2017-2018学年第二学期4月宜兴初三数学期中试卷

更新时间:2023-03-08 04:45:59 阅读量: 初中教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2018年春季初三中考适应性测试

2018.4

数 学 试 卷

注意事项:

本试卷分试题和答题卡两部分,所有答案一律写在答题卡上,考试时间为120分钟,试卷满分为130分.

1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位

置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合。

2.答选择题必须用2B铅笔将答题卡上对应题目的选项标号涂黑,如有改动,请用橡皮擦干净后, 再选涂其他答案.若非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区 域内相应的位置,在其他位置答题一律无效。

3.作图必须用2B铅笔作答,并加黑加粗,描写清楚。

4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.

一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,恰有一

项是符合题目要求的,请用2B铅笔把答题卷上相应的答案涂黑.) .........

1.-8的相反数是 ( ▲ )

A.8

B.-8

1

C.0.8 D.-

8

2.下列数中不属于有理数的是 ( ▲ )

12 A.1 B.2 C. D.0.1113

23.若等腰三角形的顶角为80o,则它的底角度数为 ( ▲ ) A.20o B.50o C.80o D.100o

4.下列运算正确的是 ( ▲ ) A.x-2x=x B.(xy)2=xy2 C.2×3=6 D.(-2)2=4

5.已知实数a、b,若a>b,则下列结论正确的是 ( ▲ )

ab

A.a-5<b-5 B.2+a<2+b C.->- D.3a>3b

336.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是 ( ▲ ) A.平均数是91 B.中位数是91 C.众数是98 D.极差是20

1

7.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( ▲ ) A.43°

B.47° C.30° D.60°

8.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点

DE

D,E,F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则 的值为( ▲ )

EF

321A. B. C.2 D.

5529.如图,Rt△ABC中,∠CAB=90°,在斜边CB上取两点M、N(不包含C、B两点),且 tanB=tanC=tan∠MAN=1.设MN=x,BM=n,CN=m,则以下结论不可能成立的是 ( ▲ ) A.m = n B. x = m+n C. x < m+n D. x2 = m2+n2

10.一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,使点C落在点C′的位

置,BC′交AD于点G(图1);再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M(图2),则EM的长为 ( ▲ ) A.2 B.

(第7题) (第8题) (第9题) (第10题)

二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把最后结果填在

答题纸对应的位置上)

11.函数y?3x?2中自变量x的取值范围是 ▲ . 12.因式分解:a?4a? ▲ . 13. 反比例函数y?337 C.2 D. 26DHl1l2Cl3αAEBβFk的图象经过点(1,6)和(m,-3),则m= ▲ . x14.某外贸企业为参加2018年中国宜兴外贸洽谈会,印制了105000张宣传彩页.105000这个

数字用科学记数法表示为 ▲ .

15.如图,扇形OAB是圆锥的侧面展开图,若小正方形方格的边长为1 cm,则这个圆锥的底面半径为 ▲ cm .

16.如图,在矩形ABCD中,AB=4,BC=6,E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠EFC= .

2

17.如图,OC是∠AOB的平分线,点P在OC上,且OP=4,∠AOB=60°,过点P的动直线交

OA于D,交OB于E,那么

11= ▲ . +ODOE18.如图,⊙O的直径AB=8,C为AB的中点,P为⊙O上一动点,连接AP、CP,过C作

CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为 ▲ .

oD

ABC

P

B

A

O

(第18题)

(第171516题)

三、解答题:(本大题共10小题,共84分.解答时将文字说明、证明过程或演算步骤写在答题纸

相应的位置上)

19.(本题满分8分)计算或化简:

1-

(1)8+()1―4cos45o―(3―π)0 (2)(x?2)2?x(x?3)

2

20.(本题满分8分)

?x?111?x????3 (2)解不等式组?2(1)解方程: x?22?x?2x?1?5x?1??x?3??

21.(本题满分8分)

如图,在□ABCD中,E、F为BC上的两点,且 BE=CF,AF=DE.

求证:(1)△ABF≌△DCE;

(2)四边形ABCD是矩形.

3

22.(本题满分8分)

设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x < 85为B级,60≤x < 75为C级,x < 60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.

人数 25 20 15 10 5 0 A B C 12 4 D级 D 等级

C级

24 B级 48%

A级 a

请根据图中的信息,解答下列问题:

(1)在这次调查中,一共抽取了 ▲ 名学生,图2中等级为A的扇形的圆心角等于 ▲ °; (2)补全条形统计图;

(3)若该校共有3000名学生,请你估计该校等级为D的学生有多少名?

23.(本题满分6分)

抛掷红 、蓝两枚四面编号分别为1~4(整数)的质地均匀、大小相同的正四面体,将红色和

2

蓝色四面体一面朝下的编号分别作为二次函数y=x+mx+n的一次项系数m和常数项n的值. (1) 一共可以得到 ▲ 个不同形式的二次函数;(直接写出结果)

(2)抛掷红、蓝四面体各一次,所得的二次函数的图象顶点在x轴上方的概率是多少? 并说明理由.

24. (本题满分8分)

在边长为1的正方形网格图中,点B的坐标为(2,0),点A的坐标为(0,-3).

(1)在图1中,将线段AB关于原点作位似变换,使得变换后的线段DE与线段AB的相似比

是1∶2(其中A与D是对应点),请建立合适的坐标系,仅使用无刻度的直尺作出变换后的线段DE,并求直线DE的函数表达式;

(2)在图2中,仅使用无刻度的直尺,作出以AB为边的矩形ABFG,使其面积为11.(保留作

图痕迹,不写做法)

图1

4 图2

BBAA

25.(本题满分8分)

市区某中学九年级学生步行到郊外春游.一班的学生组成前队,速度为4km/h,二班的学生组成后队,速度为6 km/h.前队出发1h后,后队才出发,同时,后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.若不计队伍的长度,联络员在行进过程中,离前队的路程......y(km)与后队行进时间x(h)之间存在着某种函数关系. (1)求后队追到前队所用的时间x的值;

(2)联络员从出发到他折返后第一次与后队相遇的过程中,求此函数关系表达式,并在直角坐标

系中画出此函数的图象;

(3)联络员从出发到他折返后第一次与后队相遇的过程中,当x为何值时,他离前队的路程与 他离后队的路程相等?

26.(本题满分10分)

如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于A(12,0),B(0,16),点C从B点出发向y轴负方向以每秒2个单位的速度运动,过点C作CE⊥AB于点E,点D为x轴上一动点,连结CD,DE,以CD,DE为边作□CDEF.设运动时间为t秒. (1)求点C运动了多少秒.时,点E恰好是AB的中点?

(2)当t=4时,若□CDEF的顶点F恰好落在y轴上,请求出此时点D的坐标;

(3)点C在运动过程中,若在x轴上存在两个不同的点D使□CDEF成为矩形,请直接写出满足条件的t的取值范围.

5

y

y

O x

B F E C O D A x

27.(本题满分10分)

如图:已知二次函数y?x2?(1?m)x?m(其中0<m <1)的图像与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,对称轴为直线l. 设P为对称轴l上的点,连接PA、PC,PA=PC.

(1) ∠ABC的度数为 ▲ °;

(2) 求点P坐标(用含m的代数式表示);

(3) 在x轴上是否存在点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△PAC相

似,且线段PQ的长度最小,如果存在,求满足条件的Q的坐标及对应的二次函数解析式,并求出PQ的最小值;如果不存在,请说明理由.

28.(本题满分10分)

如图,在直角坐标系中,⊙O的圆心O在坐标原点,直径AB=6,点P是直径AB上的一个动点

(点P不与A、B两点重合),过点P的直线PQ的解析式为y=x+m,当直线PQ交y轴于Q,交⊙O于C、D两点时,过点C作CE垂直于x轴交⊙O于点E,交AB于H,过点E作EG垂直于y轴,垂足为G,过点C作CF垂直于y轴,垂足为F,连接DE. (1)当m=2时,试求矩形CEGF的面积;

(2)当P在运动过程中,探索PD2+PC2的值是否会发生变化?如果发生变化,请你说明理由;

如果不发生变化,请你求出这个不变的值;

(3)如果点P在射线AB上运动,当△PDE的面积为3时,请你求出CD的长度.

6

D Q

2018年春季初三数学中考适应性测试参考答案与评分标准

一、选择题(本大题共10小题,,每小题3分,共30分.) 1.A 2.C 3.B 4.C 5.D 6.A 7.B 8.A 9.B 10.D 二、填空题(本大题共8小题,每小题2分,共16分.)

25 12.a(a?2)(a?2) 13.?2 14.1.05?10 342315. 16. 17. 18.2?

52411.x?三、解答题(本大题共10小题,共84分.)

19. (本题满分8分) (1)原式=22?2?4?22?1……………3分 =1…………………4分

(2)原式=x2-4x+4-x2+3x ……………2分 =-x+4……………4分 20. (本题满分8分)

解:(1)1?(1?x)??3(x?2) ······································································ 2分 ∴x?2经检验是原方程的增根,原方程无解 ································································· 4分 (2)由①得,x>-1 ······················································································ 1分

由②得,x≤2 ························································································· 3分 ∴-<x≤2 ····························································································· 4分 21. (本题满分8分)

证明:(1)在平行四边形ABCD中,AB=CD, ························································ 1分 ∵BE=CF ∴BE+EF=CF+EF即BF=CE ····························································· 2分

?AB?CD?∴在△ABF和△DCE中,?BF?CE,∴△ABF≌△DCE(SSS) ······························· 3分

?AF?DE?∴DE=BF ······································································································ 4分 (2)由(1)得△ABF≌△DCE ∴∠B=∠C ··························································· 5分 ∵平行四边形ABCD ∴AB∥CD ∴∠B+∠C=180° ········································· 6分 ∴∠B=∠C=90° ∴四边形ABCD是矩形. ° ······················································ 8分 22. (本题满分8分)

解:(1)50,86.4 (2)10(图略) (3)240 ·············································· 8分 23. (本题满分6分) 解:(1)16 ································································································ 2分

(2)

m 1 2 3 4 1 (2,1) (3,1) (4,1) n (1,1)2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4 (1,2) (2,4) (3,4) (4,4) ……………………………4分

∴所有可能的结果有16种等可能的结果,其中符合题意的有9种 ··························· 5分 ∴P?9 ········································································································ 6分

1624. (本题满分8分)

7

(1) y (2)

D B EOx

A

画出坐标系得1分,作出线段DE得2分 本小题4分(画对AB的两条垂线的给1分) 直线DE:y=

33x+得1分 2225. (本题满分8分)

解析:(1)由6x?4(x?1)得x?2,答:经2小时,后队追到前队 ·························· 2分

1 (2)先求联络员从后队出发到前队所用时间:由12x?4(x?1)得x?,

21y 当0?x?时,y?4?8x ------------------3分 42再求联络员第一次返回后队时的时间:

112由6x?12(x?)?12?得x?, 8322312故当?x?时,y?16x?8 ------------------4分

23图象如右------------------6分 21x O 32

2(3) 联络员从后队出发到前队前,由12x?6x?4(x?1)?12x得x?,-----------------7分

71110联络员第一次返回时,由?12?12(x?)?6x?16x?8得x? ------------------8分

2217210答:联络员从出发到他折返后第一次与后队相遇的过程中,当x为h或h时,他离前队的路程

717与他离后队的路程相等. 26. (本题满分10分)

(1)∵A(12,0),B(0,16),∠AOB=90°∴AB?OA2?OB2?122?162?20 ∵E是AB的中点 ∴BE=10 ·············································································· 2分 ∵CE⊥AB ∴cos?ABO?∴

OBBE? ABBC161025? ∴t? ····················································································· 4分 202t4BCBE32?,∴BE= ························································· 6分 ABBO58

(2)有题意得DE⊥AO,,当t=4时,BC=8 由△BCE∽△BAO 得

∵DE∥BO ∴△ADE∽△AOB 得∴OD=12-

AEAD204? ∴AD= ··································· 7分 ABAO252049696= ∴D(,0) ································································· 8分 25252550200?t?(3)且t?8且t?12.5 ······························································· 10分 71327. (本题满分10分) 解:(1)45°; ···························································································· 2分 (2)如图,作PD⊥y轴,垂足为D,设l与x轴交于点E,

?1?m?1?m,设点P坐标为:(,n) ············· 3分 22∵PA=PC,∴PA2?PC2,即AE2?PE2?CD2?PD2,

由题意得,抛物线的对称轴为:x=

?1?m1?m?1?m?∴( +1)2+n2=(n+m)2+?,解得:n= ?22?2??1?m1?m∴P 点的坐标为:( ,); ························································· 4分

22?1?m1?m(3)存在点Q ,∵P 点的坐标为:( ,),

22PA2+PC2=AE2+PE2+CD2+PD2=

222∵AC2=1+m2,∴PA2+PC2=AC2,

∴∠APC=90°,∴△PAC 是等腰直角三角形, ∵以Q、B、C 为顶点的三角形与△PAC 相似, ∴△QBC 是等腰直角三角形,·········································································· 6分 ∴由题意可得满足条件的点Q 的坐标为:(-m,0), ·········································· 7分

??1?m??1?m??1?m??1?m?2 ?1???m??????????1?m,

2222????????221?m?5215?2?1?1?m??则PQ2=PE2+EQ2=?= ········· 8分 ?m??m?2m?m???????2?222?5?10?2??2110∵0<m<1,∴当m= 时,PQ2 取得最小值,PQ 取得最小值, ··············· 9分

510102210∴当m= ,即Q 点的坐标为(?,0 )时,PQ 取得最小值,

5510322此时二次函数解析式为y?x?x? ··························································· 10分

55

28. (本题满分10分)

(1)连接OC,设OH=a,∵∠CPB=45°,

222∴∠CQF=∠PQO=45°,∴FC=FQ, ································································ 1分 设FC=FQ=a,则OF=a+2,

9

在Rt△OCF中,FC2?OF2?OC2?a2?(a?2)2?2a2?4a?4?32 ··················· 2分

∴2a2?4a?5

∴S矩形CEGF?2CFFO?2a(a?2)?5 ····························································· 3分 (2)不变. ································································································· 4分

∵AB垂直平分CE,∴PC=PE,且∠CPB=∠EPH=45°, ∴PE⊥CD, ∴PD2?PC2?PD2?PE2?DE2, ································································ 5分 ∵∠PCH=45°,∴∠DOE=90° ∴DE2?DO2?EO2?32?32?18 ∴PD2?PC2?18 ······································· 6分

(3)当点P在直径AB上时, 11PDPE?PDPC?3 PDE22∴PDPC?6 由(2)得PD2?PC2?18 ······················································ 7分

如图1,S?∴CD2?(PD?PC)2?18?12?30 ∴CD?30 ············································· 8分

如图2,当点P在AB延长线上,同理可得:CD2?(PC?PD)2?18?12?6 ·········· 9分 ∴CD?6 综上所述:CD?30或6 ························································ 10分

10

本文来源:https://www.bwwdw.com/article/906.html

Top