2018年高考数学专题23基本初等函数理
更新时间:2024-05-31 15:18:01 阅读量: 综合文库 文档下载
- 2018年高考数学真题推荐度:
- 相关推荐
专题2.3 基本初等函数
【三年高考】
1. 【2017课标1,理11】设x、y、z为正数,且2x?3y?5z,则 A.2x<3y<5z 【答案】D
【解析】试题分析:令2x?3y?5z?k(k?1),则x?log2k,y?log3k,z?log5k ∴
B.5z<2x<3y
C.3y<5z<2x
D.3y<2x<5z 2x2lgklg3lg92x2lgklg5lg25????1,则2x?3y,????1,则2x?5z,故选D. 3ylg23lgklg85zlg25lgklg32b?g(20.8),2. 【2017天津,理6】已知奇函数f(x)在R上是增函数,g(x)?xf(x).若a?g(?log25.1),c?g(3),则a,b,c的大小关系为
(A)a?b?c 【答案】C
(B)c?b?a (C)b?a?c
(D)b?c?a
【解析】因为f(x)是奇函数且在R上是增函数,所以在x?0时,f(x)?0,从而g(x)?xf(x)是R上的偶函数,且在[0,??)上是增函数,a?g(?log25.1)?g(log25.1),2则2?log25.1?3,所以即0?20.8?log25.1?3,
0.8?2,又4?5.1?8,
g(20.8)?g(log25.1)?g(3),所以b?a?c,故选C.
3. 【2017北京,理8】根据有关资料,围棋状态空间复杂度的上限M约为3,而可观测宇宙中普通物质的原子总数N约为10.则下列各数中与
33
53
80
361
MN最接近的是( )(参考数据:lg3≈0.48)
73
93
(A)10 (B)10 (C)10 (D)10 【答案】D
4. 【2016高考新课标3理数】已知a?2,b?4,c?25,则( ) (A)b?a?c (B)a?b?c (C)b?c?a (D)c?a?b 【答案】A
【解析】因为a?2?4?4?b,c?25?5?4?a,所以b?a?c,故选A.
4323251323234325135.【2016高考浙江理数】已知a>b>1.若logab+logba=【答案】4 2
5ba,a=b,则a= ,b= . 215【解析】设logba?t,则t?1,因为t???t?2?a?b2,因此
t2ab?ba?b2b?bb?2b?b2?b?2,a?4.
6.【2016高考上海理数】已知点(3,9)在函数f(x)?1?ax的图像上,则. f(x)的反函数f?1(x)?________【答案】log2(x?1)
2(3,9)【解析】将点带入函数f?x??1?ax的解析式得a?2,所以f?x??1?2x,用y表示x得
x?log2(y?1),所以f?1?x??log2(x?1).
?x2?(4a?3)x?3a,x?0,7.【2016高考天津理数】已知函数f(x)=?(a>0,且a≠1)在R上单调
log(x?1)?1,x?0?a递减,且关于x的方程|f(x)|?2?x恰好有两个不相等的实数解,则a的取值范围是( ) (A)(0,
223123123] (B)[,] (C)[,]?{}(D)[,)?{}
333333444【答案】C
8.【2016高考上海理数】已知a?R,函数f(x)?log2((1)当a?5时,解不等式f(x)?0;
1?a). x(2)若关于x的方程f(x)?log2[(a?4)x?2a?5]?0的解集中恰好有一个元素,求a的取值范围; (3)设a?0,若对任意t?[,1],函数f(x)在区间[t,t?1]上的最大值与最小值的差不超过1,
12求a的取值范围. 【解析】(1)由log2?11??1???5??0,得?5?1,解得x????,????0,???.
x4??x??(2)
1?a??a?4?x?2a?5,?a?4?x2??a?5?x?1?0,当a?4时,x??1,经检验,满x1,x2??1,a?4足题意.当a?3时,x1?x2??1,经检验,满足题意.当a?3且a?4时,x1?x1?x2.x1是原方程的解当且仅当
11?a?0,即a?2;x2是原方程的解当且仅当?a?0,即x1x2a?1.于是满足题意的a??1,2?.综上,a的取值范围为?1,2???3,4?.
(3)当0?x1?x2时,
?1??1?11?a??a,log2??a??log2??a?,所以f?x?在?0,???上x1x2?x1??x2?单调递减.函数f?x?在区间?t,t?1?上的最大值与最小值分别为f?t?,
f?t?1?. f?t??f?t?1??log2??a??log2??1?t???1??a??1即at2??a?1?t?1?0,对任意?t?1?1?1??1?t??,1?成立.因为a?0,所以函数y?at2??a?1?t?1在区间?,1?上单调递增,t?时,y2?2??2?有最小值
31312?2?a?,由a??0,得a?.故a的取值范围为?,???. 42423?3?ab9.【2015高考四川,理8】设a,b都是不等于1的正数,则“3?3?3”是“loga3?logb3”
的 ( )
(A)充要条件 (B)充分不必要条件(C)必要不充分条件 (D)既不充分也不必要条件 【答案】B
ab【解析】若3?3?3,则a?b?1,从而有loga3?logb3,故为充分条件. 若loga3?logb3不
一定有a?b?1,比如.a?1,b?3,从而3a?3b?3不成立.故选B. 3x?m10.【2015高考天津,理7】已知定义在R 上的函数f?x??2?1 (m为实数)为偶函数,记
a?f(log0.53),b?f?log25?,c?f?2m? ,则a,b,c 的大小关系为( )
(A)a?b?c (B)a?c?b (C)c?a?b (D)c?b?a 【答案】C
11.【2015高考浙江,理18】已知函数f(x)?x2?ax?b(a,b?R),记Mab(,)上的最大值.
(1)证明:当|a|?2时,M(a,b)?2;
(2)当a,b满足M(a,b)?2,求|a|?|b|的最大值.
是|f(x)|在区间[?1,1]a2a2a【解析】(1)由f(x)?(x?)?b?,得对称轴为直线x??,由|a|?2,得
224|?a|?1,故f(x)在[?1,1]上单调,∴M(a,b)?max{|f(1)|,|f(?1)|},当a?2时,由 2f(1)?f(?1)?2a?4,得max{f(1),f(?1)}?2,即M(a,b)?2,当a??2时,由 f(?1)?f(1)??2a?4,得max{f(?1),?f(1)}?2,即M(a,b)?2,综上,当|a|?2时,
(2)由M(a,b)?2得|1?a?b|?|f(1)|?2,|1?a?b|?|f(?1)|?2,故|a?b|?3,M(a,b)?2;
?|a?b|,ab?0,得|a|?|b|?3,当a?2,b??1时,|a|?|b|?3,|a?b|?3,由|a|?|b|???|a?b|,ab?0且|x2?2x?1|在[?1,1]上的最大值为2,即M(2,?1)?2,∴|a|?|b|的最大值为3.. 【2017考试大纲】 1.指数函数
(1)了解指数函数模型的实际背景.
(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.
(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点. (4)知道指数函数是一类重要的函数模型. 2.对数函数
(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.
(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点. (3)知道对数函数是一类重要的函数模型.
a ?logx(a?0,a?1)互为反函数. (4)了解指数函数y?ax(a?0,a?1) 与对数函数ya3.幂函数
(1)了解幂函数的概念.
11(2)结合函数y?x,y?x,y?x,y?,y?x2的图像,了解它们的变化情况.
x23【三年高考命题回顾】
纵观前三年各地高考试题, 对基本初等函数的考查,大部分是以基本初等函数的性质为依托,结合运算推理解决问题,高考中一般以选择题和填空的形式考查.纯基本初等函数的试题,一般考查指对数式的基本运算性质.
【2018年高考复习建议与高考命题预测】
由前三年的高考命题形式 , 幂函数新课标要求较低,只要求掌握幂函数的概念,图像与简单性质,仅限于几个特殊的幂函数,关于幂函数常以5种幂函数为载体,考查幂函数的概念、图象与性质,多以小题形式出现,属容易题.二次函数的图象及性质是近几年高考的热点;用三个“二次”间的联系解决问题是重点,也是难点.题型以选择题和填空题为主,若与其他知识点交汇,则以解答题的形式出现.指数函数在历年的高考题中占据着重要的地位.对指数函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题.为此,我们要熟练掌握指数运算法则,明确算理,能对常见的指数型函数进行变形处理.高考题目形式多以指数函数为载体的复合函数来考察函数的性质.同时它们与其它知识点交汇命题,则难度会加大.对数函数在历年的高考题中占据着重要的地位.从近几年的高考形势来看,对对数函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题.为此,我们要熟练掌握对数运算法则,明确算理,能对常见的对数型函数进行变形处理.高考题目形式多以对数函数为载体的复合函数来考察函数的性质.同时它们与其它知识点交汇命题,则难度会加大.基本初等函数是考察函数、方程、不等式很好的载体, 预测2018年高考继续会对基本初等函数图象和性质的考察.尤其注意以基本初等函数特别是指对函数为模型的抽象函数的考察,这种题型只给出定义域内满足某些运算性质的法则,往往集定义域、值域、单调性、奇偶性与一身,全面考察学生对函数概念和性质的理解.
【2018年高考考点定位】
高考对基本初等函数的考查有三种主要形式:一是比较大小;二是基本初等函数的图象和性质;三是基本初等函数的综合应用,其中经常以分段函数为载体考察函数、方程、不等式等知识的相联系. 【考点1】指数值、对数值的比较大小 【备考知识梳理】
指数函数y?ax(a?0,a?1),当a?1时,指数函数在(??,??)单调递增;当0?a?1时,指数函数在(??,??)单调递减.
对数函数y?logax(a?0,a?1),当a?1时,对数函数在(0,??)单调递增;当0?a?1时,对数函数在(0,??)单调递减.
幂函数y?x?图象永远过(1,1),且当??0时,在x?(0,??)时,单调递增;当??0时,在
x?(0,??)时,单调递减.
【规律方法技巧】
指数值和对数值较大小,若指数值有底数相同或指数相同,可以考虑构造指数函数和幂函数和对数函数,通过考虑单调性,进而比较函数值的大小;其次还可以借助函数图象比较大小.若底数和指数不相同时,可考虑选取中间变量,指数值往往和1比较;对数值往往和0、1比较. 【考点针对训练】
1. 【吉林省实验中学20XX届高三第九次模拟】已知a?log23,b?2,c?log13?131,则a、b、c的30大小关系是
A. c?a?b B. a?c?b C. a?b?c D. c?b?a 【答案】A
1?1?2. 【天津市耀华中学20XX届高三第一次校模拟】若a?ln, b???, c?23,则( )
2?3?0.81A. a?b?c B. a?c?b C. c?a?b D. b?a?c 【答案】A
1?1?【解析】由题意可得: a?ln?0,0?b???2?3?本题选择A选项.
【考点2】指数函数的图象和性质 【备考知识梳理】
0.81,c?2131,则: a?b?c.
y=ax a>1 00时,y>1;x<0时,0
1、 研究指数函数性质时,一定要首先考虑底数a的范围,分a?1和0?a?1两种情况讨论,因为两种情况单调性不同,相应地图象也不同.
2、与指数函数有关的函数的图像的研究,往往利用相应指数函数的图像,通过平移、对称变换得到其图像.
3、一些指数方程、不等式问题的求解,往往利用相应的指数型函数图像数形结合求解. 【考点针对训练】
1. 【云南省民族中学20XX届高三适应性考试(三)】设函数线
对称,且
,则
__________.
的图象与
的图象关于直
【答案】?2
f?x?2?,x?3 2.【山西省临汾第一中学20XX届高三全真模拟】已知函数f?x??{?1?x??,x?3?2?,则f??4??
A. 1111 B. C. D. 248161.选D. 16【答案】D
【解析】f?-4??f??2??f?0??f?2??f?4??【考点3】对数的运算性质和对数函数的图象和性质 【备考知识梳理】
1.对数的定义:如果ax=N(a?0且a?1),那么数x叫做以a为底N的对数,记作x=logaN其中a叫做对数的底数,N叫做真数. 2.对数的性质与运算及换底公式
(1)对数的性质(a?0且a?1):①loga1=0;②logaa=1;③a(2)对数的换底公式:基本公式logab?logaN=N
logcb (a,c均大于0且不等于1,b>0).
logca(3)对数的运算法则:如果(a?0且a?1),M?0,N?0,那么 ①loga(M·N)=logaM+logaN,②loga3.对数函数的图像与性质
M=logaM-logaN,③logaMn=nlogaM (n?R). N01 图像 定义域 值域 (0,+∞) R 定点 单调性 函数值 正负 过点(1,0) 在(0,+∞)上是增函数 当0
1、 研究对数函数性质时,一定要首先考虑底数a的范围,分a?1和0?a?1两种情况讨论,因为两种情况单调性不同,相应地图象也不同,同时要注意定义域.
2、对一些可通过平移、对称变换作出其图像的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.
3、一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解. 【考点针对训练】
1. 【山东省烟台市20XX届高三适应性练习(二)】已知函数
f?x??2017x?log2017集为( ) A. ???,??x2?1?x?2017?x?2,则关于x的不等式f?3x?1??f?x??4的解
???1??1? B. ?,????? C. ?0,??? D. ???,0? 4??4?【答案】B
【解析】设g?x??2017x?log2017?x2?1?x?2017?x,?g??x??2017?x?log2017g'?x??2017ln2017?x?x2?1?x?2017x??g?x?.x2?1?xx2?1?x?2017?xln2017?0;∴g(x)在R上单调递增,
???x2?1ln2017∴由f(3x+1)+f(x)>4,得g(3x+1)-2+g(x)-2>0.则g(3x+1)>g(?x).∴3x+1>?x,解得x??等式的解集为??1.∴原不4?1?,???.本题选择B选项. ?4? 2.【河北省石家庄市20XX届高三冲刺】已知定义在R上的奇函数f?x?,当x?0时,
f?x??log2?x?1?,则使得f?2x??f?x?1?成立的x的取值范围为__________.
【答案】{x|x??1}
【解析】当x?0时, f?x?在?0,???单调递增,又因为f?x?定义在R上的奇函数,所以f?x?在R单调递增,由f?2x??f?x?1?,所以2x?x?1,得x??1。填{x|x??1}. 【考点4】二次函数的图象和性质 【备考知识梳理】 二次函数的图象和性质 解析式 f(x)=ax2+bx+c(a>0) f(x)=ax2+bx+c(a<0) 图象 定义域 值域 (-∞,+∞) (-∞,+∞) ?4ac-b,+∞? ?4a???b??-∞,-在x∈??上单调递2a??2?-∞,4ac-b? ??4a??b?-,+∞?在x∈??上单调递?2a?减在x∈?-∞,-?上单调2a??递增 2单调性 减;在x∈?-,+∞?上单?2a?调递增 ?b??b?对称性 【规律方法技巧】
函数的图象关于x=-对称 2ab1、分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等. 2、抛物线的开口,对称轴位置定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论. 【考点针对训练】
1.【2017湖南衡阳三次联考】《数学统综》有如下记载:“有凹钱,取三数,小小大,存三角”.意思是说“在凹(或凸)函数(函数值为正)图象上取三个点,如果在这三点的纵坐标中两个较小数之
和最大的数,则存在将这三点的纵坐标值作为三边长的三角形”.现已知凹函数f?x??x?2x?2,
2在?,m2?m?2?上取三个不同的点a,f?a?, b,f?b?, c,f?c?,均存在
?1?3????????f?a?,f?b?,f?c?为三边长的三角形,则实数m的取值范围为( )
A. 0,1 B. ?0,??????2?2?2? C. D. 0,,2????? ??2??2??2?【答案】A
2?0?m?1,故选【解析】由题意可知,∵f?x??x?2x?2,∴x?0或2, ?m?m?2?2,2A.
2x2fx?x?3ef 【2017重庆二诊】已知函数,设关于的方程x???x??mf?x??2.
??12?0?m?R?2e有n个不同的实数解,则n的所有可能的值为( ) A. 3 B. 1或3 C. 4或6 D. 3或4或6 【答案】B
2x【解析】由已知, f??x??x?2x?3e,令f??x??0,解得x??3或x?1,则函数f?x?在
???3?和?1,???上单调递增,在??31,???,?上单调递减,极大值f??3??e3,最小值f?1???2e.
2x综上可考查方程f?x??k的根的情况如下(附函数f?x??x?3e图):(1)当k?6??6或k??2ee3时,有唯一实根; (2)当0?k?66?2e?k?0k?时,有三个实根;(3)当或时,有两个实根;(4)当k??2e33ee12,则由g?k??0,得k?2e2时,无实根.令g?k??k?mk?m?m2?212e2,当m?0时,由
m?m2?k1?212122m?m?2e2?3?6,符号情况(1)e,此时原方程有1个根,由k2?,而
ee32?2e??3,此时原方程有2个根,综上得共有3个根;当m?0时,由?k2?0,符号情况(3)
e3363,又,此时原方程有1个或三个根,由k2??,又?3,符号情况(1)或(2)eeee0?k1??2e??3,此时原方程有两个根,综上得共1个或3个根.综上所述, n的值?0,符号情况(3)
e为1或3.故选B.
【考点5】幂函数的图象和性质 【备考知识梳理】
(1)定义:形如y=x(α∈R)的函数称为幂函数,其中x是自变量,α是常数. (2)幂函数的图象比较
α
(3)幂函数的性质比较
特征 函数 y=x 性质 定义域 R R R [0,+∞) {x|x∈R且y=x2 y=x3 y?x 12y?x?1 x≠0} {y|y∈R且值域 R [0,+∞) R [0,+∞) 非奇非偶函数 y≠0} 奇函数 奇偶性 奇函数 偶函数 奇函数 x∈[0,+∞)单调性 增 时,增;x∈(-∞,0]时,减 【规律方法技巧】
增 增 x∈(0,+∞) 时,减;x∈(-∞,0)时,减 1.幂函数y=x?(??R),其中?为常数,其本质特征是以幂的底x为自变量,指数?为常数,这是判断一个函数是否是幂函数的重要依据和唯一标准.
2.在?0,1?上,幂函数中指数越大,函数图象越靠近x轴(简记为“指大图低”),在(1,+∞)上,幂函数中指数越大,函数图象越远离x轴.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数的图象与坐标轴相交,则交点一定是原点. 【考点针对训练】
1.已知幂函数y?f(x)的图象过点(2,2),则( ) 2A.f(1)?f(2) B.f(1)?f(2) C.f(1)?f(2) D.f(1)与f(2)大小无法判定 【答案】A
?12【解析】设f(x)?xa,则2a?,a??,即f(x)?x2,在(0,??)上是减函数,所以
221f(1)?f(2).故选A.
2m2. 【20XX届湖南省衡阳市高三上学期期末考试】.已知p:幂函数y?m?m?1x在?0,???上
??单调递增; q:m?2?1,则p是q的( )
A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A
【应试技巧点拨】
1.指数运算的实质是指数式的积、商、幂的运算,对于指数式的和、差应充分运用恒等变形和乘法公式;对数运算的实质是把积、商、幂的对数转化为对数的和、差、倍.
2.指数函数y?ax(a?0,且a?1)与对数函数y?ax(a?0,且a?1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.
3.明确函数图象的位置和形状要通过研究函数的性质,要记忆函数的性质可借助于函数的图象.因此要掌握指数函数和对数函数的性质首先要熟记指数函数和对数函数的图象.
4.求解与指数函数有关的复合函数问题时,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归纳为与内层函数相关的问题加以解决.
5.指数函数y?ax(a?0,且a?1)的图象和性质与a的取值有关,要特别注意区分a?1与0?a?1来研究. 6.对可化为a2x?b?ax?c?0或a2x?b?ax?c?0??0?形式的方程或不等式,常借助换元法解决,
但应注意换元后“新元”的范围.
b7.指数式a?N(a?0且a?1)与对数式logaN?b(a?0且a?1,N?0)的关系以及这两种形式
的互化是对数运算法则的关键.
8.在运算性质logaMn?nlogaM (a?0且a?1,M?0)时,要特别注意条件,在无M?0的条件下应为logaM?nlogaM (n?N,且n为偶数).
9.幂函数的图象一定会出现在第一象限,一定不会出现在第四象限,至于是否出现在第二、三象限,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.
n?1.【20XX届河南省新乡市高三第二次模拟】设a?60.4, b?log0.40.5, c?log50.4,则a,b,c的大小关系是( )
A. a?b?c B. c?b?a C. c?a?b D. b?c?a 【答案】B
【解析】由于a?60.4?60?1,0?b?log0.40.5?log0.40.4?1,c?log50.4?log51?0,所以三数
a,b,c的大小关系是a?b?c,应选答案B.
2. 【四川省师范大学附属中学20XX届高三下学期5月模拟】已知函数f?x?的定义域为R且满足
5ln???f?x??f??x?,f?x??f?2?x?,则f?log24?log48?log816?e6??()
??3A. 1 B. ?1 C. D. 0
2【答案】D
【解析】由?f?x??f??x? ,可得f?0??0 ,由f?x??f?2?x? ,得f?4??f??2???f2?? ,
5ln??而f?2??f?0??0 ,所以f?4???f?0??0 , f?log24?log28?log216?e6??f?4??0 ,
??故选D.
3. 【云南省师范大学附属中学20XX届高考适应性月考(八)】若偶函数f?x?在???,0上单调递减,
?11a?log2, b?log4, c?22,则f?a?,f?b?,f?c?满足( )
35A. f?a??f?b??f?c? B. f?b??f?a??f?c? C. f?c??f?a??f?b? D. f?c??f?b??f?a? 【答案】B
【解析】因为函数f?x?为偶函数,所以f?a??f?log23??1???f??log23??f?log23?, 3?1??0?上单调递减,所以f?b??f?log4??f??log45??f?log45?,因为偶函数f?x?在???,5??31f?x?在?0,???上单调递增, 1?log44?log45?log25?log25?log23?log24?2?22,2
所以f?b??f?a??f?c?,故选B.
4. 【吉林省实验中学20XX届高三上学期第二次模拟】已知x1 是方程logax?x?2018(a?0,a?1)的根, x2 是方程ax?x?2018(a?0,a?1)的根,则x1?x2 的值为 A. 2016 B. 2017 C. 2018 D. 1009 【答案】C
5. 【山东省日照市20XX届高三下学期第二次模拟】函数f?x???x?2??ax?b?为偶函数,且在
?0,???单调递增,则f?2?x??0的解集为
A. {x|?2?x?2} B. {xx2,或x??2}【答案】D
【解析】函数f?x??ax??b?2a?x?2b为偶函数,则b?2a?0,故
2 C. {x|0?x?4} D. {xx4,或x?0} f?x??ax2?4a?a?x?2??x?2?,因为在?0,???单调递增,所以a?0.根据二次函数的性质可
知,不等式 f?2?x??0的解集为{x2?x2或2?x??2}?{x|x0或x4},故选D 6. 【河北省20XX届衡水中学押题卷】定义在R上的函数f?x?满足f?x?2??2f?x?,且当
?x2?4x,2?x?3,x??2,4?时, f?x??{x2?2g?x??ax?1,对?x1???2,0?, ?x2???2,1?,使得
,3?x?4,xg?x2??f?x1?,则实数a的取值范围为( )
A. ???,????,??? B. ??【答案】D
【解析】由题知问题等价于函数f?x?在?2,0上的值域是函数g?x?在?2,1上的值域的子集.当
??1?8??1?8??11?1??1???,0???0,?C. ?0,8? D. ???,????,??? 48?4??8? ??????x??2,4?时, f?x??{??x?2??4,2?x?32x?,3?x?4x2,由二次函数及对勾函数的图象及性质,得此时f?x???3,?,2?9???由f?x?2??2f?x?,可得f?x??11f?x?2??f?x?4?,当x???2 x?4??2,4?.则,0?时,243?2a?1?1?39?f?x?在??2,0?的值域为?,?.当a?0时, g?x????2a?1,a?1?,则有{94,解得a?,a?1?8?48?8a?1?34当a?0时, g?x??1,不符合题意;当a?0时, g?x??a?1,?2a?1,则有{???2a?1?98,解得111??a??.综上所述,可得a的取值范围为 ???,????,???.故本题答案选D.
448??ex?e?x7. 【20XX届上海市虹口区高三4月二模】已知函数f?x??, x1、且x1?x2?0, x3?R,x2、
2x2?x3?0, x3?x1?0,则f?x1??f?x2??f?x3?的值(______)
A.一定等于零. B.一定大于零. C.一定小于零. D.正负都有可能. 【答案】B
【解析】由已知可得f?x? 为奇函数,且f?x?在R 上是增函数,由x1?x2?0?x1??x2?
f?x1??f??x2???f?x2?,同理可得f?x2???f?x3?, f?x3???f?x1??f?x1??f?x2?
?f?x3????f?x2??f?x3??f?x1???f?x1??f?x2??f?x3??0.
8. 【山东省枣庄市第三中学20XX届高三全市“二调”】已知定义在R上的函数f?x?满足
f?x?1??f?1?x?,且当x??0,1?时, f?x??log2?x?1?,则f?31??( ) f??x???f?x?,
A. 0 B. 1 C. ?1 D. 2 【答案】C
9. 【四川省成都市9校20XX届高三第四次联合】已知函数f?x??x?ax(
21?x?e, e为自然ex对数的底数)与g?x??e的图象上存在关于直线y?x对称的点,则实数a取值范围是
A. ?1,e?? B. ?1,e?? C. ?e?,e?? D. ?e?,e?
eeeee??1????1????11????1??【答案】A
2x【解析】因为函数f?x??x?ax与g?x??e(e为自然对数的底数)的图象上存在关于直线y?x对称的点,所以函数f?x??x?ax与h?x??lnx的图象有公共点,则x2?ax?lnx有解,即
2x2?lnx?1lnxlnx?1?a?x??0有解,令F?x??x?,则F??x??在,1?成立, 2?xxx?e?x2?lnx?1lnx?1?Fx?x?F??x???0在上成立,即在?,1?单调递减,在?1,e?上单调递增,1,e????xx2e??且F?e??e?,F???e+,F?1??1,所以1?a?e?1e?1??e?1e1;故选A. e10. 【内蒙古集宁一中20XX届高三第一次月考】设f?x?是定义在R上的周期为2的函数,当
?4x2?2,?1?x?0,,则x???1,1?时, f?x??{x,0?x?1,【答案】1
?3?f???____________. ?2??3??3??1??1?【解析】由题意可得:f???f??2??f?????4?????2?1 . ?2??2??2??2?11. 【20XX届山东省济宁市高三下学期3月模拟】定义在R上的奇函数f?x?满足
2f?x?2???A.
1x,且在?0,1?上f?x??3,则f?log354??( ) f?x?3232 B. C.? D.? 2323【答案】B
【解析】 由题意可得f?x?4???11???f(x),即函数f?x?是周期为4的周期
1f?x?2??f?x?x函数,又f?x?是R上的奇函数,在?0,1?上f?x??3,故
f?log354??f??log3?27?2????f?3?log32??f??4?3?log32??f??1?log32?2?log322??f?log3??33?
3?3?12. 【20XX届浙江省杭州市高三第二次质检】若直线x?m(m?1)与函数
f(x)?logax,g(x)?logbx的图象及x轴分别交于A,B,C三点,若AB?2BC,则( )
A.b?a2或a?b2 B.a?b?1或a?b3 C.a?b?1或b?a3 D.a?b3 【答案】C
【解析】由题意可知A?m,logam?,B?m,logbm?,C?m,0?,?AB?2BC,?logam?3logbm
?1或logam??logbm,?logmb?3logma 或logma??logmb,?b?a3或a?b.故选C.
13. 【20XX届山东省枣庄市高三12月】2若函数y?logax(a?0,且a?1)的图象如右图所示,则下列函数正确的是( )
A.【答案】B
B. C. D.
【解析】由函数y?logax(a?0,且a?1)的图象可知,函数a?3,则下图中对于选项A,y?3?x是减函数,所以A错误;对于选项B,y?x3的图象是正确的,故选B.
14. 【20XX届四川南充高中高三4月模拟三】已知函数f?x??2x?2?x,若不等式
f?x2?ax?a??f?3??0对任意实数x恒成立,则实数a的取值范围是 .
【答案】?2?a?6
15. 【20XX届山东省济宁市高三下学期3月模拟】若函数y?f?x?图象上不同两点M,N关于原点对称,则称点对?M,N?是函数y?f?x?的一对“和谐点对”(点对?M,N?与?N,M?看作同一对
x??e,x?0“和谐点对”),已知函数f?x???2,则此函数的“和谐点对”有( )
x?4x,x?0??A.3对 B.2对 C.1对 D.0对 【答案】
【解析】由题意知函数f?x??x?4x,x?0关于原点对称的图象为?y?x2?4x,即
2作出两个函数的图象如图, y??x2?4x,x<0,
由图象可知两个函数在x<0上的交点个数只有2个,所以函数f?x?的“和谐点对”有2个,故选B.
【一年原创真预测】 1. 已知函数f(x)???1?loga(x?2),x?0是奇函数,则方程g(x)?2的根为( )
?g(x),x?0
A.?3313 B.?6 C. ?6,? D., 2262【答案】B
【解析】因为函数f(x)为R上的奇函数,所以f(0)?0,即1?loga2?0,解得a?2.所以
?1?log2(x?2),x?0.方程g(x)?2,即f(?x)??g(x)??2.当x?0时,有f(x)??g(x),x?0?1?log2(?x?2)??2,整理得log2(2?x)?3,解得x??6.综上,方程的根为?6,故选B.
【入选理由】本题考查函数的奇偶性、分段函数求值以及对数运算等基础知识,意在考查基本的运算能力.此题难度不大,考查基础,故选此题.
2. 设s,t是不相等的两个正数,且as?slnt?at?tlns,则s?t?st的取值范围为( ) A.(??,1)B. (??,0)C.(0,??)D.(1,??) 【答案】D
【解析】由已知s?slnt?t?tlns可得
1?lnt1?lns1?lnx?(x?0),则.设f(x)?tsxf?(x)??lnx.当x?(0,1)时,f?(x)?0,函数f(x)单调递增;当x?(1,??)时,f?(x)?0,函2x数f(x)单调递减.如图,作出函数f(x)的图象,由题意f(s)?f(t),所以s,t为方程f(x)?m的两个不同的解.不妨设s?t,则0?t?1?s,故s?t?st?1?(s?1)(1?t)?0,所以s?t?st?1.故选D.
【入选理由】本题考查条件代数式的取值范围、对数函数、函数的单调性与单调性的应用等,意在考查基本的逻辑推理能力和运算能力、数学的应用意识等.此题通过转化,将等式问题转化为函数问题,故选此题.
3. 已知函数f(x)?ax+2x?1,若命题:存在x1,x2∈(-∞,2],使则实数a的取值范围为( ) A.[?,0) B.[?【答案】A
【解析】由题知?x1,x2∈(-∞,2],使
2f(x1)?f(x2)≤0为假命题,
x1?x212111,0)?(0,??) C.(??,?] D.[,??) 222
f(x1)?f(x2)>0是真命题,即f(x)在(-∞,2]上是增函数,
x1?x2?a?01?所以?1,解得??a?0,故选A.
2??2??a【入选理由】本题考查二次函数、函数的单调性的判断,命题等,意在考查基本的逻辑推理能力和运算能力、数学的应用意识等.此题难度不大,符合高考考试题型,故选此题.
4. 函数f?x?是定义在R上的奇函数,对任意的x?R,满足f?x?1??f?x??0,且当0?x??时,
f?x??3x?1,则f(log318)?f?4??_________.
【答案】6
【解析】由已知得f?x?1???f?x?,所以函数的周期T?2,f(log318)?
f(log32?2)?f(log32)?3log32?1?3?2?6,而f?4??f?0??0,所以f(log318)?f?4??6.
【入选理由】本题考查函数周期性、对数运算等基础知识,意在考查转化与化归、运算求解能力.此题难度不大,故选此题.
5. 已知函数f(x)?x|x?2|,则不等式f(2?ln(x?1))?f(3)的解集为_______. 【答案】(?1,1?1) e y321t-1O123
【解析】画出函数f(t)?t|t?2|的图像如图,结合图像可以看出当t?3时,f(t)?f(3).则问题转化为2?ln(x?1)?3,即ln(x?1)??1,也即0?x?1?11,所以?1?x??1. ee【入选理由】本题考查函数的图像和性质及对数不等式的解法等基础知识,意在考查转化化归思想、数形结合思想及运算求解能力和分析问题解决问题的能力.本题综合考查了对数函数的性质,出题角度新,故选此题.
正在阅读:
2018年高考数学专题23基本初等函数理05-31
15万吨年聚醚(9万吨年PPG聚醚、6万吨年POP聚醚)扩能项目 - 图04-26
毛泽东思想、邓小平理论和“三个代表”重要思想概论(全真模拟演练)含答案10-14
我是一个爱劳动的孩子作文300字07-12
教科版五年级语文上册单元备课01-07
10大锂电池电动车品牌排名08-24
第4讲国防动员11-27
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 初等
- 数理
- 数学
- 基本
- 高考
- 专题
- 2018
- 资料NO.2 托福写作常见语法及高分句型 改错练习
- 汤宇卿,城市居住区规划设计规范和容积率管理课件201609 - 图文
- 游园会新闻稿
- 工商业联合会年工作要点
- 做孩子心灵成长的引领者
- 工程经济学作业(2011)
- 燃气输配设计说明书
- 关于组建专职消防队的方案
- 专题一 选填压轴专题(1)
- 希望之星英语风采大赛初中组即兴演讲题目
- 生物化学《DNA复制的基本特征》说课方案
- 2018-2023年中国锂电池产业市场竞争现状调查与投资发展趋势研究
- 《波谱分析》南京工业大学期末复习1
- 计算机网络管理员高级操作题
- 房地产开发企业税务稽查预案222
- 2015年春季工务系统高速铁路专业知识网络培训思考题 - 图文
- 初中语文基础知识点归纳
- 商务星球版地理七上《气温的变化与分布》word同步测试
- 《金刚经》的现代意义
- 2016电大形考02格力电器运营能力分析