重型板式给料机论文

更新时间:2024-01-09 17:30:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

洛阳理工学院毕业设计(论文)

理 工 学 院毕 业 设 计(论 文)

题目 重型板式给料机

ZB 2000X10000 姓 名 : 邵成辉 系 (部):机械工程系 专 业 :机械设计与制造 指导教师:王荣先

2011年 5 月 4 日

I

洛 阳

洛阳理工学院毕业设计(论文)

重型板式给料机

摘 要

本课题主要针对物料输送而设计的板式输送机。板式输送机主要由驱动装置、主轴装置、链板链条装置、尾轮张紧装置、机架和驱动装置组成。本设计通过对原始数据的分析、方案的论证比较和有关数据的分析计算,完成了板式输送机的总体设计计算,在此基础上完成板式输送机机体的结构尺寸、驱动转轴的结构尺寸、输送量、牵引力、输送机电动机的功率的计算和说明,系统介绍了设计所依据的原理及如何进行设计,并简单介绍板式输送机的安装方式,保养周期。

关键词:重型板式输送机、电动机、装置

II

洛阳理工学院毕业设计(论文)

HEAVY-DUTY SLAT FEEDER

ABSTRACT

【从这里键入英文摘要内容】The

main is sues for the design of material

handling and conveyor plate. Plate conveyor head round the main device, the chain plate scale devices, the end of round tensioning device, rack and drive components. The design of the original data analysis, program evaluation data comparison and analysis of the completed design of the conveyor plate calculated on the basis of the plate conveyor structure of the body size, structure size drive shaft, transmission the amount of traction, conveyor motor and the power calculation shows that the system introduced by the principles of design and how design

KEY WORDS: Heavy-duty slat feeder、 Tensioning 、 Device

III

洛阳理工学院毕业设计(论文)

目 录

前 言 ................................................................................................ 1 第1章 给料机结构简介 ................................................................... 3

1.1 用途和适用范围 .................................................................... 3

1.2 技术特性 ......................................................................... 3 1.3工作原理 .......................................................................... 3 1.4机器结构及组成部件 ....................................................... 4 1.4.1 驱动装置 ...................................................................... 4 1.4.2 主轴装置 ...................................................................... 4 1.4.3 拉紧装置..................................................................... 4 1.4.4 链板装置..................................................................... 4 1.4.5 机架 ............................................................................ 4 1.4.6 支重轮 ........................................................................ 5

第2章 给料机安装调试和维护 ....................................................... 6

2.1 给料机安装 ........................................................................... 6

2.1.1 安装顺序 ...................................................................... 6 2.1.2 机架安装 ...................................................................... 6 2.1.3 主轴装置和拉紧装置、支重轮和拖链轮的安装 .............. 6

2.1.4 链板装置的安装 ........................................................... 6 2.1.5 驱动装置安装 ............................................................... 7 2.2 机器调试 ............................................................................... 8

2.2.1 调试内容..................................................................... 8 2.2.2 机器操作和使用 ......................................................... 8 2.2.3 机器润滑..................................................................... 9

第3章 重型板式给料机链条拉力的分析及计算 .......................... 10

3.1驱动轮圆周力Fu计算 ......................................................... 10

3.2链条拉力的计算 ............................................................ 13 3.3料层厚度和驱动轮圆周力的关系 ................................. 15

第4章 主轴设计 ............................................................................. 19

IV

洛阳理工学院毕业设计(论文)

4.1 主轴装置 ............................................................................. 19

4.1.1 主轴设计 .................................................................... 19 4.1.2 按许用应力校核轴的强度 ......................................... 20 4.1.3 主轴轴承校核 ........................................................... 21 2.3.1 ×××××× ...................................... 错误!未定义书签。 2.3.1 ×××××× ...................................... 错误!未定义书签。 1.1.2 ×××××× ......................................... 错误!未定义书签。 1.1.3 ×××××× ......................................... 错误!未定义书签。 ××××× .......................................................... 错误!未定义书签。 第5章 拉紧装置 ............................................................................. 23

4.1 ×××××× ................................................................................. 23

4.1.1 ×××××× ........................................................................ 23 4.1.2 ×××××× ........................................................................ 23 4.2 ×××××× ................................................................................. 23 第6章 减速器设计 ......................................................................... 24

5.1 减速器结构设计 .................................................................. 24

5.1.1 ×××××× ........................................................................ 24 5.1.2 ×××××× ........................................................................ 24 5.2 ×××××× ................................................................................. 24

5.2.1 ×××××× ........................................................................ 24 5.2.2 ×××××× ........................................................................ 24

结 论 .............................................................................................. 25 谢 辞 ................................................................................................ 26 参考文献 .......................................................................................... 27 附 录 .............................................................................................. 29 外文资料翻译 .................................................................................. 30

V

洛阳理工学院毕业设计(论文)

前 言

机械制造工艺课程设计是在我们完成了全部基础课、技术基础课、大部分专业课以及参加了生产实习之后进行的。这是我们在进行毕业设计之前对所学各课程的一次深入的综合性的复习,也是一次理论联系实际的训练,因此,它在我们三年的大学生活中占有重要的地位。

通过本次课程设计,应该得到下述各方面的锻炼:

1 能熟练运用机械制造工艺设计中的基本理论以及在生产实习中学到的实践知识,正确地解决机械设计的设计步骤,以及设计方法。

2 提高结构设计的能力。通过机械设计的训练,应当获得有效地、简便的设计方案,设计出高效、省力、经济合理而且能满足要求的机械结构。

3 学会使用手册及图表资料。掌握与本设计有关的各种资料的名称、出处、能够做到熟练运用。

本设计设计的设计题目是重型板式给料机。重型板式给料机广泛用于采矿、冶金、建材和煤炭等行业。该机主要用于具有一定仓压的料仓和漏斗下面,将各种大容量物料短距离、均匀、连续的送给各种破碎、筛分或运输设备,特别是用在初破以下更为合适。它不仅适用于处理粗粒物料,对细粒物料同样适用,也可在恶劣的环境下完成繁重的工作,对物料粒度成分的变化、温度、粘度、湿度有较大适应性,给料均匀准确可靠。

现代给料机行业正着力加强产、学、研协作的力度,加快用高新技术改造和提升给料水平的步伐,充分利用现代信息和网络技术,与时俱进地创新和发展给料技术。主动与国际给料机厂商联系,争取合资与合作,引进技术,这是改造和发展我国给料机行业较为行之有效的途径。同时国内给料机行业也在不断创新,给料机载重也在不断攀升,驱动装置也由以前的单驱动(即坐驱动或右驱动),出现了双驱动(即左右各有一个驱动装置)。给料速度变化装置也由以前的定速式逐渐向调速式转变,以适用于复杂的工作环境。链板装置长度也在不断加长,由以前的1000mm逐渐发展到现在的3150mm。

就我个人而言,通过这次设计,基本上掌握了机械设计的基本规程,以及基本设计重点,并学会了使用和查阅各种设计资料、手册、和国家标准等。

1

洛阳理工学院毕业设计(论文)

最重要的是综合运用所学理论知识,解决现代实际与设计的问题,巩固和加深了所学到的东西。并在设计过程中,学到了很多课堂上没有学到的东西。大学三年的学习即将结束,在我们即将踏入社会之前,通过课程设计来检查和考验我们在这几年中的所学,同时对于我们自身来说,这次课程设计很贴切地把一些实践性的东西引入我们的设计中并把我们平时所学的理论知识相与实际联系起来。为我们无论是在将来的工作或者是继续学习的过程中打下一个坚实的基础。

本设计设计的重型板式给料机,给料机型号为ZB 2000X10000,即链板底部内侧宽度为2000mm,驱动轴心线至拉紧轴心线距离为10000mm。我设计的过程中遇到了一些技术和专业知识其它方面的问题,再加上我对知识掌握的程度,所以设计中难免会有一些不足之处, 为了更加提高我今后的设计质量,希望在考核和答辩的过程中得到各位指导老师的批评和谅解。

2

洛阳理工学院毕业设计(论文)

第1章 给料机结构简介

1.1 用途和适用范围

重型板式给料机广泛用于采矿、冶金、建材和煤炭等行业。该机主要用于具有一定仓压的料仓和漏斗下面,将各种大容量物料短距离、均匀、连续的送给各种破碎、筛分或运输设备,特别是用在初破以下更为合适。它不仅适用于处理粗粒物料,对细粒物料同样适用,也可在恶劣的环境下完成繁重的工作,对物料粒度成分的变化、温度、粘度、湿度有较大适应性,给料均匀准确可靠。在使用中不允许卸空物料即大块物料直接冲击链板表面,更不允许在链板表面爆破。该机根据需求方需要可设计不同的安装角度,安装角度在0°—25°之间。

1.2 技术特性

规格 ------------------------------------------------------------2000X10000 链板宽度--------------------------------------------------------2000mm 链轮轴心线至拉紧轴心线距离------------------------------10000mm 生产能力--------------------------------------------------------800~3850t/h 物料容重--------------------------------------------------------1.45t/m3 物料粒度--------------------------------------------------------≤70mm 给料速度--------------------------------------------------------0.04~0.17m/s 安装倾角--------------------------------------------------------15° 电动机

型号--------------------------------------------------------Y250M-4 功率--------------------------------------------------------2X55KW

1.3工作原理

机器运转由电动机的转动经过联轴器、减速机带动主轴装置旋转,并通过主轴上的链轮与链条啮合带动链条上的链板作直线运动,达到将链板上的物料送给各种破碎、筛分或运输设备的目的。

驱动装置直交减速机中装有逆止器,防止机器停时发生倒转。通过变频

3

洛阳理工学院毕业设计(论文)

装置调整给料机速度。

1.4机器结构及组成部件

该机器由驱动装置、主轴装置、拉紧装置、链板装置、机架、支重轮、拖链轮等部件组成。

1.4.1 驱动装置

驱动装置是由主电机、联轴器、直交行星减速机、驱动机架、扭矩杆等组成。主要功能是为给料机提供动力来源。

1.4.2 主轴装置

主轴装置主要由主轴、轴承、轴承座、定位套、链轮等部件组成。主要作用是将驱动装置产生的扭矩传递给链轮,然后由链轮带动链板。

1.4.3 拉紧装置

拉紧装置是一种螺旋丝杆拉紧机构,主要作用是将链板拉紧,使之具有一定的预紧张力。它是由拉紧轴、链轮、定位套、可滑动的轴承座、丝杆、紧固螺母等部件组成。

1.4.4 链板装置

链板装置是由链轨、槽板、及螺栓等部件组成。主要作用是运载物料。链板为单元弧搭接形式,采用低合金钢板焊接而成,强度高,耐磨损,不漏料。链轨为大批量生产的简易链轨。链轨与链板为螺栓连接,其特点是结构误差小,运动平稳,强度高,拉力大,无需润滑。

1.4.5 机架

机架是由钢板焊机而成的工字型结构,在上下板之间焊有若干筋板,两个工字型主梁由槽钢焊为一体,其结构坚固可靠。

4

洛阳理工学院毕业设计(论文)

1.4.6 支重轮

支重轮是由轴座、密封圈、滚轮、滚动轴承、压盖等部件组成。主要用于支撑来回链板和链轨,防止链板因过大的挠度而影响正常的工作。

5

洛阳理工学院毕业设计(论文)

第2章 给料机安装调试和维护

2.1 给料机安装

给料机安装是指将给料机从一个个零部件组装成成品的过程。安装必须在专业人员的指导下进行,切勿盲目进行。 2.1.1 安装顺序

第一步:安装机架(此时主轴、拉紧装置、支重轮、拖链轮都应安装在机架上);

第二部:安装链板装置,此时拖链轮已安装好,通过计算算出链条节数; 第三部:安装驱动装置。

2.1.2 机架安装

机架一般安装在储料仓或漏斗下面的基础上,通过预埋螺栓与机架连接,如果不用螺栓连接,基础应设预埋钢板。预埋焊接的方法是将机架焊在预埋钢板上。

2.1.3 主轴装置和拉紧装置、支重轮和拖链轮的安装

主轴装置和拉紧装置吊放在机架上,装上连接螺栓调整轴承座,使链轮轴线与机架中心线的垂直度不大于其跨距的1/1000,水平度不大于1/1000。安装拉紧装置时拉紧装置轴心线与水平面的平行度不得大于其跨距的1/1000。安装拉紧装置时,应先把拉紧轴承座安装在轴上,然后把轴整体吊起安装在指定部位。安装支重轮,各支重轮的母线在机架横向与水平面的平行度不得大于链板宽度的1/1000。安装拖链轮时,各拖链轮的母线在机架横向与水平面的平行度不得大于链板的1.5/1000.

2.1.4 链板装置的安装

调整拉紧装置的螺栓,使拉紧装置在行程的最小位置上,在机架下面用钢板或槽钢将链板装置垫起,使链板的侧板与拖链轮高度一致,然后吊起链板一端,使链板由一端向另一端滑动。当移动到一定距离时,再将另一端链

6

洛阳理工学院毕业设计(论文)

板接上,该链条活节销轴与连接之间配合公差较松,用手锤敲打,即可将活节销轴装入链节。安装活节时,活节处应留有标记,以便维护拆装。装上第二段链板装置后,采用上述办法将链板继续吊装,待两端外漏链板装置长度基本相同时,可将另一端链板吊到机架上部,继续吊装链板装置直到将两段链板装置全部吊装上,首位连接为止。调整拉紧装置的螺杆,保证链板装置松紧适度,回程段自由过渡。

2.1.5 驱动装置安装

按图上位置和尺寸安装驱动装置。安装前应将减速机输出轴内孔和主轴装置连接部位表面清洗干净,并除掉污垢。扭矩杆焊接在机架上,然后吊起整个装置,准确的安装在主轴装置的伸出轴上,随后拧紧锁紧盘上的螺栓及装配支撑,锁紧盘拧紧力矩为1210N.m。锁紧盘如图2-1。

图 2-1 锁紧盘结构图

7

洛阳理工学院毕业设计(论文)

2.2 机器调试

调试是安装机器的最主要的内容,调试的好坏直接影响机器的运转状

态,调试一定要在专业人员的指导下进行。 2.2.1 调试内容

1.本机试车前必须检查减速机旋转方向,应与运料方向一致,不允许反向旋转。

2.减速机按油标位置注入适量润滑油,润滑油必须是经过过滤的清洁油。

3.调整拉紧装置使链板有一定的张力,得到最小的链板垂度,并保证链轮能很好的啮合。但要尽可能使两个拉紧丝杆的拉力近似相等。 4.检查链板装置的螺栓是否拧紧,严禁松动,否则会生故障,损坏机器。 5.当链板装置装配到机架上后,应重新将螺栓拧紧,拧紧力矩为550N.M。装载运转100小时后再重新将螺栓按拧紧力矩为550N.M拧紧。 6.经常检查链板装置上的螺栓,如有松动及时拧紧。 2.2.2 机器操作和使用

机器试运转前应做到以下几点:

1. 检查地脚螺栓是否拧紧,或预埋件是否焊接牢靠。 2. 检查机器各部件连接是否可靠无误。 3. 检查驱动装置油位。 4. 检查链板拉紧情况。

5. 经常检查链板装置的联结螺栓,严禁在松动情况下运转机器。 6. 低速启动空载运行,检查正常无误后,逐渐达到正常运转速度,并运行若干小时(时间长短视情况而定)。 7. 空载运转检查无误后,方可进行有载运转。

8. 第一次装载大约20t碎石或其他小块物料,这些物料可视为对链板的保护也可视作大块无聊的缓冲层。-

9. 如果对潮湿物料,在低温情况下长期停车,可能在料仓中和链板面上发生冻结需卸空时必须卸空,但是再次启动时应按8方式进行填充。

8

洛阳理工学院毕业设计(论文)

2.2.3 机器润滑

1.直交和行星减速机采用油池润滑。

2.主轴装置、拉紧装置、支重轮、拖链轮上的轴承座及直交减速机上的逆止器采用人工注入润滑脂进行润滑。润滑周期及润滑油牌号见下表

序号 1 润滑部润滑一次加油量换油时间 位 减速机 方式 换油 (L) 51 第一次300h 润滑油或润滑脂牌号 N220齿轮油 第二次以后每隔GB59903-86 3000h换油一次 2 减速机加油 逆止器 3 主轴装加油 置轴承座 4 拉紧装加油 置轴承座 5 支链轮 加油 0.015 (每个轮) 6 支板轮 加油 0.015 (每个轮) 7 拖链轮 加油 0.01 (每个轮)

0.03 24h 3号锂基润滑脂 GB7324-87 0.12(两点) 3000h 3号锂基润滑脂 GB7324-87 0.08 3000h 3号锂基润滑脂 GB7324-87 3000h 3号锂基润滑脂 GB7324-87 3000h 3号锂基润滑脂 GB7324-87 3000h 3号锂基润滑脂 GB7324-87

9

洛阳理工学院毕业设计(论文)

第3章 重型板式给料机链条拉力的分析及计算

板式给料机是物料破碎系统中的给料设备之一,分重型、中型和轻型,现在常用的是重型。重型板式给料机适于短距离输送运量和粒度较大的物料,也可作为缓冲料仓向初级破碎机给料,可以连续、均匀地向下道工序给料,能承受较大的料仓压力,它的特点是给料能力大、低速、大扭矩。

重型板式给料机的工作原理是通过电机带动主动链轮转动,从而带动链条运动,通过链板的载料,最终达到运送物料的目的。所以在重型板式给料机的设计中,首先要计算出链条的牵引力。一般重型板式给料机链条选型相对比较容易,但是大型重型板式给料机(长度大于20m)链条的选择对整机的工作性能和设备成本都有较大的影响,需要对链条所受的拉力进行比较详细的计算,通过分析和计算来调整和降低链条的拉力,以选择合适的链条。为此本文以移动式破碎站中的大型重型板式给料机为例,分析链条牵引力的组成,并计算不同的给料厚度对链条拉力的影响。

3.1驱动轮圆周力Fu计算

驱动链轮传给链条的圆周力Fu与运动过程中的摩擦阻力Fc和坡度阻力Fp相平衡,即

Fu=Fc+Fp

1.摩擦阻力Fc是各部分摩擦力的合成,主要包括主要摩擦阻力Fm、附加阻力Ff、物料与挡板的摩擦阻力Fb,即

Fc=Fm+Ff+Fb

10

洛阳理工学院毕业设计(论文)

a0=0.5m aU=0.8m t=0.317m R=0.514m

(1)给料厚度=1.8m时

式中 B——给料宽度

Ff=0.075Fm=2543kg Fb=?γH2L1=133358kg

Fp=qGLlsinδ=9060×28×sin25°=107210kg 则Fu=Fm+Ff+Fb+Fp=277020kg qBLsinδ=20886kg

承载分支

16

洛阳理工学院毕业设计(论文)

回程分支 取FV1和FV2两者的较大值。 则Fk=277020+20886+12263+4028=314197kg 主轴轴功率(2)运量不变,给料厚度H=1.6m时 则Fm=31384kg,Ff=2354kg,Fb=105370kg,Fp=95435kg 则Fu=234543kg,qBLsinδ=20886kg,244kg主轴轴功率 N=Faxv?356kw 102,Fd=4679kg,Fk=271(3)运量不变,给料厚度H=1.4m时 17

洛阳理工学院毕业设计(论文)

则Fm=28839kg,Ff=2163kg,Fb=80674kg,Fp=83567kg 则Fu=195243kg,qBLsinδ=20886kg,

,Fd=5574kg,Fk=231703kg

(4)主轴轴功率

由以上的计算可知,当料层厚度由1.8m降为1.6m时,即料层厚度下降11%时,链条的速度提高14%,圆周驱动力下降15%,链条拉力下降13.5%,功率下降5%。当料层厚度由1.8rn降为1.4m时,即料层厚度下降22%,链条的速度提高28%,圆周驱动力下降30%,链条拉力下降26%。功率下降10%。可见在运量不变的前提下,随着重型板式给料机给料厚度的下降,链条速度提高,电机的功率下降不多,而链条上的驱动圆周力和链条拉力却下降较大。所以在设计时,控制并选择合适的给料厚度对链条选型和寿命有较大的影响

18

洛阳理工学院毕业设计(论文)

第4章 主轴设计

4.1 主轴装置

主轴装置是给料机上的重要部件,它是驱动装置和链板装置的链接纽带,驱动装置通过与主轴键连接将扭矩传递给主轴上的链轮,链轮通过链条带动重板行走。 4.1.1 主轴设计

1.按许用扭转应力初估轴的直径

3d≥A

p=(107~98)n386.24=280.76~262.64mm 4.5考虑到轴上键槽直径增大3%,则d=289.18~270.52 则取主轴最小直径d=280mm 2.轴的结构设计

根据装配要求,主轴应为阶梯轴,并且左右对称。从中间到两边,拟定装配零件依次为拉链轮、定位套、轴承和轴承座、减速机。拉链轮为双键,减速机为单键,根据各部件结构和尺寸,逐段确定主轴各段直径和长度,画出轴的结构件图4-1:

图4-1

(1) 装减速器段。如图Ⅰ-Ⅱ段,设计与减速器主轴连接长度为

245mm,决定轴段长度为240mm,直径为主轴最小直径280mm。 (2) 装轴承段。如图Ⅱ-Ⅲ段,拟定轴承为调心滚子轴承,轴承代号

23060(d=300mm D=460mm B=160mm)。两端均有端盖,轴承

19

洛阳理工学院毕业设计(论文)

一端用轴肩定位,另一端用卡簧定位。端盖厚度20mm,端盖与轴承间隙15mm。则L1=160+(20+15)X2=220mm 再加上轴要有一部分外伸距离所以定该段轴长230mm,直径300mm。

(3) 装拉链轮段。如图Ⅲ-Ⅳ段,拉链轮一端用轴肩定位一端用定位套

定位。链轮与主轴为双键连接。轮齿部位厚度L=80mm,与轴连接部位厚度170mm。

(4) 轴环段。如图Ⅳ-Ⅴ,由于重板驱动装置左右对称,双驱动,所

以轴为对称轴左右对称,两链轮中心距2080mm,所以定轴总长3340mm。

4.1.2 按许用应力校核轴的强度

1.由轴的结构草图,可确定支撑跨距,拉链轮,中间平面位置及连接减速器的悬臂尺寸,并按拉链轮转动方向画出轴的受力图如图4-2 a。

图4-2

20

洛阳理工学院毕业设计(论文)

2. 做出水平受力图及弯矩图如图4-2 b ,c。 Rh=

11Fr=X27380.24=13690.12N 22 Mhc=RhX0.24=13690.12X0.24=3085.63N.m

由于机器在运转时主要受水平拉力,垂直拉力只是主轴的自重,对计算结果影响不大所以忽略不计。

3. 做出转矩图如图4-2d T=9.55X106P86.24=9.55X106=1.177X107N.m n70已知轴材料为40Cr,调质处理,由参考资料查得δb=650MPa,「δb-1」=60 MPa,由于转矩有变化,按脉动考虑,取α=0.6.

αT=0.6X1.177X107=7.062X106N.m

4. 求出当量弯矩,做出弯矩图,如图4-2e。 Mec=αT=7.062X106 N.m 5 . 校核轴的强度

受载荷最大的截面在拉链轮处,此处有双键槽按W=

?32d3bt(d?t)2?计算。

dMeMe7.062X1066?e=?2.2X10==2.2MPa ?23.2W?3bt(b?t)d?32d?e<「δb-1」=60 MPa,所以该截面的强度满足要求。

4.1.3 主轴轴承校核

鉴于滚动轴承有如下的优点,摩擦系数小,启动力矩小,效率高;轴向尺寸较小;某些能同时承受径向和轴向载荷,可使机器结构简化紧凑;润滑简单,耗油量少,维护保养方便;径向间隙小,通过预紧消除间隙,运转精度高;它是标准件,易于互换.。因为本设计采用双驱动形式,为了最大限度减少轴的弯曲度,所以本设计选用调心滚子轴承,轴承代号24060CC/W33。

21

洛阳理工学院毕业设计(论文)

由于两轴承承载载荷基本相同所以只校核一个轴承。

对24060CC/W33轴承进行校核 Cr=2360KN C0r=5010KN 1. 滚动轴承的当量载荷 Por=Fr

Fr= 27382.24 N

Fа/ Fr=4.06>e=0.31 则 X=0.56 Y=2.0 且

Fа/ C0r=0.020

P=0.56XFr+2XFа=15335.04N 2. 轴承的寿命 Lh10?16670C?16670236010/3()?()?80911.11h nP24.28556.21假设机器每天工作14小时,工作10年总时间为

H=14X365X10=51100h<80911.11h

所以轴承寿命符合要求。 3.轴承的润滑

由于工作环境限制,轴承采用润滑脂润滑。润滑脂为粘稠的胶状物,油膜强度高,能承受较大载荷,且不易流失,容易密封,能够在较长时间不需要补充及更换润滑脂。但润滑脂内摩擦较大,散热性能差,由于本轴承转换速较慢,散热不大,所以很适合用润滑脂润滑。润滑脂装填量一般不超过轴承空间的1/3~1/2,如果装填过多,容易引起摩擦发热,对轴承运转不利。

4.密封

密封方式采用毡圈密封。端盖上有梯形槽,矩形截面的毡圈装入端盖后被挤压呈梯形。槽壁加紧毡圈,使之不能随轴转动,毡圈与轴表面接触而起密封作用。这种密封结构简单,便于安装。

22

洛阳理工学院毕业设计(论文)

第5章 拉紧装置

重板机在工作时

4.1 ××××××

4.1.1 ××××××

……

4.1.2 ××××××

……

4.2 ××××××

……

23

洛阳理工学院毕业设计(论文)

第6章 减速器设计

减速器设计是重型板式给料机设计的关键部分,板式给料机由于工作时运转速度较慢,这就决定减速器速比比较大。同时给料机在工作时由于料仓的压力比较大,也决定减速器输出功率比较大。本设计驱动装置为悬空装配, 具有体积小、速比大、扭矩大、质量轻等特点。由于国标减速器没有与之匹配的型号,故该减速器为单独设计生产。

5.1 减速器结构设计

减速器为直交减速器和行星减速器串联使用,

……

5.1.1 ××××××

……

5.1.2 ××××××

……

5.2 ××××××

……

5.2.1 ××××××

……

5.2.2 ××××××

……

24

洛阳理工学院毕业设计(论文)

结 论

【结论两字格式不需修改。直接在标题下空一行添加内容即可。】

结论是对整个研究工作进行归纳和综合而得出的总结,对所得结果与已有结果的比较和课题尚存在的问题,以及进一步开展研究的见解与建议。结论要写得概括、简短。

25

洛阳理工学院毕业设计论文 an element or chip-separation criterion

The application of non-linear finite element techniques to the simulation of metal forming processes resulted also in finite element modelling of metal cutting processes. More sophisticated models have been developed, mainly aiming at the determination of the residual stress and strain, the temperature distribution and the prediction of the cutting forces. The two methods employed were the Eulerian-based approach, where cutting is simulated from the steady state, avoiding, therefore, the need for a chip-separation criterion, but requiring that the shape of the chip must be known in advance; and the Lagrangian approach, where cutting can be simulated from the incipient to the steady state, allowing for the prediction of the chip geometry and the residual stresses in the workpiece. Note, however, that a chip-separation criterion must be provided, to enable the separation of the chip from the workpiece.

Chip-separation criteria, based on a geometrical consideration, have been suggested in, but see also the criteria based on the critical value of the strain energy density in and the work by Ceretti et al. who developed a cutting model by deleting elements having reached a critical value of accumulated damage.

In almost all of the finite element models developed so far, non-commercial FE codes have been employed. The application of commercial FE codes is, therefore, desirable for the industrial use of the FE method for the simulation of metal cutting processes, by enabling tool makers to optimize cutting tool design, and users to evaluate the effect of cutting process parameters on the quality of machined parts prior to expensive and time-consuming experimental testing.

In the present work, the commercial implicit finite element code MARC was employed to construct a coupled thermo-mechanical finite element model of plane-strain orthogonal metal cutting with continuous chip formation The material is modelled as elastic-plastic, while its flow stress is taken as a function of strain, strain-rate, and temperature, so as to represent the real behaviour in cutting, where strain and strain-rate values, as well as the temperature rise, are large. The entire cutting process is simulated, i.e. from the initial to the steady state, and a geometrical chip-separation criterion, based on a critical distance value at the tool tip regime of the workpiece, is implemented into the MARC code by employing the rezoning feature.

2. Finite element model

The finite element model used for the plane-strain orthogonal metal cutting simulation is based on the updated Lagrangian formulation as provided by the MARC code. The plane-strain assumption constitutes a reasonable approximation, since in real metal cutting processes the width of cut is at least five times greater than the depth of cut, therefore, the chip is produced under nearly plane strain conditions.

The dimensions and the initial finite element mesh of both the workpiece and the tool are shown in Fig.1(a).The upper part of the mesh, which constitutes the workpiece, is finer, to enable the stress, strain, strain-rate and temperature in the chip and the tool tip regime to be accurately predicted. For the dimensions of the rest a coarser mesh is sufficient, as the boundaries of the mesh do not influence the predictions. The vertical displacement of the nodes, Y, at the lower boundary of the workpiece, and the horizontal displacement of the nodes, X, at the left boundary, are zero. The workpiece consists of 1340 four-node isoparametric plane-strain quadrilateral elements and 1428 nodes. This kind of lower-order elements has been proven to be more accurate in analyzing large-strain plasticity problems, compared to higher-order elements with eight nodes.

31

洛阳理工学院毕业设计论文 However , as in this element bilinear interpolation functions are used, the strains tend to be constant throughout the element, resulting in poor representation of the shear behaviour, which is the dominant mode of deformation in cutting. In order to improve the shear characteristics, alternative interpolation functions are used, by employing the assumed strain formulation provided by the MARC code.

Fig.1. Chip formation in simulated orthogonal metal cutting: (a) initial undeformed state; (b) shape of the deformed chip after a tool path of 0.48 mm; (c) shape of the deformed chip after a tool path of 1.44 mm; (d) shape of the deformed chip after a tool path of 2.58 mm.

The tool consists of 425 four-node isoparametric quadrilateral planar heat-transfer elements, as nodes. The lower half of its mesh, expected to be in contact with the chip, is modelled with a finer mesh, in order to be able to predict the temperature field developed in the tool.

2.1. Chip-separation criterion

To investigate the chip formation and its separation from the workpiece, a chip-or element-separation criterion has been implemented into the MARC finite element code. Cutting is supposed to take place at the line representing the undeformed chip thickness, therefore, separation is assumed to occur only at the nodes lying along this line. The criterion for the separation of nodes in front of the tool tip is based on a geometrical consideration. When the tool tip approaches a node within a small critical distance, that node separates from

32

Fig.2. Schematic diagram of the Geometrical separation criterion: (a) before element separation, D > Dc; (b) after element separation, D≤ Dc. 洛阳理工学院毕业设计论文 the workpiece and becomes part of the chip (see Fig.2).

When the distance D, between the tool tip and the node B, becomes equal or less than the pre-defined critical value Dc, a rezoning step is conducted. The connectivity of the element E2 changes and a new node BH replaces the node B in that element. Simultaneously, the coordinates of the nodes B and BH are altered, so that the node B moves upwards along BC by small distance, whilst node BH moves downwards by a small distance along BHF. The algorithm implemented into the MARC code for the implementation of the above mentioned procedure, is shown in Fig.3(a)and is explained with the aid of Fig.3(b).Note that the rezoning feature, which has been used extensively in metal forming problems to define a new mesh when the previous one is distorted due to excess plastic deformation, constitutes a very useful tool for modifying the initial finite element mesh, in a order to model the chip formation using a commercial finite element code.

In the case of metal cutting with a continuous chip, experimental observations reveal that chip formation takes place without a crack extension in front of the cutting tool tip. Furthermore, Fig.3. Pressing: (a) the flow-chart for chip-separation is a continuous process just ahead implementing the geometrical of the tool edge and, therefore, a geometrical separation criterion in simulated separation criterion based on distance is a realistic orthogonal metal cutting; (b) a assumption. Note that comparison of the schematic illustration of the algorithm geometrical separation criterion in modelling the used for the geometrical separation cutting process to other chip-separation criteria, criterion. based on the values of effective plastic strain and strain energy density, is made in.

The value of the critical distance, which in the present work is equal to 3 um and represents 5% of the element length, is taken as small enough to ensure continuous chip formation without causing numerical instability. Note that estimation of a proper value for the critical distance and its effect on the accuracy of the results involves difficulties and, therefore, it can be only validated experimentally.

2.2. Workpiece and tool material modelling

The workpiece material used for the plane-strain orthogonal cutting simulation was mild steel with 0.18% C, modulus of elasticity E=188 G Pa, Poisson's ratio v=0.3 and coefficient of linear thermal expansion c=1.281×10^5mm/mm℃

33

洛阳理工学院毕业设计论文 The material was modelled as isotropic elastic-plastic, with isotropic strain-hardening. In the cutting processes, the deformation of the material in the cutting zone takes place at elevated temperature, and high strains and strain-rates. Therefore, in order to allow for their effect on the material properties, the flow stress of the workpiece is taken as a function of strain, strain-rate and temperature using the constitutive equation taken from Ref.

(1)

(2)

where T (K) is the temperature, e the total strain, e? the total strain-rate, s the flow stress (in M Pa).

Due to the high elastic modulus of the tool material, which is tungsten carbide, the tool is considered as a perfectly rigid body and only a heat-transfer analysis is conducted on it. The physical properties of the mild steel and the carbide are tabulated in Table 1.

2.3. Friction modelling

Experimental observations revealed that the tool/chip interface may be divided into a sticking and a sliding region. Therefore, friction modelling in metal cutting must account for both situations. The friction force is modelled as a distributed tangential force Ft, along the chip/tool inter-face, given by

(3)

where, following the notation, m is the Coulomb friction coefficient, Fn the normal reaction force, Vr the relative sliding velocity between the chip and the tool and t=Vr/∣Vr∣ the tangent unit vector in the direction of the relative velocity. C is a constant representing the relative sliding velocity below which friction force starts dropping considerably to zero: in that way, sticking of the tool rake face is reproduced, by allowing variable very small slips. Table 1

Physical properties of the workpiece and tool material Material Mild steel Density (kg/m3) 7833 Thermal conductivity (W/m ℃) 54 33.5 Specific heat (J/kg ℃) 465 234 Tungsten carbide 12700 2.4. Heat transfer

Knowledge of the temperature distribution in the workpiece, chip and tool, is very important, since it has a great effect on the quality of the surface integrity of the tool wear. The main sources of heating, responsible for the high temperature rise observed in cutting processes, are the plastic work and the friction at the chip/tool interface, which are converted into heat. The rate of specific volumetric flux due to plastic work is given by the equation

(4)

where, following the notation, Wp is the rate of the plastic work, r the density, M the mechanical equivalent of heat to account for a consistent system of units and Wh the percentage of plastic

34

洛阳理工学院毕业设计论文 deformation converted into heat, which usually accounts for about 90%.

The distributed heat flux generated at the interface between the chip and the tool rake face due to friction is described by

(5)

where Ft is the contact friction force and Vr the relative sliding velocity between the chip and the tool rake face. This flux is split into two equal parts, assigned to each of the contacting parts, i.e. the chip and the tool.

Machining is performed at ambient temperature (i.e. the initial temperature of both the workpiece and the tool is 20℃) while the heat losses to the environment from the free surface of the workpiece, due to convection heat transfer, are determined by the distributed heat flux

(6)

where h=17.04 W/㎡℃ is the convection heat-transfer coefficient of the workpiece material, Tw the temperature of the workpiece, To the ambient temperature, taken as 20℃.Heat transfer by radiation is considered insignificant and is not therefore taken into account.

2.5. Process parameters

The tool geometry and the cutting conditions used for the orthogonal metal cutting simulation are presented in Table 2. Table 2

Cutting conditions and tool geometry

Tool rake angle (。) 20 Tool clearance angle (。) 5 Tool edge radius 0 Undeformed chip thickness (mm) 0.27 Width of cut (mm) 3.5 Cutting speed (mm/s) 600 Coulomb friction coefficient 0.4

3. Results and discussion

The cutting tool is advanced incrementally into the workpiece from the initial position, as shown in Fig.1.The chip is formed gradually until steady state is attained, i.e. the cutting force reaches a constant value. Each time the chip-separation criterion is satisfied, the procedure of Fig.2 is followed; the shape of the deformed chip, the cutting forces, the stress, strain and strain-rate distributions in the chip and the workpiece, as well as the temperature distribution in the chip, workpiece and tool, being obtained.

In Fig.1 (b)-(d), the shape of the deformed chip after a tool advance of 0.48, 1.44 and 2.58 mm, respectively, is indicated, the last case representing the steady state of chip formation. The distortion of the initially rectangular elements reveals the expected severe shearing of the material in the chip regime. Also, from the shape of the deformed mesh at the steady state, see Fig.1 (d), cutting parameters such as the shear angle, the deformed chip thickness, the cutting ratio, the chip-tool contact length and chip curling, can be estimated. The distribution of stress, strain, strain-rate and temperature in the deformation zone, which can be hardly are virtually

35

洛阳理工学院毕业设计论文 unmeasurably experimentally, are approximated by the proposed finite element model, these results being in good agreement with reported results of other finite element orthogonal cutting models.

Contours of equivalent plastic strain at steady state, revealing the work-hardening of the chip and the residual deformation in the workpiece, are shown in Fig.4.A maximum value of 1.86 of the plastic strain was obtained at the chip-tool interface, probably due to the severe deformation of the material. At the primary deformation zone, the values of the plastic strain are smaller, starting from a value of 1.273 at the surface of the cut workpiece and decreasing gradually to zero at the sub-surface layer.

Fig.4. Contours of equivalent plastic strain at steady state in simulated orthogonal machining.

36

洛阳理工学院毕业设计论文 Fig.5. Contours of plastic strain-rate at steady state in simulated orthogonal machining.

The corresponding contours of the effective plastic strainrate at steady state are shown in Fig.5.High strain-rates are obtained along the primary deformation zone, with a maximum value of about 6×10^3 s -1 at the tool tip region. The concentration of high strain-rates at the shear plane may be attributed to the fact that the material there suddenly changes its flow direction, as indicated in Fig.1.

Fig.6. Contours of temperature after a tool path of 2.58 mm in simulated orthogonal machining.

Fig.7. Contours of the equivalent stress at steady state in simulated orthogonal machining.

37

洛阳理工学院毕业设计论文 The temperature distribution in the workpiece, chip and tool after a tool path of 2.58 mm, is shown in Fig.6.The highest temperatures in the chip appear at the secondary deformation zone, with a maximum value of 3608C attained in the sliding region. The temperature rise in metal cutting is mainly due to plastic work that is converted into heat. Therefore, taking into account that the highest plastic strains appear at the secondary deformation zone, see Fig.4,it is apparent that the maximum temperatures should be encountered in the same regime. As far as the tool is concerned, the highest temperature attained was 2868C, just above the tool tip. The location of the maximum temperatures in the chip and tool agrees qualitatively with reported experimental observations [22].

Contours of equivalent stress during steady state are shown in Fig.7.A maximum value of 933 MPa was achieved at the secondary deformation zone, near to the sticking region; the related maximum value of stress in the primary deformation zone was 817 MPa, whilst a gradual decrease of stress under the uncut surface, ranging from 700 to 117 MPa, was calculated.

The shear stress contours are presented in Fig. 8. The shear stress changes from tensile in the secondary deformation zone, ranging from 323 to 437 MPa, to compressive in the primary deformation zone, from 357 MPa up to a maximum of 470 MPa. Note that the residual shear stresses in the sub-surface of the workpiece are also compressive, ranging from 17 to 243 MPa.

Fig.8. Contours of the shear stress at steady state in simulated orthogonal machining.

The variation of the simulated cutting and thrust forces with tool travel is shown in Fig. 9. The simulated forces are obtained by summing the horizontal, x, and the vertical, y, external forces of all nodes in contact with the tool rake face over several incremental movements of the cutting tool. Both the cutting and the thrust forces have reached the steady state after a tool path of about 2 mm, their values being 1250 and 420 N, respectively. The experimental cutting force at steady state under the same cutting conditions, taken from [23], is also shown in Fig. 9 and has a value of 1403 N. Comparison between the predicted and the experimental cutting force shows a divergence of

38

洛阳理工学院毕业设计论文 about 11%,which may be considered as an acceptable level of agreement. Comparison between predicted and experimental thrust forces was not made, since experimental thrust force data were not available. Note, however, that the ratio of predicted cutting to thrust force was about 3, which is realistic for a cutting process.

Fig.9. Variation of cutting and thrust forces with tool travel for orthogonal machining: (a) predicted cutting force; (b) predicted thrust force; (c) experimental cutting force, at steady state. The presented FE cutting model is a first attempt to develop a design tool capable of quantitatively predicting the performance of machining operations. It is believed that this model, with suitable adjustments if necessary, will be applicable to other cutting procedures of ductile materials with continuous chip formation, i.e. high-speed machining and micro-machining. In addition, the implementation of the geometrical chip-separation criterion in the MARC code, which is the basis of the constructed model, has been substantiated so as to allow, properly modified, for its extension to 3D cutting procedures.

4. Conclusions

In this paper, a coupled thermo-mechanical model of plane-strain orthogonal metal cutting with continuous chip formation is presented. In order to allow for the separation of the chip from the workpiece, a chip-separation criterion based on a critical distance consideration has been implemented into the MARC finite element code. The model is able to predict the stress, strain, strain-rate and temperature distribution in the chip, the workpiece and the tool, as well as the developed cutting forces. A good agreement was found between predicted and experimental cutting forces, indicating the validation of the proposed model.

The numerical results of the constructed finite element machining model indicate that the FE method may be more reliable for machining operations than the related analytical methods, since the effect of parameters such as large strain, strain-rate and temperature, on the workpiece material properties can be taken into account. However, the properties of the materials under such conditions are difficult to be obtained, which limits the accuracy of the results of any FE machining model. Nevertheless, computer modelling of machining operations, which belongs to the new concept of computational machining or virtual machining simulation [24], especially using a commercial FE code widely available to engineers and industry, constitutes a very useful tool for the prediction of the machining behaviour of the workpiece as well as the optimum cutting tool design, thus reducing the need for resorting to extensive cutting experiments.

39

洛阳理工学院毕业设计论文

正交金属切削切屑形成的有限元模拟

摘要:

一对平面应力正交金属切削连续切屑形成的热力耦合模型的呈现使用了一种商业隐式有限元程序MARC。工件材料流动应力则被作为应变、应变率和温度的根据,以考虑较大应变、应变率和温度的影响与相关切削和材料性能的关系。切削过程通过刀具的缓慢进给,从初期到稳态切削力进行模拟,而几何切屑分离间隙标准,基于临界距离为刀尖的状态,通过重新划分流程执行到MARC编码。切屑的形状与应力、应变率在切片和工件上的分布以及工件、切屑和工具上的温度场已经定了。计算出的切削力与已公布的实验数据进行比较,结果发现吻合较好,验证,因此,提出了一种有限元模型。 关键词:有限元、模拟、切削、切屑形成 1. 介绍

切削是一种经常用于生产部分所需的尺寸和形状配置的生产工艺,用楔形的工具除去多余的材料来达到目的。由于它的工业上的重要性和广泛使用,平面应力正交金属切削的技术早在20世纪40年代就被研究,因为它与切削过程近似值很接近。在发展能够预测工件材料切削行为的模型上,付出了巨大的努力。 正交金属切削的简化分析首先被引进剪切角的概念的商人李·谢弗考虑,他们提出一种解析模型的应用slip-line理论。在这些模型基础上,一直尝试发展出更准确和精致的模型来同时反应摩擦、加工硬化、应变率和温度的特征([3 - 5]).尽管所有这些分析模型提供有用的切削加工过程,但是由于其单一化,导致分析与实验结果有显著的差异。有限元方法已经被广泛应用于切削过程的模拟[6 - 8],并且Usui和Shirakashi、岩田吴景之,已经分析了稳态正交切削。关于正交金属切削中切屑的形成和分离的有限元模拟,最初是由Strenkowski和卡罗尔尝试的。他们从最初的稳定状态进行了模拟切削,而为了模拟切屑的形成,开发了一种基于有效塑性应变的临界值,元素在刀尖前面分离的技术,从而引入一个元素或切屑分离判据的概念。

40

洛阳理工学院毕业设计论文 非线性有限元方法的用途是对模拟金属成型的过程,产生金属切削过程的有限元模型。更多主要针对残馀应力与应变的检测、温度分布及对切削力预测的复杂的模型被开发了。经常使用的有两种方法。欧拉法:切削过程从稳定状态进行了数值模拟,因此避免了对切屑分离准则需求,但要求提前知道切屑的形状;拉格朗日法:切削过程是从初期到稳定状态进行模拟的,可以预测切屑的形状和工件的残余应力,然而要注意, 使切屑离开工件的切屑分离的准则必须被给予。 切屑分离标准,是人们基于几何学的考虑而提出在,也参考了基于应变能密度的临界值的标准, Ceretti开发了一种借助于删除元素达到的疲劳极限的切削模型。

发展至今几乎所有的有限元法,被开发为非商业性有限元软件。商业有限元软件的应用:更适于工业中用有限元方法对金属切削过程的模拟,优化刀具设计和在昂贵费时的实验测试之前预测切削加工参数对加工零部件的质量的影响。 目前的研究工作,用商业隐式有限元程序MARC来构建平面应力正交金属切削加工切屑连续形成热力耦合有限元模型。弹性材料的流动应力则作为应变、应变率,和温度的依据,从而反应了切削中应变和应变率的值,随温度的上升,而增大的真实情况。模拟整个切削过程,即从初期到稳定状态, 而几何切屑分离间隙标准,基于临界距离为刀尖的状态,通过重新划分流程执行到MARC编码。 2. 有限元模型

用于平面应力正交金属切削模拟的有限元模型是基于拉格朗日公式的MARC软件。平面应力构成合理的假设条件下,在现实的金属切削过程切削宽度至少大于五倍的切削深度,因此,该切屑是在平面应变条件下产生的。

工件和刀具的尺寸和初始有限元网格的都显示在图1(a)中,我们能够从构成工件的网格上部看到很准确的信息,因为它能准确预测切屑和工件尖端的应力、应变、应变率和温度。其余那些粗大网格的尺寸大小是足够的,因为网格的边界不影响预测。工件下端的Y节点X的竖直位移和左端节点Y的水平位移是零。工件是由1340个四边形等参平面应力元素和1428节点组成。这种低阶的要素已经被证明在分析大应变塑性问题过程中,与用8节点的高阶的要素相比更准确。然而, 因为在这种要素里双线性篡改功能被使用, 疲劳强度在整个要素倾向于恒定的,导致剪行为的不良的特征,这是在切过程中变形的振动基型。为了提高剪切特性,使用插值函数替代,利用MARC程序提供假设应变。

41

洛阳理工学院毕业设计论文

图1.模拟正交金属切削切屑形成:(a)初始板料状态;(b)刀具轨迹0.48mm时切屑的形变;(c)刀具轨迹1.44mm时切屑的形变;(d)刀具轨迹2.58mm时切屑的形变 工具由425个四节点的等参四边形平面热传递元素,作为节点。下半部的网格,将于切屑接触,建一个合适的模型,为了能够预测刀具温度场的变化。 2.1. 切屑分离标准

探讨切屑的形成原因及与工件的分离, 切屑与要素分离标准已经实行MARC有限元程序。 切割是发生在代表未变形的切屑层的线上,因此,分离是假定只发生在沿着这一条线的节点上。节点在刀尖前面分离的标准是基于几何的考虑。当刀尖接近一个小的节点,达到临界距离,节点从工件分离成为切屑的一部分(见图2)。

当刀尖和节点B的距离是D,等于或低于预先定义的临界值DC时,重新划分网格。元素E2的连接性改变并且一个新的节点BH代替节点B。同时,坐标节点B和BH改变,导致

42

图.2 几何分离准则的示意图: (a)元素分离前,D > Dc; (b)元素分离后, D≤ Dc. 洛阳理工学院毕业设计论文 B沿着BC的方向向上一点距离, BH沿着BHF的方向向下的一点距离。该算法实行MARC软件执行上述程序,如图3(a)所示,并借助图(b)解释。注意、划分网格的特征,已被广泛地使用在金属成形问题中来定义一个新的网格,代替前一个是由于过度塑性变形扭曲的网格,构成一种非常有用的刀具来修改初始有限元网格,以使用商业有限元方法模型的切屑形成。

在金属切削加工连续切屑的情况下,实验观察表明切屑形成在刀尖前面没有发生裂纹扩展。此外,切屑分离是在连续加工中刀刃的前面,因此,基于距离的几何分离准则是一种现实的假设。注意、比较几何分离标准的切削加工与其他切屑分离标准,模型建立是以有效塑性应变和应变能密度为基础的。

这个工作中的临界距离值是等于3 um并且描绘元素长度5%,是保证连续的片形成

图.3 (a)模拟正交金属切削几何分离标准的流程图;(b)用于说明几何分离准则原理的算法。 而没有引起数值不稳定的最小值。估计一个适当的临界距离值及它对结果的精确度影响与困难有关,因此,它由实验验证。 2.2. 工件和刀具材料模型

用于平面应力正交切削仿真的工件材料是0.18% C的低碳钢、弹性模量E = 188 Gpa,泊松比v = 0.3和线性热膨胀系数C = 1.281×10 ^ 5毫米/ mm℃ 作为试验模型的弹塑性材料的各向同性,与各向同性应变硬化。切削过程中材料的变形,在切削区发生在高温、高应变和应变率。因此,为了了解它们对材料性能影响,工件的流动应力则根据应变和温度、应变率,用的本结构方程表示,采参考

(1)

43

洛阳理工学院毕业设计论文 (2)

在T(K)是温度、e总应变、e1是应变率,s是流动应力(单位M Pa)

由于刀具材料具有较高的弹性模量的硬质合金 ,刀具可以看作是一个理想的刚体,只对它进行传热分析。表1是低碳钢和硬质合金的物理性能。 2.3. 摩擦力模型

实验观测显示刀具和切屑接触面可以分为粘合区和滑动区。因此, 金属切削加工过程中摩擦造型必须考虑这两种情况。摩擦力的试验模型中沿着刀具和切屑接触面分布着切向力Ft,已知:

(3)

m是摩擦系数、Fn是法向反作用力、Vr刀具和切屑间的相对滑动速度、t=Vr/∣Vr∣是相对运动速度切线方向的单位矢量。C是摩擦力开始大幅下降为零时相对滑动速度常数,用那种方式,前刀面出现粘合现象,通过允许小的滑动变量。 表格 1

工件和刀具材料的物理性质 材料 低碳钢 硬质合金 2.4. 热传递

了解工件、切屑和刀具的温度分布,是非常重要的,因为刀具磨损对表面完整性的质量有着重大影响的。热的主要来源,观察到切削过程中温度升高的原因是由于塑性功与在切屑/刀具接口的摩擦转化成热能。

具体的体积流量的速度取决于塑性功,如所给出的公式

密度(kg/m3) 7833 12700 导热率 (W/m ℃) 54 33.5 比热容(J/kg ℃) 465 234 (4)

44

洛阳理工学院毕业设计论文 下列符号的意思,Wp是弹塑性功,r的密度,M的力学等效热源,一个相容系统单位中占的比例,Wh是塑性变形转化为热量时的百分比,这通常会占90%。

在切屑和刀具前刀面间的分界面产生的分散式热通量与摩擦有关

(5)

Ft是在接触摩擦力和Vr是切屑和前刀面之间的相对滑动速度。该通量分裂成两个等份,一部分分配给接触部件,即切屑和刀具。

在室温下加工进行(即工件和刀具的起始温度为20℃),而对环境的热损耗来自工件的自由表面,取决于对流传热,也取决于热流密度的分布。

(6)

工件材料的对流传热系数h = 17.04 W /㎡℃、Tw是工件的温度,环境温度To取20℃。辐射传热过程被认为是无关紧要的因此不考虑。 2.5. 选取处理参数

用于正交金属切削模拟的刀具几何参数和切割条件参考表2 表格2

切削条件和刀具参数

前角 (。) 20 后角 (。) 5 棱角半径 0 切削层厚度 (mm) 0.27 切削宽度 (mm) 3.5 切削速度(mm/s) 600 摩擦系数 0.4 3. 结果与讨论

图1表示的是刀具从初始位置前进到工件的增量。切屑是逐步形成的,直到达到稳定的状态,也就是说直到切削力达到恒定值。每一次切屑的分离是理想的,正如图2表示;同时也可以得出残余切屑的形状、刀具和工件各种切削应力的分布以及刀具和工件上温度的分布。

图1中(b)-(d) 分别表示了刀具进给到0.48、1.44和2.58mm后残余切屑的形状,最后一个例子表示切屑形成的稳定的形式。最初矩形网格的变形显示了在切屑中预期的材料切变。同时,从图1(d)中稳定状态下变形网格的形状看出,可

45

本文来源:https://www.bwwdw.com/article/929o.html

Top