2018-2019学年最新人教版八年级数学上册-等边三角形教学设计-精编教案

更新时间:2023-09-29 07:28:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

13.3.2 等边三角形

第1课时等边三角形(1) 【教学目标】 1.经历探索等腰三角形成为等边三角形的条件及其推理证明过程. 2.经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维. 3.经历观察、实验、猜想、证明的数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理、清晰地阐述自己的观点. 4.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心. 【重点难点】 重点:等边三角形判定定理的发现与证明. 难点:等边三角形判定定理的发现与证明. ┃教学过程设计┃ 教学过程 一、创设情境,导入新课 活动1:观察与思考 设计意图 从生活经验出发,在丰富的现(1)观看上海世博会的一组图片,引出“等实情境中,让学生边三角形”. 1

感受到“等边三角(2)观看一组图片:跳棋、警示牌、国旗、形”无处不在. 金字塔等,进一步感受“等边三角形”. 学生能从图片中抽象出等边三角形的形象,进而产生求知欲,等边三角形有什么特点?教师引出课题:等边三角形. 二、师生互动,探究新知 活动2:等边三角形的性质 承上启下,揭示二者的关系,为回顾:什么是等边三角形?它与以前学过下一步探究等边的等腰三角形有何关系? 三角形的性质和学生回答:三条边都相等的三角形叫做等判定方法打下基边三角形,它是一种特殊的等腰三角形. 名称 图形 边 角 重要对称线段 顶角平分等腰 三角形 两腰相等 线、底两个边上轴对底角的中称图相等 线、底形 边上的高互相 2

础.渗透类比的思想方法. 让学生自主讨论探究等边三角形的判定定理,能发挥学生的主观能动性,加深印象与理解. 让学生经历运用几何符号和图形描述命题的条件和结论的过性 重合 每条边上的中等边 三角形 三个线、高三条角相和它且所对 边相等,等 都为角的60° 平分线都互相重合 活动3:复习等腰三角形的性质,探究等边三角形的性质 学生完成表格,得出性质. 活动4:探究等边三角形常用的判定方法 回答下面的问题.(演示课件) 1.一个三角形满足什么条件就是等边三角形? 2.你认为有一个角等于60°的等腰三角形是等边三角形吗?你能证明你的结论吗?把你的证明思路与同伴交流.(教师应给学生自主 3

程,体会分类讨论的数学思想方法. 轴对称图形,有三条对称轴

本文来源:https://www.bwwdw.com/article/8wid.html

Top