2018尖子生专训3相交线平行线含答案

更新时间:2023-10-16 10:44:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

尖子生专训3相交线平行线答案

1.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°

(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?

(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.

解:(1)∵a、b满足|a﹣3b|+(a+b﹣4)2=0,∴a﹣3b=0,且a+b﹣4=0,∴a=3,b=1; (2)设A灯转动t秒,两灯的光束互相平行, ①当0<t<60时,3t=(20+t)×1,解得t=10;

②当60<t<120时,3t﹣3×60+(20+t)×1=180°,解得t=85;

③当120<t<160时,3t﹣360=t+20,解得t=190>160,(不合题意)综上所述,当t=10秒或85秒时,两灯的光束互相平行;

(3)设A灯转动时间为t秒,

∵∠CAN=180°﹣3t,∴∠BAC=45°﹣(180°﹣3t)=3t﹣135°,又∵PQ∥MN,∴∠BCA=∠CBD+∠CAN=t+180°﹣3t=180°﹣2t,

而∠ACD=90°,∴∠BCD=90°﹣∠BCA=90°﹣(180°﹣2t)=2t﹣90°,∴∠BAC:∠BCD=3:2,即2∠BAC=3∠BCD. 2.如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG⊥AD,垂足为G. (1)求证:∠MAG+∠PBG=90°;

(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;

(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.

第1页(共12页)

解:(1)如图1,∵MN∥PQ,∴∠MAG=∠BDG,∵∠AGB是△BDG的外角,BG⊥AD, ∴∠AGB=∠BDG+∠PBG=90°,∴∠MAG+∠PBG=90°; (2)2∠AHB﹣∠CBG=90°或2∠AHB+∠CBG=90°,证明: ①如图,当点C在AG上时,

∵MN∥PQ,∴∠MAC=∠BDC,∵∠ACB是△BCD的外角,∴∠ACB=∠BDC+∠DBC=∠MAC+∠DBC, ∵AH平分∠MAC,BH平分∠DBC,∴∠MAC=2∠MAH,∠DBC=2∠DBH,∴∠ACB=2(∠MAH+∠DBH), 同理可得,∠AHB=∠MAH+∠DBH,∴∠ACB=2(∠MAH+∠DBH)=2∠AHB,

又∵∠ACB是△BCG的外角,∴∠ACB=∠CBG+90°,∴2∠AHB=∠CBG+90°,即2∠AHB﹣∠CBG=90°; ②如图,当点C在DG上时,

同理可得,∠ACB=2∠AHB,又∵Rt△BCG中,∠ACB=90°﹣∠CBG,∴2∠AHB=90°﹣∠CBG,即2∠AHB+∠CBG=90°; (3)(2)中的结论不成立.存在:2∠AHB+∠CBG=270°;2∠AHB﹣∠CBG=270°. ①如图,当点C在AG上时,由MN∥PQ,可得:

∠ACB=360°﹣∠MAC﹣∠PBC=360°﹣2(∠MAH+∠PBH),∠AHB=∠MAH+∠PBH,

∴∠ACB=360°﹣2∠AHB,又∵∠ACB是△BCG的外角,∴∠ACB=90°+∠CBG,∴360°﹣2∠AHB=90°+∠CBG, 即2∠AHB+∠CBG=270°; ②如图,当C在DG上时,

同理可得,∠ACB=360°﹣2(∠MAH+∠PBH),∠AHB=∠MAH+∠PBH,

∴∠ACB=360°﹣2∠AHB,又∵Rt△BCG中,∠ACB=90°﹣∠CBG,∴360°﹣2∠AHB=90°﹣∠CBG, ∴2∠AHB﹣∠CBG=270°.

3.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN= 60 °;

(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯互相平行? (3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;

第2页(共12页)

若改变,请说明理由.

解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°,故答案为:60; (2)设A灯转动t秒,两灯的光束互相平行, ①当0<t<90时,如图1,

∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1?(30+t),解得 t=30; ②当90<t<150时,如图2,

∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°

∴1?(30+t)+(2t﹣180)=180,解得 t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行; (3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒, ∵∠CAN=180°﹣2t,∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°,又∵∠ABC=120°﹣t,

∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,∴∠BCD=120°﹣∠BCA=120°﹣(180°﹣t)=t﹣60°, ∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化. 4.如图1所示,已知BC∥OA,∠B=∠A=120° (1)说明OB∥AC成立的理由.

(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.

(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.

(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.

解:(1)∵BC∥OA,∴∠B+∠O=180°,∴∠O=180°﹣∠B=60°,而∠A=120°,∴∠A+∠O=180°,∴OB∥AC; (2)∵OE平分∠BOF,∴∠BOE=∠FOE,而∠FOC=∠AOC,∴∠EOF+∠COF=∠AOB=×60°=30°,即∠EOC=30°; (3)比值不改变.∵BC∥OA,∴∠OCB=∠AOC,∠OFB=∠AOF,∵∠FOC=∠AOC,∴∠AOF=2∠AOC,∴∠OFB=2∠OCB,即∠OCB:∠OFB的值为1:2; (4)设∠AOC的度数为x,则∠OFB=2x,

第3页(共12页)

∵∠OEB=∠AOE,∴∠OEB=∠EOC+∠AOC=30°+x,而∠OCA=180°﹣∠AOC﹣∠A=180°﹣x﹣120°=60°﹣x, ∵∠OEB=∠OCA,∴30°+x=60°﹣x,解得x=15°,∴∠OCA=60°﹣x=60°﹣15°=45°. 5.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.

(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.

(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.

(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?解:(1)如图1,过P作PE∥AB,

∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°; (2)∠AKC=∠APC.理由:如图2,过K作KE∥AB,

∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK, 过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K, ∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC; (3)∠AKC=∠APC.

理由:如图3,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE, ∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,

同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,

∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.

6.如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;

(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.

第4页(共12页)

(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 30° .

解:(1)∵AM∥BN,∴∠A+∠ABN=180°,∵∠A=60°,∴∠ABN=120°,∵BC、BD分别平分∠ABP和∠PBN, ∴∠CBP=∠ABP,∠DBP=∠NBP,∴∠CBD=∠ABN=60°; (2)不变化,∠APB=2∠ADB,

证明:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,又∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB=2∠ADB; (3)∵AD∥BN,∴∠ACB=∠CBN,又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∴∠ABC=∠DBN, 由(1)可得,∠CBD=60°,∠ABN=120°,∴∠ABC=(120°﹣60°)=30°,故答案为:30°.

7.数学思考:(1)如图1,已知AB∥CD,探究下面图形中∠APC和∠PAB、∠PCD的关系,并证明你的结论 推广延伸:(2)①如图2,已知AA1∥BA1,请你猜想∠A1,∠B1,∠B2,∠A2、∠A3的关系,并证明你的猜想; ②如图3,已知AA1∥BAn,直接写出∠A1,∠B1,∠B2,∠A2、…∠Bn﹣1、∠An的关系 拓展应用:(3)①如图4所示,若AB∥EF,用含α,β,γ的式子表示x,应为 B A.180°+α+β﹣γ B.180°﹣α﹣γ+β C.β+γ﹣α D.α+β+γ

②如图5,AB∥CD,且∠AFE=40°,∠FGH=90°,∠HMN=30°,∠CNP=50°,请你根据上述结论直接写出∠GHM的度数是 30° .

解:(1)证明:如图1,过点P作OP∥AB,

∵AB∥CD,∴OP∥AB∥CD,∴∠1=∠PAB,∠2=∠PCD,∴∠APC=∠1+∠2=∠PAB+∠PCD,即∠APC=∠PAB+∠PCD; (2)①如图2,过点A2作A2O∥AA1,

由(1)可知∠B1=∠A1+∠1,∠B2=∠2+∠A3,所以,∠B1+∠B2=∠A1+∠A2+∠A3; ②如图3,由①可知:

∠A1+∠A2+…+∠An=∠B1+∠B2+…+∠Bn﹣1;

(3)①如图4,过∠x的顶点作CD∥AB,则∠x=(180°﹣α)+(β﹣γ)=180°﹣α﹣γ+β,

②如图5,由(1)可知,40°+∠GHM+50°=∠G+∠M,∵∠G=90°,∠M=30°,∴∠GHM=90°+30°﹣40°﹣50°=30°. 故答案为:B;30°.

第5页(共12页)

本文来源:https://www.bwwdw.com/article/99ff.html

Top