2015高中数学 1.2.2空间中的平行关系(平行直线)教学设计 新人
更新时间:2024-04-02 14:18:01 阅读量: 综合文库 文档下载
1.2.2空间中的平行关系(线线平行)
一、课标导航:
1.认识和理解空间平行线的传递性; 2.会证明和应用空间等角定理 3.初步了解空间四边形及其画法 二、重点、难点:
重点:理解空间平行线的传递性、等角定理 难点:等角定理的证明 三、教学过程:
1、情境导入:请同学们观察我手中的三棱柱或教室的墙角线,思考一下空间中两条直线的位置关系有哪些?能否举例说明? 2、初中知识回顾: (1)平行线的定义:
能否说空间中无公共点的两条直线是平行直线? (2)平行公理: 3、形成新知:
【问题1】在同一平面内,如果两条直线都和第三条直线平行,那么这两 条直线的位置关系如何?这一性质能推广到空间中吗?试举例说明 (1)基本性质4:
小试牛刀:
①在长方体ABCD-A1B1C1D1中, E、F 分别为B1D1 和D1B 的中点,长方体的各棱中与EF 平行的直线的条 数有_ _条。
②判断正误:空间四条直线,如果a∥b,c∥d, 且 a∥d,那么b∥c.
A D B F C a b c A1 D1 E B1 C1 【问题2】在同一个平面内,如果一个角的两边与另一个角的两边分别对应平行,并且方向相同,那么这两个角的大小关系如何?你还记得如何证明吗?这一结论能推广到空间中吗?
已知: 求证: 证明:
【问题1、证明两角相等的常用方法有哪些?问题2、证明三角形全等的方法有哪些?通过这两个问题分解难度,突破难点。】
(2)等角定理: 思考与讨论:(借助同学们手中的笔或纸棒,小组讨论)
如果一个角的两边与另一个角的两边分别对应平行,那么这两个角的关系又 如何呢?
结论:
【问题3】空间中,如果∠ABC=∠A1B1C1,且AB∥A1B1,则BC∥B1C1对吗? 小试牛刀:
2
已知:AA1, BB1, CC1 不共面且 , ABC ≌ △A1B1C1. AA1//BB1BB1//求证:△CC1A1 B1 C1
B A
C
【问题4】依次首尾相接的四条线段必共面,对吗? (3)空间四边形的有关概念:
①空间四边形: ②空间四边形的顶点: ③空间四边形的边: ④空间四边形的对角线:
【问题5】空间四边形的四个顶点可以共面吗?空间四边形的对角线所在直线是什么位置关系? 你能画出一个空间四边形吗? 4、典型例题:
例1:已知:如图,空间四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点, 求证:四边形EFGH是平行四边形。
AHDFGCEB变式1: 若在例题中添加一个条件:对角线AC=BD,则四边形EFGH是什么图形?
变式2:空间四边形ABCD中,E,H分别是AB,AD的中点,F,G分别是CB,CD上的点,且 ,则四边形EFGH是什么图形? ??
CFCBCGCD23A H D B F C
E G 3
5、反馈练习:
(1)下列结论正确的是( )
A.若两个角相等,则这两个角的两边分别平行 B.空间四边形的四个顶点可以在一个平面内
C.空间四边形的两条对角线可以相交 D.空间四边形的两条对角线不相交
(2)下面三个命题, 其中正确的个数是( )
①三条相互平行的直线必共面; ②四边相等的四边形是菱形;
③两组对边分别相等的四边形是平行四边形。
A. 1个 B. 2个 C. 3个 D. 一个也不正确
(3)空间两个角α、β, α与β的两边对应平行, 且α=600
, 则β等( )
A. 60° B. 120° C. 30° D. 60°或120°
D1(4)如图,已知E,ECC11分别是正方体ABCD-A1B11D1的棱AD, A1D1E1点.求证:∠C1E1B1 = ∠CEB.
A1B1
DCEAB
6、课堂小结:(谈谈你这节课都有哪些收获?)
(1)知识方面:
(2) 数学思想方面:
4
的中
7、布置作业:
(1)已知正方体ABCD-A′B′C′D′中,M、N分别为CD、AD的中点.求证:四边形
MNA′C′是梯形.
(2)已知空间四边形ABCD,AC的长为6,点 M、N分别是△DAB和△DBC的重心。则线段MN的长是________
(3)已知三棱柱ABC-A′B′C′中,M、N、P分别为AA′、BB′、C C′的中点.求证:∠M C′N=∠APB
【课外拓展】
F的位置,则说图形在空间作平移: 若空间图形F的所有点都沿同一方向移动相同的距离到
了一次平移。如:等角定理可以看成∠BAC平移到∠B1A1C1;长方体可以看成矩形ABCD上各点沿铅垂线向上平移到矩形A′B′C′D′所形成的几何体。
问题:
①图形平移后与原图形是否全等?②对应角的大小和对应两点的距离是否保持不变?
' 5
正在阅读:
2015高中数学 1.2.2空间中的平行关系(平行直线)教学设计 新人04-02
物业常见纠纷案例解析04-02
关于学习的名人名言、格言警句(223条)03-24
信息系统安全03-19
报告0510 02(打印版)06-29
数据结构安徽大学考试12-25
2015年滨州市专业技术人员公需科目继续教育考试答案(全面深化改04-23
房地产开发企业财务年终总结03-14
07-12年四川高考试题--英语05-17
- 1高中数学《2.2 直线、平面平行的判定及其性质》学案 新人教A版必修2
- 2人教A版高中数学必修二2.1.2空间中直线与直线之间的位置关系 同步练习(1)B卷
- 3高中数学例题:平面与平面平行的判定
- 4第一轮复习(09) 空间中的平行关系 - 图文
- 5高中数学《两条直线的平行与垂直》教案1 苏教版必修2
- 6最新人教版高中数学必修2第二章《直线与平面平行的判定、平面与
- 7高中数学 两条直线的位置关系
- 82018学年高中数学2.2直线平面平行的判定及其性质2.2.2平面与平面平行的判定课时作业新人教A版必修8566
- 9高中数学 必修二 同步练习 专题2.2.3 直线与平面平行的性质、平面与平面平行的性质(原卷版)
- 10直线与平面平行的性质(教学设计)
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 平行
- 教学设计
- 直线
- 新人
- 高中
- 数学
- 关系
- 空间
- 2015
- 1.2
- 六年级升学考试综合试题
- 李森科事件及其教训
- 试卷1
- 车站调度员职业技能鉴定题库
- 大气污染控制工程模拟试卷(三)答案 - 图文
- 2015年尔雅超星马原课后习题答案
- 2014国家公务员资料分析习题精解(12)
- 小学语文修改病句复习
- 关于健全文明城市创建长效机制的调研报告
- 关于公布《呼和浩特铁路局营业线施工安全管理及天窗修实施细则》
- 江西师范大学-计算机组成原理期末复习
- 新五年级数学下册全册教案及反思
- 络筒综合实验指导书重点讲义资料
- 开发区安监局“三定”情况说明 附件1、 2
- 中国文化创意产业园区域发展模式与产业整体规划研究报告2018年版
- 全民消防安全宣传教育纲要(2011-2015)
- ssm(struts2.3.4+spring3.2+mybatis3)整合中jar包作用介绍
- 最值问题精选试题
- 四年级上册科学教案-《我们是怎样听到声音的》教科版
- 基于UML的高校图书管理系统分析与设计