最新人教版九年级数学上册全册综合测试题

更新时间:2023-04-18 21:02:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

九年级上册综合测试

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷30分,第Ⅱ卷70分,共100分,考试时间100分钟.

第Ⅰ卷(选择题共30分)

一、选择题(每题3分,共30分)

)

1.如图SC-1所示的四个图形中,是中心对称图形的为(

2.下列事件是随机事件的是( )

A.在一个标准大气压下,加热到100 ℃,水沸腾

B.购买一张福利彩票,中奖

C.有一名运动员奔跑的速度是30米/秒

D.在一个仅装着白球和黑球的袋中摸出红球

3.用配方法解方程x2-2x-1=0时,配方后得到的方程为( )

A.(x+1)2=0

B.(x-1)2=0

C.(x+1)2=2

D.(x-1)2=2

4.一个扇形的半径为8 cm,弧长为πcm,则这个扇形的圆心角为( )

A.60°

B.120°

C.150°

D.180°

5.正方形外接圆的边心距与半径的比是( )

A.1∶2

B.1∶

C.1∶D .∶1

6.掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率为P1,拋两枚硬币,正面均朝上的概率为P2,则( )

A.P1

B.P1>P2

C.P1=P2

D.P1与P2的大小关系不确定

7.某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是( )

A.289(1-x)2=256

B.256(1-x)2=289

C.289(1-2x)=256 D

.256(1-2x)=289

8.已知:如图SC-2,PA,PB分别切☉O于点A,B,∠P=70°,∠C等于( )

A.55°

B.70°

C.110°

D.140°

图SC-3

9.如图SC-3,☉O的半径为1,AB是☉O的一条弦,且AB=,则弦AB所对圆周角的度数为

( )

A.30°

B.60°

C.30°或150°

D.60°或120°

10.如图SC-4,正方形ABCD的边长为1,E,F,G,H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为y,AE为x,则y关于x的函数图象大致是( )

图SC-4

图SC-5

请将选择题答案填入下表:

题号 1 2 3 4 5 6 7 8 9 10 总分

答案

第Ⅱ卷(非选择题共70分)

二、填空题(每题3分,共18分)

11.一条直线a与☉O有公共点,则直线a与☉O 的位置关系是

.

12.已知点P(m+2,3)和点Q(2,n-4)关于原点对称,则m+n= .

13.在一个不透明的口袋中,装有标号为A,B,C,D的4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.

14.菱形的两条对角线长分别是一元二次方程x2-14x+48=0的两实数根,则菱形的面积

为.

15.如图SC-6,AB,BC是☉O的两条弦,AB垂直平分半径OD,∠ABC=75°,BC=4cm,则OC的长为cm.

图SC-6

图SC-7

16.如图SC-7,正方形的边长为a,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)的面积为.

三、解答题(共52分)

17.(6分)解方程:(1)x(x-2)+x-2=0;

(2)2x2-x-1=0.

18.(5分)小明骑自行车从家去学校,途经装有红、绿灯的三个路口.假设他在每个路口遇到红灯和绿灯的概率均为,则小明经过这三个路口时,恰有一次遇到红灯的概率是多少?请用画树状图的方法加以说明.

19.(6分)如图SC-8,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是(3,2),(1,3).将△AOB绕点O逆时针旋转90°后得到△A1OB1.

(1)画出△A1OB1,并直接写出点A1的坐标;

).

(2)求旋转过程中点B经过的路径长(结果保留根号和π

20.(6分)如图SC-9所示,AB为☉O的直径,CD是☉O的弦,AB,CD的延长线交于点E,已知AB=2DE,∠E=20°.求∠AOC的度数

.

21.(6分)图SC-10是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.小亮和小颖利用它们做游戏,游戏规则:同时转动两个转盘,当转盘停止后,若指针所指区域内的数字之和小于10,则小颖获胜;若指针所指区域内的数字之和等于10,则为平局;若指针所指区域内的数字之和大于10,则小亮获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.

(1)请你通过画树状图或列表的方法求小颖获胜的概率.

.

(2)该游戏规则是否公平?若公平,请说明理由;若不公平,请你设计出一种公平的游戏规则

22.(7分)在母亲节前夕,某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售,则每天能卖出36件;若每件按29元的价格销售,则每天能卖出21件.假定每天销售件数y(件)是销售单价x(元/件)的一次函数.

(1)求y与x满足的函数解析式(不要求写出x的取值范围);

(2)在不积压且不考虑其他因素的情况下,销售单价定为多少时,才能使每天获得的利润P最大?

23.(8分)如图SC-11,已知直线PA交☉O于A,B两点,AE是☉O的直径,C为☉O上一点,且AC 平分∠PAE,过点C作CD⊥PA,垂足为D.

(1)求证:CD为☉O的切线;

(2)若CD+AD=6,☉O的直径为10,求AB的长度

.

24.(8分)如图SC-12,已知二次函数y1=-x2+x+c的图象与x轴的一个交点为A(4,0),与y 轴的交点为B,过A,B两点的直线为y2=kx+b.

(1)求二次函数y1的解析式及点B的坐标.

(2)由图象写出满足y1

(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.

本文来源:https://www.bwwdw.com/article/8y4q.html

Top