半导体工艺实验报告

更新时间:2023-10-02 09:04:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

半导体制造工艺实验

姓名:章叶满 班级:电子1001 学号:10214021

一、氧化 E3:25.1:1.

go athena

#TITLE: Oxide Profile Evolution Example

# Substrate mesh definition line y loc=0 spac=0.05 line y loc=0.6 spac=0.2 line y loc=1

line x loc=-1 spac=0.2 line x loc=-0.2 spac=0.05 line x loc=0 spac=0.05 line x loc=1 spac=0.2

init orient=100

# Anisotropic silicon etch

etch silicon left p1.x=-0.218 p1.y=0.3 p2.x=0 p2.y=0

# Pad oxide and nitride mask deposit oxide thick=0.02 div=1 deposit nitride thick=0.1 div=1 etch nitride left p1.x=0 etch oxide left p1.x=0

# Field oxidation with structure file output for movie diffuse tim=90 tem=1000 weto2 dump=1 dump.prefix=anoxex01m

tonyplot -st anoxex01m*.str

structure outfile=anoxex01_0.str quit

实验截图:

实验分析:

当氧扩散穿越已生长的氧化剂时,它是在各个方向上扩散的。一些氧原子纵向扩散进入硅,另一些氧原子横向扩散。这意味着在氮化硅掩膜下有着轻微的侧面氧化生长。由于氧化层比消耗的硅更厚,所以在氮化物掩膜下的氧化生长将抬高氮化物的边缘。这就是LOCOS氧化工艺中的“鸟嘴效应”。这种现象是LOCOS氧化工艺中不受欢迎的副产物。氧化物较厚时,“鸟嘴效应”更显著。为了减小氮化物掩膜和硅之间的应力,在它们之间热生长一层薄氧化层—垫氧。或者可以使用浅槽隔离技术来代替LOCOS,这样就可以避免“鸟嘴效应”。

E3:25.1:2.

go athena

#TITLE: Mixed Ambient Oxidation Example

# This example demonstrates mixed ambient oxidation in 1D #

foreach gas (2. to 8. step 2.) #

line x loc=0.0 sp=1.0 line x loc=1.0 sp=1.0 line y loc=0.0 sp=0.05 line y loc=1.0 sp=0.05

initialize #

diffuse time=60 temperature=1000 f.o2=gas f.h2=20. structure outfile=anoxex02_gas.str # end

tonyplot -st anoxex02*.str quit

实验截图:

实验分析:

实验描述的是当气流中通过四种不同浓度比的由氧气、水、氢、氮构成的混合气体时Si氧化成SiO2的不同程度,其中参数F.O2, F.H2O, F.H2, F.N2是每个气流中流的氧气、水、氢、氮的扩散语句。由图可以看出,不同的气体比例会得到不同的氧化效果。潮湿的氧化环境水蒸气在二氧化硅中扩散的更快、溶解度更高,更有利于硅氧化生长速率的加快。而无论是何种程度的氧化,二氧化硅的生长都是要消耗硅的,氧化生长的越多,硅消耗的越多。硅消耗的厚度占氧化物总厚度的0.46。氧化物生长发生在氧分子通过已生成的二氧化硅层运动进入硅片的过程中。

E3:25.1:9. go athena

#TITLE: Orientation dependent Oxidation Example

line y loc=0 spac=0.1 line y loc=4 spac=0.1

line x loc=-1 spac=0.1 line x loc=1 spac=0.1 #

#initialize with orientation of sidewalls along 100 direction init orient=100 rot.sub=0

method gridinit.ox=0.02 grid.ox=0.02

# Anisotropic silicon etch

etch silicon right p1.x=0.0 p1.y=2.0 p2.x=0.0 p2.y=0.0

# Field oxidation

diffuse time=20 tem=1000 wet # #

extract name=\extract name=\

# Save the structure

structure outfile=anoxex09_1.str

line y loc=0 spac=0.1 line y loc=4 spac=0.1

line x loc=-1 spac=0.1 line x loc=1 spac=0.1 #

#initialize with orientation of sidewalls along 110 direction init orient=100 rot.sub=45

# Anisotropic silicon etch

etch silicon right p1.x=0.0 p1.y=2.0 p2.x=0.0 p2.y=0.0

# Field oxidation

diffuse time=20 tem=1000 wet

extract name=\extract name=\

# Save the structure

structure outfile=anoxex09_2.str #

#plot each of the saved structures

tonyplot -overlay anoxex09_1.str anoxex09_2.str -set anoxex09.set

实验截图:

实验分析:

上图中红线代表忽略晶向影响的情况,绿线代表考虑晶向影响的情况。实验表明,在氧化生长的线性阶段侧墙的生长氧化受到硅晶向的影响。而在抛物线阶段侧墙的生长氧化几乎不受硅晶向的影响。

E3:25.1:10. go athena

#simflags=\

#TITLE: Oxidation Overlap in Narrow Trench Example #

# This example simulates oxidation in a narrow trench #

line x loc=0.0 spac=0.2 line x loc=1.0 spac=0.05 #

line y loc=0.0 spac=0.05 line y loc=0.7 spac=0.25 line y loc=1.4 spac=0.05 line y loc=2 spac=0.25 initialize #

etch silicon start x=0.95 y=0.0 etch continue x=1.0 y=0.0 etch continue x=1.0 y=1.5 etch done x=0.8 y=1.5 #

structure mirror right #

# Specifying fill on method statement causes voids in oxide to be filled method compress fermi

diffuse time=8 temp=1150 wet dump=1 dump.prefix=anoxex10m structure outfile=anoxex10.str #

tonyplot -st anoxex10m*.str anoxex10.str quit

实验截图:

实验分析:

上图演示的是沟槽夹断现象。在用PECVD进行淀积的时候,随着淀积过程的不断进行,膜在间隙入口出产生夹断现象,并且导致在间隙填充中的空洞,影响电学特性和长期可靠性。为了避免这一现象的产生,我们可以采用HDPCVD进行淀积。HDPCVD即高密度等离子体CVD,它的主要优点在于可以在300到400摄氏度较低的淀积温度下,制备出能够填充高深宽比间隙的膜。

二、扩散 24.1:1. go athena

#TITLE: Simple Boron Anneal

#the x dimension definition line x loc = 0.0 spacing=0.1 line x loc = 0.1 spacing=0.1

#the vertical definition

line y loc = 0 spacing = 0.02 line y loc = 2.0 spacing = 0.20

#initialize the mesh init silicon c.phos=1.0e14

#perform uniform boron implant implant boron dose=1e13 energy=70

#perform diffusion

diffuse time=30 temperature=1000 #

extract name=\

#save the structure

structure outfile=andfex01.str

#plot the final profile tonyplot andfex01.str quit

实验截图:

实验分析:

上图实验为硼的注入和退火的过程。红、绿、蓝线分别表示硼、

磷以及净掺杂。注入后形成高斯分布。随着硼浓度的下降,净掺杂浓度等于磷的浓度。离子注入通过高压离子轰击把杂质引入硅片,杂质通过与硅片发生原子级的高能碰撞,才能被注入。离子注入会将原子撞击出晶格结构而损伤硅片晶格。退火能够加热被注入硅片,修复晶格缺陷,还能使杂质原子移动到晶格点,将其激活,最小化杂质扩散。

24.1:2.

go athena

# OED of Boron

#the x dimension definition line x loc = 0.0 spacing=0.1 line x loc = 0.1 spacing=0.1

#the vertical definition

line y loc = 0 spacing = 0.02 line y loc = 2.0 spacing = 0.20 line y loc = 25.0 spacing = 2.5

#initialize the mesh init silicon c.phos=1.0e14

#perform uniform boron implant implant boron dose=1e13 energy=70

#set diffusion model for OED method two.dim

#perform diffusion

diffuse time=30 temperature=1000 dryo2 #

extract name=\

#save the structure

structure outfile=andfex02_0.str

# repeat the simulation with default FERMI model go athena

#TITLE: Simple Boron Anneal

#the x dimension definition line x loc = 0.0 spacing=0.1 line x loc = 0.1 spacing=0.1

#the vertical definition

line y loc = 0 spacing = 0.02 line y loc = 2.0 spacing = 0.20

line y loc = 25.0 spacing = 2.5

#initialize the mesh init silicon c.phos=1.0e14

#perform uniform boron implant implant boron dose=1e13 energy=70

#select diffusion model method fermi

#perform diffusion

diffuse time=30 temperature=1000 dryo2 #

extract name=\

#save the structure

structure outfile=andfex02_1.str

# compare diffusion models

tonyplot -overlay andfex02_0.str andfex02_1.str -set andfex02.set

实验截图:

实验分析:

扩散工艺有二步,第一步为恒定表面浓度的扩散,第二步为有限源的扩散。在杂质浓度很高时,扩散系数不再是常数,而与掺杂浓度相关。该实验演示了氧化增强扩散(OED)的模型。对硼来说,其在硅中的扩散可以通过间隙硅原子进行。氧化时由于体积膨胀,造成大量硅间隙原子注入,增加了硼的扩散系数。有利于扩散的进行。

24.1:3.

go athena

#the x dimension definition line x loc = 0.0 spacing=0.1 line x loc = 0.1 spacing=0.1

#the vertical definition

line y loc = 0 spacing = 0.005 line y loc = 2.0 spacing = 0.20 line y loc = 25.0 spacing = 2.5

#initialize the mesh

init silicon c.boron=1.0e17

#deposit screen oxide

deposit oxide thickness=0.005 div=2

#perform arsenic implant with damage

implant arsenic dose=1.0e15 energy=40 tilt=7 unit.damage dam.factor=0.1

#set diffusion model for TED method full.cpl

#perform diffusion

diffuse time=15/60 temperature=1000 #

extract name=\

#save the structure

structure outfile=andfex03_0.str

# repeat the simulation with FERMI model

#the x dimension definition line x loc = 0.0 spacing=0.1 line x loc = 0.1 spacing=0.1

#the vertical definition

line y loc = 0 spacing = 0.005 line y loc = 2.0 spacing = 0.20 line y loc = 25.0 spacing = 2.5

#initialize the mesh

init silicon c.boron=1.0e17

#deposit screen oxide

deposit oxide thickness=0.005 div=2

#perform arsenic implant with damage

implant arsenic dose=1.0e15 energy=40 tilt=7 unit.damage dam.factor=0.1

#set default model method fermi

#perform diffusion

diffuse time=15/60 temperature=1000 #

extract name=\

#save the structure

structure outfile=andfex03_1.str

# compare diffusion models

tonyplot -overlay andfex03_0.str andfex03_1.str -set andfex03.set

实验截图:

实验分析:

杂质在硅原子间穿行,会在晶格中产生一条受损伤的路径,损伤的情况决定于杂质离子的轻重。上图为重离子注入造成晶格损伤,重离子每次与硅原子碰撞都会转移许多能量,并沿相对较小的散射角度偏转。每个位移硅原子也会产生大量的位移。重离子注入造成的晶格损伤需要进行RTA来进行修复晶格损伤。使扩散效应增强。另外,还能使杂质原子移动到晶格点,将其激活。

24.1:7.

go athena

#TITLE: Emitter push effect example #

line x loc=0.0 spac=0.2 line x loc=2.5 spac=0.8 line x loc=3.0 spac=0.2 #

line y loc=0.00 spac=0.04 line y loc=0.3 spac=0.06 line y loc=2.0 spac=0.8 line y loc=10.0 spac=2.0 #

init c.phos=1e15 #

implant boron dose=1e13 energy=40 #

deposit nitride thick=.2 div=4 #

etch right nitride p1.x=2.5 relax y.min=1.5 #

implant phosphor dose=1e16 energy=30 #

etch nitride all #

method compress full.cpl diffuse time=30 temp=1000 #

structure outfile=andfex07.str #

tonyplot -st andfex07.str -set andfex07.set quit

实验截图:

实验分析:

本实验演示的是硼掺杂发射极的推进效应。在磷发射区下的硼比

旁边的硼扩散得快,导致基区宽度改变。硼扩散增强是由于磷与空位相互作用形成的PV对分解所带来的复合效应。硼附近PV对的分解会增加空位的浓度,加快了硼扩散的速度。

三、离子注入 23.1:1.

go athena

#TITLE: Comparison of Gauss, Pearson and SVDP method

line x loc = 0.0 spacing=0.25 line x loc = 0.25 spacing=0.25 line y loc = 0 spacing = 0.01 line y loc = 0.50 spacing = 0.01

#initialize the mesh init silicon

#Gauss (symmetrical) implant (parameters are in std_tables) moments std_tables

implant phos dose=1e14 energy=40 gauss

struct outf=aniiex01_0.str

line x loc = 0.0 spacing=0.25 line x loc = 0.25 spacing=0.25 line y loc = 0 spacing = 0.01 line y loc = 0.50 spacing = 0.01

#initialize the mesh init silicon

#Use single Pearson (parameters are in std_tables) moments std_tables

implant phos dose=1e14 energy=40 pearson print.mom

struct outf=aniiex01_1.str

line x loc = 0.0 spacing=0.25 line x loc = 0.25 spacing=0.25 line y loc = 0 spacing = 0.01 line y loc = 0.50 spacing = 0.01

#initialize the mesh init silicon

#Use SVDP method (default) moments svdp_tables

implant phos dose=1e14 energy=40 print.mom

struct outf=aniiex01_2.str

tonyplot -overlay aniiex01_*.str -set aniiex01.set quit

实验截图:

实验分析:

离子注入是离子化后的原子在强电场的加速作用下,注射进入靶材料的表层,以改变这种材料表层的物理或化学性质的一个工艺工程。本实验对离子注入模型——高斯模型、皮尔逊模型以及双皮尔森模型三种模型进行了比较分析。显上图中是扩散杂质随厚度增加的三种分布情况。其中,双皮尔森模型的浓度分布曲线和另外两种有很大差异。

23.1:2.

go athena

# Tilt angle dependence using SVDP model line x loc = 0.0 spac=0.1 line x loc = 1.0 spac=0.1 line y loc = 0 spac=0.01 line y loc = 0.7 spac=0.01 init

implant boron energy=35 dose=1.e13 tilt=0 rotation=0 print.mom struct outfile=aniiex02_00.str

line x loc = 0.0 spac=0.1 line x loc = 1.0 spac=0.1 line y loc = 0 spac=0.01 line y loc = 0.7 spac=0.01 init one.d

implant boron energy=35 dose=1.e13 tilt=1 rotation=0 print.mom struct outfile=aniiex02_01.str line x loc = 0.0 spac=0.1 line x loc = 1.0 spac=0.1 line y loc = 0 spac=0.01 line y loc = 0.7 spac=0.01 init

implant boron energy=35 dose=1.e13 tilt=2 rotation=0 print.mom struct outfile=aniiex02_02.str

line x loc = 0.0 spac=0.1 line x loc = 1.0 spac=0.1

line y loc = 0 spac=0.01 line y loc = 0.7 spac=0.01 init

implant boron energy=35 dose=1.e13 tilt=7 rotation=0 print.mom struct outfile=aniiex02_07.str

line x loc = 0.0 spac=0.1 line x loc = 1.0 spac=0.1 line y loc = 0 spac=0.01 line y loc = 0.7 spac=0.01 init

implant boron energy=35 dose=1.e13 tilt=10 rotation=0 print.mom struct outfile=aniiex02_10.str

tonyplot -overlay aniiex02_*.str -set aniiex02.set

实验截图:

实验分析:

这个例子显示了在SVDP注入模型里,倾斜角度的改变对于35KeV的硼的注入影响。模拟结果显示了硼的分布是非常敏感的,即使是一个很小的变化倾斜角。倾斜硅片是减小沟道效应最常用的方

26.1:6.

go athena

#TITLE: Salicide Example

line x loc=0.0 spac=0.2 line x loc=0.9 spac=0.02 line x loc=1.4 spac=0.04 line x loc=2.0 spac=0.2

line y loc=0 spac=0.01 line y loc=1.0 spac=0.1

#10ohm-cm 100 n-type substrate init c.phos=4.5e13

deposit oxide thick=0.01 div=2 deposit poly thick=0.25 div=10 etch poly left p1.x=1.4 etch oxide left p1.x=1.4

implant phos dose=5e13 energy=35 deposit oxide thick=.6 div=15 etch oxide thick=.61

implant arsenic dose=5e15 energy=50

deposit titanium thick=0.1 div=5 #

meth fermi grid.sil=0.005 init.time=1e-08 diffuse tim=1 tem=675

etch titanium all

structure outfile=anmiex06.str

tonyplot anmiex06.str -set anmiex06.set quit

实验截图:

实验分析:

上图演示的是mos管的自对准硅化物过程。自对准硅化物技术是一个提供接触结构、减少源和漏区接触电阻的工艺。自对准硅化物的方法被用于产生硅化物,它能很好地与露出的源、漏以及多晶硅栅的硅对准。为了形成自对准硅化物,氧化硅先被淀积,然后用干法等离子体刻蚀反刻,以便在多晶硅栅的两边留下氧化硅侧墙绝缘分隔层。

七、刻蚀 27.1:3.

go athena

#TITLE: Simple trench etching #

line x loc=0.00 spac=0.10 line x loc=3.0 spac=0.10 #

line y loc=0.00 spac=0.05 line y loc=2.0 spac=0.05 #

initialize #

deposit material=SPR500 thick=1.16 divis=11 #

etch material=SPR500 start x=1.1 y=-10 etch cont x=1.1 y=10 etch cont x=1.9 y=10 etch done x=1.9 y=-10 #

structure outfile=anelex03_0.str #

rate.etch machine=m1 rie silicon \\ iso=0.0 dir=1.0 u.m

rate.etch machine=m1 rie material=SPR500 \\ iso=0.0 dir=0.05 u.m #

etch machine=m1 time=60.0 second dx.mult=0.5 #

structure outfile=anelex03_1.str

tonyplot -ttitle anelex03.in -st anelex03_*.str # quit

实验截图:

实验分析:

上图演示的是一个各向异性刻蚀的剖面图。对于各向异性刻蚀来说,刻蚀只在垂直于硅片表面进行,只有很小的横向刻蚀。各向异性刻蚀大部分是通过干法等离子体刻蚀来实现的。但是干法刻蚀带来的缺点是对下层材料的差的刻蚀选择比、等离子体带来的器件损伤和昂贵的设备。

27.1:4.

go athena

#TITLE: Trench etching using RIE model #

line x loc=0.00 spac=0.20 line x loc=0.5 spac=0.05 line x loc=1 spac=0.05 line x loc=1.5 spac=0.05 line x loc=2 spac=0.05

line x loc=2.5 spac=0.05 line x loc=3.0 spac=0.20 #

line y loc=0.00 spac=0.02 line y loc=2.5 spac=0.1 initialize #

deposit material=SPR500 thick=1. div=5 #

etch material=SPR500 start x=1.1 y=-10 etch cont x=1.1 y=10 etch cont x=1.9 y=10 etch done x=1.9 y=-10 #

structure outfile=anelex04_0.str

rate.etch machine=m1 rie silicon iso=1.0 dir=0.0 u.m #

etch machine=m1 time=40.0 second dx.mult=0.5

structure outfile=anelex04_1.str

rate.etch machine=m2 rie silicon iso=0.0 dir=1.0 u.m #

etch machine=m2 time=50.0 second dx.mult=0.5 #

structure outfile=anelex04_2.str

tonyplot -st anelex04_*.str -ttitle anelex04.in # quit

实验截图:

法,它把硅片相对于离子束运动方向倾斜一个角度。(100)硅片常用角度是偏离垂直方向7度,保证了杂质离子进入硅中很短距离内就会发生碰撞。倾斜角度在扫描工艺中进行设置。这样,离子束经过的是晶格的密集区,能够获得对注入离子投影射程更好地控制。超浅结低能注入的沟道效应有所不同,倾斜硅片几乎不起什么作用。另外,倾斜硅片会增加阴影效应,可能导致器件性能的不对称。注入过程中还必须经常旋转硅片表面。

23.1:3.

go athena

# Oxide Thickness Dependence of B Implant Profiles line x loc = 0.0 spac=0.1 line x loc = 1.0 spac=0.1 line y loc = 0 spac=0.01 line y loc = 0.6 spac=0.01 init

# Implant into \implant boron energy=35 dose=1.e13 tilt=0 rotation=0 print.mom #

extract name=\ mat.occno=1 x.val=0.0) outfile=\

line x loc = 0.0 spac=0.1 line x loc = 1.0 spac=0.1 line y loc = 0 spac=0.01 line y loc = 0.6 spac=0.01 init

diffuse time=8 temp=900 dry #

extract name=\implant boron energy=35 dose=1.e13 tilt=0 rotation=0 \\ s.oxide=1.0e-04*$tox8 print.mom

extract name=\ mat.occno=1 x.val=0.0) outfile=\

line x loc = 0.0 spac=0.1 line x loc = 1.0 spac=0.1 line y loc = 0 spac=0.01 line y loc = 0.7 spac=0.01 init

diffuse time=20 temp=900 dry #

extract name=\implant boron energy=35 dose=1.e13 tilt=0 rotation=0 \\ s.oxide=1.0e-04*$tox20 print.mom

extract name=\ mat.occno=1 x.val=0.0) outfile=\

line x loc = 0.0 spac=0.1 line x loc = 1.0 spac=0.1 line y loc = 0 spac=0.01 line y loc = 0.6 spac=0.01 init

diffuse time=60 temp=900 dry #

extract name=\implant boron energy=35 dose=1.e13 tilt=0 rotation=0 \\ s.oxide=1.0e-04*$tox60 print.mom

extract name=\ mat.occno=1 x.val=0.0) outfile=\

line x loc = 0.0 spac=0.1 line x loc = 1.0 spac=0.1 line y loc = 0 spac=0.01 line y loc = 0.6 spac=0.01 init

diffuse time=160 temp=900 dry #

extract name=\implant boron energy=35 dose=1.e13 tilt=0 rotation=0 \\ s.oxide=1.0e-04*$tox160 print.mom

extract name=\ mat.occno=1 x.val=0.0) outfile=\

tonyplot -overlay aniiex03_*.dat -set aniiex03.set

实验截图:

实验分析:

由上图可知,不同的氧化层界面厚度对离子注入浓度分布的影响。分析可知,越厚的掩蔽层,使得注入的离子深度越浅,并且随着距离越来越远,离子的浓度迅速减小,浅的掩蔽层,使得注入的离子均匀性比较好,注入的离子浓度在一定范围内处于一个相似值。

某些情况下,注入之前在硅片表面生长或淀积一薄层氧化层,被称为掩蔽氧化层,有时也称为牺牲氧化层,因为它是为注入工艺淀积的,并在注入之后需要去除。注入离子通过这样一层非晶氧化层后进入硅片,它们的方向将是随机的,因此可以减小沟道效应。杂质离子与二氧化硅原子的撞击导致了方向的随机性。研究表明掩蔽氧化层并非始终能有效减小沟道效应,可能会导致一些剂量均匀性问题。

23.1:6

go athena

# Retrograde Well Formation Using High Energy Phosphorus Implants

#the x dimension definition line x loc = 0.0 spacing=0.25 line x loc = 0.25 spacing=0.25

#the vertical definition

line y loc = 0 spacing = 0.02 line y loc = 5 spacing = 0.05

#initialize the mesh init silicon c.boron=1e15 deposit oxide thick=0.01 div=1

#perform hogh energy phosphorus implants

implant phos dose=5e13 energy=2000 print.mom implant phos dose=5e12 energy=750 print.mom

# subsequent anneal diffuse time=60 temp=1100

struct outf=aniiex06_0.str

tonyplot aniiex06_0.str -set aniiex06.set quit

实验截图:

实验分析:

上图显示了高能离子注入的浓度分布情况。注入机的能量越高,意味着杂质原子能穿入硅片越深,射程越大。由于控制结深就是控制射程,所以能量是注入机的一个很重要掉的参数。高能离子注入机的能量大于200KeV。高能注入用于倒梯度阱和倒梯度三阱。倒梯度阱中,较深的掺杂浓度大于表面。高能离子注入的强注入效果有利于掩埋杂质层的离子注入。

23.1:10.

go athena

#LDD Formation using LATID Full Rotation Implant #

line x loc = 0.0 spac=0.1 line x loc = 0.4 spac=0.02 line x loc = 0.7 spac=0.05

#

line y loc = 0 spac=0.02 line y loc = 0.50 spac=0.04 line y loc = 1.0 spac=0.1 #

#calculate the mesh init c.boron=1.0e15 #

#grow gate oxide

diffuse temp=950 time=15 dry #

#implant threshold adjust

implant boron dose=4e12 energy=20 #

#deposit gate poly and pattern deposit poly thick=0.4 div=8 etch poly left p1.x=0.4 #

# remove excess grid in substrate relax dir.y=f y.min=.4 #

#perform gate reoxidation diffuse temp=950 time=10 dry #

# mirror to form complete device structure mirror right

# implant LDD using angled implant and full rotation # 48 degrees is selected to avoid channelling implant phos dose=5e13 energy=80 tilt=48 fullrotat #

# implant source/drain vertically

# Use standard tables because SVDP tables are available only for # native oxide and would overestimate channelling for in this case moments std_tab

implant arsen dose=5e15 energy=80 tilt=0 #

# activation diffusion diffuse time=10 temp=900 # #

structure outfile=aniiex10.str

tonyplot -st aniiex10.str -set aniiex10.set quit

实验截图:

实验分析:

上图显示的是轻掺杂漏源区LDD在高浓度漏源区和低浓度的沟道区间形成渐变的横向浓度梯度的情况。LDD注入用于定义MOS晶体管的源漏区。注入使LDD杂质位于栅下紧贴沟道区边缘,为源漏区提供杂质杂质浓度梯度。LDD在沟道边缘的界面区域产生复杂的横向和纵向杂质剖面。大质量材料和表面非晶态的结合有助于维持浅结,浅结还有助于减少源漏间的沟道漏电流效应。

四、光刻 28.1:1. go athena

#

# OPTOLITH input file: anopex01.in # -------------------------------- #

# Aerial image of a complex mask feature. #

# The illumination wavelength #

illumination g.line #

# The shape of the illuminating source #

illum.filter clear.fil circle sigma=0.3 #

# The projection system numerical aperture #

projection na=.43 #

# The shape of the pupil of the projection system #

pupil.filter clear.fil circle #

# Define the mask : two elbows and a contact hole (cd=1.0 um) #

layout lay.clear x.low=-2.5 z.low=-2.5 x.high=-1.5 z.high=2.5 layout x.low=-1.5 z.low=1.5 x.high=2.5 z.high=2.5 layout x.low=-.5 z.low=-2.5 x.high=.5 z.high=.5 layout x.low=.5 z.low=-.5 x.high=2.5 z.high=.5 layout x.low=1.5 z.low=-2.5 x.high=2.5 z.high=-1.5 #

# Calculation of the aerial image #

image win.x.lo=-3 win.z.lo=-3 win.x.hi=3 win.z.hi=3 dx=.2 opaque #

# Store the aerial image in a structure file #

structure outfile=anopex01.str intensity mask #

# Plot the aerial image during the run

#

tonyplot -st anopex01.str -set anopex01.set # quit

实验截图:

实验分析:

上图为光刻工艺中的一个工艺步骤,把掩膜上的图形投到光刻胶上。形成了两个弯管和一个接触孔。在光刻工艺中,曝光的目的是要把版上图形精确地复制成光刻胶上的最终图像。用于亚微米光刻的投影掩膜版衬底材料是熔融石英。在投影掩膜版的制作过程中,利用电子束光刻的直写方式能直接把高分辨率的图形转印到投影掩膜版表面。

28.1:3.

go athena #

# ATHENA Input File: anopex03.in # ---------------------------- #

# Aerial Image and 2D Resist Development. #

# Mask layout: 0.3 um contact hole and 0.3 contact hole

# with sub-imageable (0.1 um) 180 degree Phase Shifters (outriggers). #

# Define the structure #

line x loc=-0.7 spac=0.1 line x loc=-0.15 spac=0.01 line x loc=0 spac=0.1 line x loc=0.15 spac=0.01 line x loc=0.7 spac=0.1 #

line y loc=1.1 spac=1 line y loc=2.1 spac=1 #

init silicon #

deposit nitride thick=0.035 div=1 #

deposit name.resist=AZ1350J thick=.8 divisions=30 #

structure outfile=anopex03.str #

# Aerial image calculation #

illumination g.line #

illum.filter clear.fil circle sigma=0.38 #

projection na=.54 #

pupil.filter clear.fil circle #

layout lay.clear x.lo=-0.15 z.lo=-0.15 x.hi=0.15 z.hi=0.15 phase=0. trans=1. layout x.lo=-0.45 z.lo=0.45 x.hi=0.45 z.hi=0.55 phase=180. trans=1. layout x.lo=-0.45 z.lo=-0.55 x.hi=0.45 z.hi=-0.45 phase=180. trans=1.

layout x.lo=-0.55 z.lo=-0.45 x.hi=-0.45 z.hi=0.45 phase=180. trans=1. layout x.lo=0.45 z.lo=-0.45 x.hi=0.55 z.hi=0.45 phase=180. trans=1. #

image win.x.lo=-0.7 win.x.hi=0.7 win.z.lo=0 win.z.hi=0 dx=0.01 n.pupil=2 #

structure outfile=anopex03_int1.str intensity mask #

# Resist exposure #

expose dose=150 num.refl=10 #

# Post exposure bake #

bake time=45 seconds temp=115 #

# Resist Development #

develop mack time=60 steps=4 substeps=30 #

structure outfile=anopex03_1.str #

# Run image, exposure and development without phase shift outriggers #

initialize infile=anopex03.str #

layout lay.clear x.lo=-0.15 z.lo=-0.15 x.hi=0.15 z.hi=0.15 phase=0. trans=1. #

image win.x.lo=-0.7 win.x.hi=0.7 win.z.lo=0 win.z.hi=0 dx=0.01 n.pupil=2 #

structure outfile=anopex03_int2.str intensity mask #

# Resist exposure #

expose dose=150 num.refl=10 #

# Post exposure bake #

bake time=45 seconds temp=115 #

# Resist Development #

develop mack time=60 steps=4 substeps=30 #

structure outfile=anopex03_2.str

#

tonyplot -st anopex03_int1.str anopex03_int2.str -set anopex03.set tonyplot -st anopex03_1.str anopex03_2.str # quit

实验截图:

实验分析:

上图为相移掩模光刻技术与普通光刻技术的效果对比图。相移掩模光刻技术能够克服光通过掩膜版上小孔时发生的衍射的有关问题。通过相移掩模光刻技术,投影掩膜版被一层附加透明层修正以便改变透光区域使光相移180度。相移掩模光刻技术改善了图像对比度,并已经成为进行CD是0.18um及以下精细光刻的关键因素。

五、淀积 27.1:1. go athena

# Deposit machine comparison #

line x loc=0.00 spac=0.20 line x loc=1.1 spac=0.05 line x loc=1.9 spac=0.05 line x loc=3.0 spac=0.20 #

line y loc=0.00 spac=0.05 line y loc=1.0 spac=0.5 #

initialize #

deposit nitride thick=.4 divis=10 #

etch nitride start x=1.1 y=-10 etch cont x=1.1 y=10 etch cont x=1.9 y=10 etch done x=1.9 y=-10 # #

structure outfile=anelex01_0.str

init infile=anelex01_0.str

rate.depo machine=uni oxide a.m sigma.dep=0.20 \\ uni dep.rate=1000 angle1=45.0 #

deposit machine=uni time=1 minute divis=5 structure outfile=anelex01_1.str

init infile=anelex01_0.str

rate.depo machine=planet1 oxide a.m sigma.dep=0.20 \\ planetar dep.rate=1000 angle1=45.0 angle2=60.0 \\ angle3=6.0 c.axis=20.0 p.axis=8.75 deposit machine=planet1 time=1 minute divis=5 structure outfile=anelex01_2.str #

init infile=anelex01_0.str

rate.depo machine=dual oxide a.m sigma.dep=0.20 \\

dualdirec dep.rate=1000 angle1=45.00 angle2=-45.00 deposit machine=dual time=1 minute divis=5 structure outfile=anelex01_3.str #

init infile=anelex01_0.str

rate.depo machine=hemi oxide a.m sigma.dep=0.20 \\

hemisphe dep.rate=1000 angle1=90.00 angle2=-90.00 deposit machine=hemi time=1 minute divis=5 structure outfile=anelex01_4.str

init infile=anelex01_0.str

rate.depo machine=cvd1 oxide a.m \\ cvd dep.rate=1000 step.cov=0.80 deposit machine=cvd1 time=1 minute divis=5 structure outfile=anelex01_5.str #

init infile=anelex01_0.str

rate.depo machine=conic oxide a.m sigma.dep=0.20 \\

conical dep.rate=1000 angle1=60.00 c.axis=45.00 p.axis=20.00 deposit machine=conic time=1 minute divis=5 structure outfile=anelex01_6.str #

init infile=anelex01_0.str

rate.depo oxide custom1 machine=custom1 infile=anelex01.dat a.m dep.rate=10.0 deposit machine=custom1 time=1 minute divis=5 structure outfile=anelex01_7.str tonyplot -st anelex01_*.str quit

实验截图:

实验分析:

在集成电路制备中,很多薄膜材料由淀积工艺形成。上图为六种淀积方式的比较。分别为unidirectional, planetary, dual directional , hemispherical , CVD and conical。其中CVD淀积较好。化学气相淀积CVD是由一种或数种物质的气体,以某种方式激活后,在衬底表面发生化学反应,并淀积出所需固体薄膜的生长技术。例如:APCVD, LPCVD, PECVD, HDPCVD。CVD反应必须满足三个挥发性标准:在淀积温度下,反应剂必须具备足够高的蒸汽压; 除淀积物质外,反应产物必须是挥发性的; 淀积物本身必须具有足够低的蒸气压

deposit machine=custom_uni time=20 sec divis=4 substeps=11

structure outf=anelex17_1.str

### The CUSTOM2 model with a \angular distribution within [-20, 20] degrees #

init infile=anelex17.str

rate.depo aluminum custom2 machine=bell_shaped infile=anelex17_1.dat a.s \\

deposit machine=bell_shaped time=20 sec divis=4 substeps=11

structure outf=anelex17_2.str

tonyplot -overlay anelex17_*.str -set anelex17.set quit

dep.rate=100.0 sigma.dep=0.2

实验截图:

实验分析:

此实验演示的是定制淀积。根据用户需求来进行淀积的淀积模式。上图为零度角入射淀积。由剖面图可以看出淀积不均匀。

27.1:19.

go athena

#TITLE: Trench etch, reflow, and metal deposit #

line x loc=0.00 spac=0.1 line x loc=1 spac=0.05 line x loc=2 spac=0.05 line x loc=3.0 spac=0.1 #

line y loc=0.00 spac=0.5 line y loc=0.5 spac=0.5 initialize #

deposit oxide thick=1.5 div=10 deposit nitride thick=.3 div=1 #

etch nitride start x=1.0 y=-10 etch cont x=1.0 y=10 etch cont x=2.0 y=10 etch done x=2.0 y=-10

rate.etch machine=m1 rie oxide iso=1.0 dir=0.0 u.m #

etch machine=m1 time=40.0 second dx.mult=0.25

rate.etch machine=m2 rie oxide iso=0.0 dir=1.0 u.m #

etch machine=m2 time=60.0 second dx.mult=0.5

strip nitride

structure outfile=anelex19_0.str

#perform reflow here!

material oxide visc.0=1.862e-20 gamma.reflo=1e3 reflow diff time=10 temp=950 reflow

structure outfile=anelex19_1.str

rate.depo machine=PE4450 aluminum u.m sigma.dep=0.65 hemisphe \\ dep.rate=0.5 angle1=70.0 angle2=-70.0 deposit machine=PE4450 time=45 second divis=8

structure outfile=anelex19_2.str tonyplot -st anelex19_*.str quit

实验截图:

实验分析:

上图演示的是刻蚀、回流和金属化的工艺过程。图一表示的是各向同性腐蚀,使沟道打开一个缺口,但腐蚀过深可能使得在边缘处金属互联时影响淀积效果。为弥补这种缺陷,需使用ELITE回流模型进行回流,通过回流工艺进行平坦化。随后再进行金属化。

六、硅化物 26.1:1.

go athena

#TITLE: BPSG example

line x loc = 0.0 spacing=.05 line x loc = 2.0 spacing=.05

line y loc=0 spacing = 0.01 line y loc=1.0 spacing = 0.1

init c.boron=1e15

# define the parameters for BPSG

impurity i.antimony donor material=BPSG Dix.0=1.31e16 Dix.E=8.75 impurity i.antimony donor material=BPSG Dim.0=0.0 Dim.E=0.0 impurity i.arsenic donor material=BPSG Dix.0=1.75 Dix.E=4.89 impurity i.arsenic donor material=BPSG Dim.0=0.0 Dim.E=0.0 impurity i.boron acceptor material=BPSG Dix.0=3.16e-4 Dix.E=3.53 impurity i.boron acceptor material=BPSG /oxide Seg.0=1126.0 Seg.E=0.91 Trn.0=1.66e-7 Trn.E=0.0

impurity i.boron acceptor material=BPSG Dip.0=0.0 Dip.E=0.0

impurity i.phosphor donor material=BPSG /oxide Seg.0=30.0 Seg.E=0.0 Trn.0=1.66e-7 Trn.E=0.0

impurity i.phosphor donor material=BPSG Dix.0=7.6e-3 Dix.E=3.5 Dvx.0=0.0 Dvx.E=0.0

impurity i.phosphor donor material=BPSG Dim.0=0.0 Dim.E=0.0 Dvm.0=0.0 Dvm.E=0.0

impurity i.phosphor donor material=BPSG Dimm.0=0.0 Dimm.E=0.0 Dvmm.0=0.0 Dvmm.E=0.0

deposit oxide thick=0.1 c.phos=1e12 c.bor=1e12 div=20

deposit material=BPSG thick=0.5 div=20 c.phos=2e21 c.boron=5e21

#perform diffusion method fermi compress diffuse time=150 temp=1050

#plot the resulting structure

structure outfile=anmiex01.str

tonyplot anmiex01.str quit

实验截图:

实验分析:

上图演示了多杂质沉积材料的淀积效果。从BPSG扩散的硼和磷进入氧化硅后浓度发生大幅改变,随后从氧化硅进入硅中后磷的浓度线性减小,硼的浓度维持不变。说明,BPSG到无定形SiO2间的BPSG/SiO2界面上存在着突变。同时,SiO2/Si界面也存在突变。

本文来源:https://www.bwwdw.com/article/8v5d.html

Top