尽的保留三位小数,用“≈” 。

4.完成教材第 65 页“练习九”第 14 题。 让学生独立填空。 完成后让学生说说自己的上下两个数有什么关系。 三、综合练习

1.完成教材第 65 页“练习九”第 15 题。 指名读题。 说说题中告诉我们什么信息,我们要解决的是什么问题? 7 分析:要求哪块地的面积大一些,就是比较 和 0.8 哪个大些。 8 让学生独立完成,完成后说说是怎样想的。

2.完成教材第 65 页“练习九”第 16 题。 学生独立完成,小组交流时说说自己是怎样想的。 提问:在比较出两人所用时间的长短之后,怎样知道谁做得快一些?(谁用 的时间少谁做得快)

3.完成教材第 65 页“练习九”思考题。 让学生在小组里交流自己的想法。 指名说说自己是怎样想的。

四、课堂总结 通过练习,你有什么收获? 还有哪些疑问? 五、课堂作业 《补》 教学反思:

在教学分数化成小数时,我让学生选择自己喜欢的方法,给学生充分的时间,是利用分数与除法的关系,用分子除以分母,或利用分数基本性质,把分数化成十进分数再化成小数这样两种方法。学生在试算中,已经遇到了两种情况:一种分数能用两种方法化成小数,一种分数只能用一种方法化成小数。而恰是这种只能用一种方法化成小数的分数,它不能化为十进分数,抓住这个学生已经感知的问题,提出问题,引导学生讨论分析分母的情况,认识到能化成有限小数分母的特点。

第十课时:分数的基本性质

教学目标:

1、知识与技能:经历探究分数的基本性质的过程,理解并掌握分数的基本性质。能应用分 数的基本性质,把一个分数转化成指定分母或分子而大小不变的分数。

2、过程与方法:在观察、操作、思考和交流活动中,培养分析、综合、抽象、概括的能力, 体验数学学习的乐趣。

教学重点: 经历探究分数的基本性质的过程, 探索并发现分子、 分母的变化规律。

教学难点:理解并掌握分数的基本性质,能根据分数的基本性质对分数正确进行 改写。 教学准备:教学光碟 教学过程: 一、谈话引入 二、交流共享 1、教学例 11。

出示教材例 11,让学生根据涂色部分写出四个分数:

引导学生比较: 这四个分数的分母为什么不同?前两个分数的分子为什么都是1?其他两个分数的分子为什么不同?你知道其中哪几个分数是相等的吗? 学生独立思考后小组交流,举手回答。

教师根据学生的回答板书:你怎么知道这三个分数是相等的?(可以从图中看出来)为什么这三个分数 分子和分母各不相同,而大小却相等呢?这就是我们这节课研究的内容:分数的基本性质。(板书课题) 2、教学例 12。

提问:例 11 的三个分数平均分的份数和取的份数都不相同,但是大小却相等,你能用折纸的方法找出一组与 相等的分数吗?

(1)学生动手操作: 拿出一张正方形纸, 进行对折, 涂色表示它的 。 继续对折,每次找出一个和相等的分数,并用等式表示出来。 提问:你折出了哪些相等的分数?你是怎样折的? 展示学生折出的图,让学生上台说说自己是怎样折的。

(2)引导:观察例 12 中的两个分数,看一看它们的分子和分母是怎样变化 的?我们先从左往右看,是怎样变成 的?再从右往左看。

你能照样子继续完成教材第 66 页例 12 的填空吗? 学生独立观察思考并填空。 学生完成后在小组内交流并汇报,教师根据学生的汇报板书等式。 观察例 11 等式中的三个分数,它们的分子和分母是怎样变化的? 学生独立观察后反馈。

提问:从上面的变化中你发现了什么? 学生在小组内交流。

小结:分数的分子和分母同时乘或除以一个相同的数,分数的大小不变。这是分数的基本性质。

讨论:相同的数可以是些什么数?引导学生重点讨论“0 为什么要除外” 。 学生在小组内交流后汇报:相同的数不能是 0,任何数乘 0 都等于 0,如果 除数是 0,除法就没有意义。

(3)根据分数与除法的关系,你能用除法中商不变的规律来说明分数的基 本性质吗? 学生交流并汇报:分数中的分子,可以看作是除法算式中的被除数,分母可以看作是除数,被除数和除数同时乘或除以一个相同的数(0 除外) ,商不变, 即分数值不变。

(4)回顾发现分数基本性质的过程,你有哪些收获?(学生讨论) 小结:一个分数,有无数个与它相等的分数;画图和操作能帮助我们发现规律;学习过程中,要注意沟通知识间的联系。 三、反馈完善

1、完成教材第 67 页“练一练”第 1 题。 让学生根据分数的基本性质,

写出一组相等的分数。 学生独立完成,小组交流后汇报。 2、完成教材第 67 页“练一练”第 2 题。 学生先给每组图中的左图涂色,根据图下的等式,填写缺少的分子或分母。 再根据填写出的分数给每组中的右图涂色, 并观察每组中的两幅图的涂色部分所 表示的分数是否相等,完成后集体订正。

3、完成教材第 67 页“练一练”第 3 题。 学生独立填空。 指名回答,并说说自己是怎样想的。

4、完成教材第 67 页“练一练”第 4 题。 学生独立判断。 指名说出判断的结果和理由。

四、反思总结 通过本课的学习,你有什么收获? 板书设计:

分数的基本性质

一个分数,有无数个与它相等的分数

分数的分子和分母同时乘或除以一个相同的数,分数的大小不变。这是分数的基本性质。 教学反思:

分数的基本性质这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习,不仅对学生提出了挑战,而且对老师也提出了更大的挑战。因为学生有了更大的思考空间,学习方式是开放的,解决问题的方式是多元的,这就要求教师备课时能站在学生的角度思考,提高教学的预设能力。同时,学生探究的过程曲曲折折,不同的学生会遇到不同的磕磕碰碰,暴露出不同的问题,甚至许多问题教师都难以预料,这些又对教师临场应变、驾驭课堂的能力提出了更高的要求。

第十一课时:约分

教学目标:

1、知识与技能:认识约分和最简分数的意义,理解并掌握约分的方法。 2、过程与方法:获得成功的积极体验,进一步树立学好数学的信心,产生对数学的兴趣。

教学重点:掌握约分的方法以及约分的书写形式。 教学难点:理解约分时应约成最简分数。 教学准备:教学光碟 教学过程: 一、谈话引入

1、说出下面几组数的最大公因数是几。 6和9 15 和 5 18 和 15 指名口答,并说说找最大公因数的方法。 学生口答,并说说自己是怎样想的。

3、谈话:根据分数的基本性质,我们可以把一些分数化简,也就是把一个分 数化成大小不变, 但是分子、 分母比较小的分数。 这就是我们今天要学习的约分。 (板书课题)

二、交流共享 1、教学例 13。

出示教材第 68 页例 13,让学生说说题目的要求。 提问:送给小力几分之几呢? 学生独立思考后在小组内交流并汇报: 汇报预测: (1)6÷12=6 /12 送给小力 。 (2)从图中可以看出,送给小力1/2。 (3)可以看成送给小力3/ 6。

引导学生将这三个分数进行比较,从而明确它们的大小相等。 提问:你能联系分数的基本性质,说明6 /12、1/2 和3/ 6相等吗? 3 1 6 2 学生小组交流并汇报。

教师小结板书: 6/12 =1/2 3/6=1/2 2.归纳约分的概念。

谈话:刚才我们找出了与6/12 相等但是分子、分母都比较小的分数。像这样, 把一个分数化成同它相等,但分子、分母都比较小的分数,叫作约分。 (板书)

提问: 刚才我们把哪个分数约分了?怎样约分的?你觉得约分后的分数和原来的6/12 比,有什么好处?(更简单,更容易看出大小)

3.示范约分的书写格式。 教师边说明边板书约分的书写格式。 先分别除以 12 和 6 的公因数 2,再分别除以 6 和 3 的公因数 3。 也可以分别直接除以 12 和 6 的最大公因数 6。 或直接写成:6/12 = 1/ 2 4.揭示最简分数的概念。

谈话: 通过约分后分子、分母最小的是哪个分数?它还能再约分吗?为什么?

学生小组交流后明确: 约分后的分子、分母只有公因数 1,像这样的分数叫作最简分数。约分时,通常要约成最简分数。 三、反馈完善

1.完成教材第 68 页“练一练” 。 在括号里填上合适的数。 学生独立填空,反馈时说说为什么这样填。

2.完成教材第 69 页“练习十”第 6 题。 学生独立判断哪些分数没有约成最简分数, 指名说说判断理由, 再独立完成, 集体订正。

3.完成教材第 69 页“练习十”第 7 题。 提示:先把上一行的分数进行约分,然后与第二行进行比较。 学生独立完成后小组交流并订正。 四、反思总结 通过本课的学习,你有什么收获?

板书设计:

约分

6/12 =1/2 3/6=1/2

把一个分数化成同它相等,但分子、分母都比较小的分数,叫作约分。 约分后的分子、分母只有公因数 1,像这样的分数叫作最简分数。 教学反思:

《约分》主要是让学生理解约分及最简分数的意义,掌握约分方法,能准确判断约分的结果是不是最简分数是本课的教学难点。通过学习培养学生观察、比较和归纳的能力以及综合运用所学知识解决实际问题的能力, 这节课我从例题13:6/12入手,让学生根据分数的基本性《约分》主要是让学生理解约分及最简分数的意义,掌握约分方法,能准确判断约分的结果是不是最简分数是本课的教学难点。通过学习培养学生观察、比较和归纳的能力以及综合运用所学知识解决实际问题的能力.

第十二课时:练习十

教学目标:

1、知识与技能:进一步理解约分的依据是分数的基本性质,感受约分的应用价值,提高约 分的正确率和能力。

2、过程与方法:在自主探究、合作交流的过程中,体验成功的喜悦。 教学重点:进一步掌握把一个分数约成最简分数的方法。

教学难点:提高约分(约成最简分数)的正确率和解决问题的能力。 教学准备:教学光碟 教学过程: 一、知识再现

1.谁能说一说分数的基本性质?什么是最简分数?怎样把一个分数约成最 简分数?

2.今天我们一起来完成“练习十” 。 (板书课题)

二、基本练习 1.完成教材第 70 页“练习十”第 9 题。 指名说说运算顺序。 指名板演。

2.完成教材第 70 页“练习十”第 10 题。 提问:你能用不同的分数表示下面各题的商吗? 先让学生独立完成, 再组织交流, 感受分数的基本性质和分数与除法的关系。

3.完成教材第 70 页“练习十”第 11 题。 让学生独立完成,并说说自己是怎样想的。鼓励学生采用不同的比较方法。 三、综合练习

1.完成教材第 70 页“练习十”第 12 题。 让学生独立完成后集体订正。 提示:计算的结果能约分的一般要约成最简分数。

2.完成教材第 70 页“练习十”第 13 题。 提问:怎样把低级单位转化成高级单位?(除以单位间的进率) 你能把下面的名数进行转化吗?注意要填写的是最简分数。

3.完成教材第 70 页“练习十”第 14 题。 把小数化成分数,能约分的要约成最简分数。 提示:最后两小题可以约成带分数或假分数。

4.完成教材第 70 页“练习十”第 15 题。 课件出示图表学生读题并分析题意,独立完成。 教师着重强调:结果应是最简分数。

5.完成教材第 70 页“练习十”思考题。 提问:怎样求三角形和梯形的面积?从图中可以看出,这里的三角形和梯形 的高有什么关系?(都相等) 四、反思总结通过本课的学习,你有什么收获? 还有什么疑问? 五、课堂作业 《补》

第十三课时:通分

教学目标:

1、知识与技能:理解通分的意义,掌握通分的方法,能把分母小于 10 的两个分数通分。

2、过程与方法:进一步感受转化的思想,培养学生观察、分析和归纳等思维能力。

教学重点:理解通分的意义,掌握通分的方法。

教学难点:能正确地把两个异分母分数通分,并比较它们的大小。 教学准备:教学光碟 教学过程: 一、谈话引入

1.求下列每组数的最小公倍数。 8 和 24、7和8、 6和9

学生思考后指名口答,说说自己是怎样找最小公倍数的。 2.在括号里填上合适的数。

6 /( )=( ) /2 3 ( )= 6 ( )

提问:你是根据什么来填写的?(分数的基本性质) 3.把下列分数约分。

6 /14 12/ 9 21/ 18 学生独立完成,指名板演。

提问: 约分时分数的分子和分母发生了怎样的变化?约分的前后什么没有变 化?

4.谈话:今天继续运用分数的基本性质让分数的分子、分母发生变化,不过不再是由大变小,而是由小变大。 (板书课题) 二、交流共享

1.教学例 14。 课件出示题目,

谈话:你能运用学过的知识进行改写吗?试试看。 学生在作业本上独立完成。 教师巡视,了解学生的完成情况,有选择地指名学生板演。 (1)把它们改写成分母是 12 的分数。 3/4=3×3/4×3=9/12 5/6=5×2/6×2=10/12 (2)把它们改写成分母是 24 的分数。

3/4=3×6/4×6=18/24 5/6=5×4/6×4=20/24 共同评议板演的学生改写的结果是否正确。 引导学生在小组里讨论:

①把3/4和5 / 6改写成分母相同的分数时,首先要确定什么? ②改写的过程中要注意哪些问题?

③改写的依据是什么? 学生的回答只要合理都应给予肯定, 引导学生明确改写时要先确定两个分母的公倍数,且两个分数的大小不能变,改写的依据是分数的基本性质,分子、分 母必须乘相同的数(0 除外) 。 2.揭示概念。

揭示:把几个分母不同的分数(也叫作异分母分数)分别化成和原来分数相 等的同分母分数,叫作通分。相同的分母,叫作这几个分数的公分母。 提问:谁来说说这两个同学刚才取几作公分母的?想一想,它们和原来这两个分数的分母有什么关系?(12、24 是 4 和 6 的公倍数)

比较一下,用哪个数作公分母比较简便? 追问:再想一想,12 与 4 和 6 有什么关系?那么你们认为通分时我们一般 用什么作公分母比较好? 学生在小组内交流并汇报。

教师小结:通分时,一般用原来几个分母的最小公倍数作公分母。 3.完成教材第 71 页“试一试” 。 学生根据要求独立填空。 展示一个学生的答案,共同评议。

提问:怎样确定6和9的公分母?(找出原来的分母 6 和 9 的最小公倍数是 18)你认为通分的过程分为哪几步? 学生小组讨论后汇报。 教师结合学生的回答板书: ①确定公分母(分母的最小公倍数) ; ②化成同分母分数。

三、反馈完善

1.完成教材第 71 页“练一练” 。 学生独立完成,指定三人板演。集体订正。注意让学生规范地书写通分的格式。

2.完成教材第 73 页“练习十一”第 1 题。 学生独立填空。 指名说说通分的方法,以及通分后的分数在图中如何表示。

3.完成教材第 73 页“练习十一”第 3 题。 学生独立检查,做出判断。 指名说出判断依据,共同评议。 四、反思总结 通过本课的学习,你有什么收获?

板书设计:

通分

(1)把它们改写成分母是 12 的分数。 3/4=3×3/4×3=9/12 5/6=5×2/6×2=10/12 (2)把它们改写成分母是 24 的分数。

3/4=3×6/4×6=18/24 5/6=5×4/6×4=20/24

把几个分母不同的分数(也叫作异分母分数)分别化成和原来分数相 等的同分母分数,叫作通分。

相同的分母,叫作这几个分数的公分母。

本文来源:https://www.bwwdw.com/article/9bpg.html

Top