Pareto Points in SRAM Design Using the Sleepy Stack Approach

更新时间:2023-08-08 01:44:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula

ParetoPointsinSRAMDesignUsingtheSleepyStackApproach

JunCheolParkandVincentJ.MooneyIIISchoolofElectricalandComputerEngineeringGeorgiaInstituteofTechnology,Atlanta,GA30332

{jcpark,mooney}@ece.gatech.eduAbstract

LeakagepowerconsumptionofcurrentCMOStech-nologyisalreadyagreatchallenge.ITRSprojectsthatleakagepowerconsumptionmaycometodominateto-talchippowerconsumptionasthetechnologyfeaturesizeshrinks.LeakageisaseriousproblemparticularlyforSRAMwhichoccupieslargetransistorcountinmoststate-of-the-artchipdesigns.Weproposeanovelultra-lowleakageSRAMdesignwhichwecall“sleepystackSRAM.”Unlikemanyotherpreviousapproaches,sleepystackSRAMcanretainlogicstateduringsleepmode,http://www.77cn.com.cnparedtothebestalternativewecould nd,a6-TSRAMcellwithhigh-Vthtransistors,thesleepystackSRAMcellwith2xVthat110oCachievesmorethan2.77Xleakagepowerreduc-tionatacostof16%delayincreaseand113%areain-crease.Alternatively,bywideningwordlinetransistorsandtransistorsinthepull-downnetwork,thesleepystackSRAMcellcanachieves2.26Xleakagereductionwithoutincreasingdelayatacostofa125%areapenalty.

1Introduction

PowerconsumptionisoneofthetopconcernsofVeryLargeScaleIntegration(VLSI)circuitdesign,forwhichComplementaryMetalOxideSemiconductor(CMOS)istheprimarytechnology.Today’sfocusonlowpowerisnotonlybecauseoftherecentgrowingdemandsofmobileapplications.Evenbeforethemobileera,powerconsump-tionhasbeenafundamentalproblem.PowerconsumptionofCMOSconsistsofdynamicandstaticcomponents.Al-thoughdynamicpoweraccountedfor90%ormoreofthetotalchippowerpreviously,asthefeaturesizeshrinks,e.g.,to0.09µand0.065µ,staticpowerhasbecomeagreatchallengeforcurrentandfuturetechnologies.BasedontheInternationalTechnologyRoadmapforSemiconduc-tors(ITRS)[1],Kimetal.reportthatsubthresholdleakagepowerdissipationofachipmayexceeddynamicpowerdissipationatthe65nmfeaturesize[2].

Oneofthemainreasonscausingtheleakagepowerin-creaseisincreaseofsubthresholdleakagepower.Whentechnologyfeaturesizescalesdown,supplyvoltageandthresholdvoltagealsoscaledown.Subthresholdleakagepowerincreasesexponentiallyasthresholdvoltagede-creases.Furthermore,thestructureoftheshortchanneldevicelowersthethresholdvoltageevenlower.Anothercontributortoleakagepowerisgate-oxideleakagepower

duetothetunnelingcurrentthroughthegate-oxideinsu-lator.Althoughgate-oxideleakagepowermaybecom-parabletosubthresholdleakagepowerinnanoscaletech-nology,weassumeothertechniqueswilladdressgate-oxideleakage;forexample,high-kdielectricgateinsu-latorsmayprovideasolutiontoreducegate-leakage[2].Therefore,thispaperfocusesonreducingsubthresholdleakagepowerconsumption.

AlthoughleakagepowerconsumptionisaproblemforallCMOScircuits,inthispaperwefocusonSRAMbe-causeSRAMtypicallyoccupieslargeareaandtransistorcountinaSystem-on-a-Chip(SoC).Furthermore,consid-eringanembeddedprocessorexample,SRAMaccountsfor60%ofareaand90%ofthetransistorcountinIntelXScale[3],andthusmaypotentiallyconsumelargeleak-agepower.

Inthispaper,weproposethesleepystackSRAMcelldesign,whichisamixtureofchangingthecircuitstructureaswellasusinghigh-Vth.Thesleepystacktechnique[4]achievesgreatlyreducedleakagepowerwhilemaintainingpreciselogicstateinsleepmode,whichmaybecrucialforaproductspendingthemajorityofitstimeinsleeporstand-bymode.Basedonthesleepystacktechnique,thesleepystackSRAMcelldesigntakesadvantageofultra-lowleakageandstatesaving.

Thispaperisorganizedasfollows.InSection2,priorworkinlow-leakageSRAMdesignisdiscussed.InSec-tion3,oursleepystackSRAMcelldesignapproachisproposed.InSection4and5,experimentalmethodologyandtheresultsarepresented.InSection6,conclusionsaregiven.

2Previouswork

Inthissection,wediscussstate-of-the-artlow-powermemorytechniques,especiallySRAMandcachetech-niquesonwhichourresearchfocuses.

Oneeasywaytoreduceleakagepowerconsumptionisbyadoptinghigh-VthtransistorsforallSRAMcelltran-sistors.Thissolutionissimplebutincursdelayincrease.Azizietal.observethatinnormalprograms,mostofthebitsinacachearezeros.Therefore,Azizietal.pro-poseanAsymmetric-CellCache(ACC),whichpartiallyapplieshigh-VthtransistorsinanSRAMcelltosaveleak-agepoweriftheSRAMcellisinthezerostate[5].How-ever,theACCleakagepowersavingsarequitelimitedincaseofabenchmarkwhich llsSRAMwithmostlynon-

Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula

zerovalues.Niietal.proposeAuto-Backgate-ControlledMulti-ThresholdCMOS(ABC-MTCMOS),whichusesReverse-BodyBias(RBB)toreduceleakagepowercon-sumption[6].RBBincreasesthresholdvoltagewithoutlosinglogicstate.Thisincreasedthresholdvoltagere-ducesleakagepowerconsumptionduringsleepmode.However,sincetheABC-MTCMOStechniqueneedstochargelargewells,ABC-MTCMOSrequiressigni canttransitiontimeandpowerconsumption.

Theforcedstacktechniqueachievesleakagepowerre-ductionbyforcingastackstructure[7].Thistechniquebreaksdownexistingtransistorsintotwotransistorsandtakesanadvantageofthestackeffect,whichreducesleak-agepowerconsumptionbyconnectingtwoormoreturnedofftransistorsserially.Theforcedstacktechniquecanbeappliedtoamemoryelementsuchasaregister[8]oranSRAMcell[9].However,delayincreasemayoccurduetoincreasedresistance,andthelargestleakagesavingsre-portedunderspeci cconditionsis90%comparedtocon-ventionalSRAMin0.07µtechnology[9].

http://www.77cn.com.cningsleeptransistors,thegated-VddSRAMcellblockspull-upnetworksfromtheVddrail(pMOSgated-Vdd)and/orblockspull-downnetworksfromtheGndrail(nMOSgated-Vdd)[10].Thegated-VddSRAMcellachieveslowleakagepowerconsumptionfromboththestackeffectandhigh-Vthsleeptransistors.However,thegated-VddSRAMcell[10]losesstatewhenthesleeptran-sistorsareturnedoff.

Flautneretal.proposethe“drowsycache”techniquethatswitchesVdddynamically[11].Forshort-channeldevicessuchas0.07µchannellengthdevices,leakagepowerincreasesduetoDrainInducedBarrierLower-ing(DIBL),therebyincreasingsubthresholdleakagecur-rent.ThedrowsycachelowersthesupplyvoltageduringdrowsymodeandsuppressesleakagecurrentusingDIBL.Thedrowsycachetechniquecanretainstoreddataataleakagepowerreductionofupto86%[11].

OursleepystackSRAMcellcanachievemorepowersavingsthanahigh-Vth,anACCoradrowsycacheSRAMcell.Furthermore,thesleepystackSRAMdoesnotrequirelargetransitiontimeandtransitionpowercon-sumptionunlikeABC-MTCMOS.

3Approach

We rstintroduceourrecentlyproposedlow-leakagestructurenamed“sleepystack”inSection3.1.Then,weexplainournewlyproposed“sleepystackSRAM”inSec-tion3.2.

3.1Sleepystackleakagereduction

Thesleepystacktechniquehasastructuremergingtheforcedstacktechniqueandthesleeptransistortechnique.Figure1showsasleepystackinverter.ThesleepystacktechniquedividesexistingtransistorsintotwotransistorseachtypicallywiththesamewidthW1halfthesizeoftheoriginalsingletransistor’swidthW0(i.e.,W1=W0/2),

’=1

’=0

Figure1:(a)Sleepystackinverteractivemode(left)and(b)sleepmode(right)

thusmaintainingequivalentinputcapacitance.ThesleepystackinverterinFigure1(a)usesW/L=3forthepull-uptransistorsandW/L=1.5forthepull-downtransis-tors,whileaconventionalinverterwiththesameinputca-pacitancewoulduseW/L=6forthepull-uptransis-torandW/L=3forthepull-downtransistor(assumingµn=2µp).Thensleeptransistorsareaddedinparalleltooneofthetransistorsineachsetoftwostackedtransistors.Weusehalfsizetransistorwidthoftheoriginaltransistor(i.e.,weuseW0/2)forthesleeptransistorwidthofthesleepystack.

Duringactivemode,S=0andS =1areasserted,andthusallsleeptransistorsareturnedon.Thisstructurepo-tentiallyreducescircuitdelay(comparedtonotaddingsleeptransistors)because(i)addedsleeptransistorsarealwaysonduringactivemodeandthusateachsleeptran-sistordrain,thevoltagevalueconnectedtoasleeptran-sistorisalwaysreadyduringactivemodeand(ii)thereisareducedresistanceduetothetwoparalleltransistors.Therefore,wecanintroducehigh-Vthtransistorstothesleeptransistorsandtransistorsinparallelwiththesleeptransistorwithoutincurringlarge(e.g.,2Xormore)de-layoverhead.Duringsleepmode,S=1andS =0areas-serted,andsobothofthesleeptransistorsareturnedoff.Thehigh-Vthtransistorsandthestackedtransistorsinthesleepystackapproachsuppressleakagecurrent.Inshort,usinghigh-Vthtransistors,thesleepystacktechniquepo-tentiallyachieves200Xleakagereductionovertheforcedstacktechnique.Furthermore,unlikethesleeptransistortechnique[10],thesleepystacktechniquecanretainexactlogicstatewhileachievingsimilarleakagereduction.

3.2SleepystackSRAMcell

Figure2:SRAMcellleakagepaths

WedesignanSRAMcellbasedonthesleepystacktechnique.Theconventional6-TSRAMcellconsistsoftwocoupledinvertersandtwowordlinepasstransistorsasshowninFigure2.Sincethesleepystacktechniquecan

Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula

beappliedtoeachtransistorseparately,thesixtransistorscanbechangedindividually.However,tobalancecurrent ow(failuretodosopotentiallyincreasestheriskofsofterrors[9]),asymmetricdesignapproachisused.

Table1:SleepystackappliedtoanSRAMcell

Combinations

cell leakagebitline leakagereduction

reductionPull-Down (PD) sleepy stackmediumlowPull-Down (PD), wordline (WL) sleepy stackmediumhighPull-Up (PU), Pull-Down (PD) sleepy stackhighlow

Pull-Up (PU), Pull-Down (PD),

wordline (WL) sleepy stack

high

high

Therearetwomaintypesofsubthresholdleakagecur-rentsina6-TSRAMcell:cellleakageandbitlineleak-age(seeFigure2).Itisveryimportantwhenapply-ingthesleepystacktechniquetoconsiderthevariousleakagepathsintheSRAMcell.Toaddresstheeffectofthesleepystacktechniqueproperly,weconsiderfourcombinationsofthesleepystackSRAMcellasshowninTable1.InTable1,“Pull-Down(PD)sleepystack”meansthatthesleepystacktechniqueisonlyappliedtothepull-downtransistorsofanSRAMcellasindicatedinthebottomdashedboxinFigure3.“Pull-Down(PD),wordline(WL)sleepystack”meansthatthesleepystacktechniqueisappliedtothepull-downtransistorsaswellaswordlinetransistors.Similarly,“Pull-Up(PU),Pull-Down(PD)sleepystack”meansthatthesleepystacktechniqueisappliedtothepull-uptransistorsandthepull-downtransistors(butnottothewordlinetran-sistors)ofanSRAMcell.Finally,“Pull-Up(PU),Pull-Down(PD),wordline(WL)sleepystack”meansthatthesleepystacktechniqueisappliedtoallthetransistorsinanSRAMcell.

ThePDsleepystackcansuppresssomepartofthecellleakage.Meanwhile,thePU,PDsleepystackcansup-pressthemajorityofthecellleakage.However,with-outapplyingthesleepystacktechniquetothewordline(WL)transistors,bitlineleakagecannotbesigni -cantlysuppressed.Althoughlyinginthebitlineleak-agepath,thepull-downsleepystackisnoteffectivetosuppressbothbitlineleakagepathsbecauseoneofthepull-downsleepystacksisalwayson.Therefore,tosup-presssubthresholdleakagecurrentinaSRAMcellfully,thePU,PDandWLsleepystackapproachneedstobeconsideredasshowninFigure3.

ThesleepystackSRAMcelldesignresultsinareain-creasebecauseoftheincreaseinthenumberoftransis-tors.However,wehalvethetransistorwidthsinaconven-tionalSRAMcelltomaketheareaincreaseofthesleepystackSRAMcellnotnecessarilydirectlyproportionaltothenumberoftransistors.Halvingatransistorwidthispossiblewhentheoriginaltransistorwidthisatleast2Xlargerthantheminimumtransistorwidth(whichistypi-callythecaseinmodernhighperformanceSRAMcellde-sign).Unliketheconventional6-TSRAMcell,thesleepystackSRAMcellrequirestheroutingofoneortwoextrawiresforthesleepcontrolsignal(s).

Figure3:SleepystackSRAMcell

4Experimentalmethodology

ToevaluatethesleepystackSRAMcell,wecompareourtechniqueto(i)usinghigh-Vthtransistorsasdirectre-placementsforlow-Vthtransistors(thusmaintainingonly6transistorsinanSRAMcell)and(ii)theforcedstacktechnique[7];wechoosethesetechniquesbecausethesetwotechniquesarestatesavingtechniqueswithouthighriskofsofterror[9].AlthoughAsymmetric-CellSRAMexplainedinSection2isalsoastate-savingSRAMcelldesign,wedonotconsiderAsymmetric-CellSRAMbe-causeweassumethatourSRAMcellsare lledequallywith‘1s’and‘0s.’ThisisnottheconditionthatACCprefers,andunderthisconditiontheleakagepowersav-ingsofACCaresmallerthanthehigh-VthSRAMcell,whichuseshigh-Vthforallsixtransistors.

We rstlayoutSRAMcellsofeachtechnique.Insteadofstartingfromscratch,weusetheCACTImodelfortheSRAMstructureandtransistorsizing[12].WeuseNCSUCadencedesignkittargetingTSMC0.18µtech-nology[13].Byscalingdownthe0.18µlayout,weobtain0.07µtechnologytransistorlevelHSPICEschematics[4],andwedesigna64x64bitSRAMcellarray.

Weestimateareadirectlyfromourcustomlayoutus-ingTSMC0.18µtechnologyandscaleto0.07µusingthefollowingformula:0.07µarea=0.18µarea×(0.07µ)2/(0.18µ)2×1.1(non-linearoverhead)[4].Weareawarethisisnotexact,hencetheword“estimate.”Wealsoas-sumetheareaoftheSRAMcellwithhigh-Vthtransistorsisthesameaswithlow-Vthtransistors.Thisassumptionisreasonablebecausehigh-Vthcanbeimplementedbychanginggateoxidethickness,andthisalmostdoesnotaf-fectareaatall.Weestimatedynamicpower,staticpowerandreadtimeofeachofthevariousSRAMcelldesignsusingHSPICEsimulationwithBerkeleyPredictiveTech-nologyModel(BPTM)targeting0.07µtechnology[14].Thereadtimeismeasuredfromthetimewhenanenabledwordlinereaches10%oftheVddvoltagetothetimewheneitherbitlineorbitline’dropsfrom100%oftheprechargedvoltageto90%oftheprechargedvolt-agevaluewhiletheotherremainshigh.Therefore,oneofthebitlinesignalremainsatVdd,andtheotheris0.9xVdd.This10%voltagedifferencebetweenbitlineandbitline’istypicallyenoughforasenseampli ertodetectthestoredcellvalue[15].Dynamicpowerof

Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula

theSRAMarrayismeasuredduringthereadoperationwithcycletimeof4ns.StaticpoweroftheSRAMcellismeasuredbyturningoffsleeptransistorsifapplicable.Toavoidleakagepowermeasurementbiasedbyamajorityof‘1’versus‘0’(orvice-versa)values,halfofthecellsarerandomlysetto‘0,’withtheremaininghalfofthecellssetto‘1.’

5Results

WecomparethesleepystackSRAMcelltothecon-ventional6-TSRAMcell,high-Vth6-TSRAMcellandforcedstackSRAMcell.Forthe“high-Vth”techniqueandtheforcedstacktechnique,weconsiderthesametech-niquecombinationsweappliedtothesleepystackSRAMcell–seeTable1.

Toproperlyobservethetechniques,wecompare13differentcasesasshowninTable2.Case1istheconven-tional6-TSRAMcell,whichisourbasecase.Cases2,3,4and5are6-TSRAMcellsusingthehigh-Vthtechnique.PDhigh-Vthisthehigh-Vthtechniqueappliedonlytothepull-downtransistors.PD,WLhigh-Vthisthehigh-Vthtechniqueappliedtothepull-downtransistorsaswellastothewordlinetransistors.PU,PDhigh-Vthisthehigh-Vthtechniqueappliedtothepull-upandpull-downtran-sistors.PU,PD,WLhigh-Vthisthehigh-VthtechniqueappliedtoalltheSRAMtransistors.Cases6,7,8and9are6-TSRAMcellswiththeforcedstacktechnique[7].PDstackistheforcedstacktechniqueappliedonlytothepull-downtransistors.PD,WLstackistheforcedstacktechniqueappliedtothepull-downtransistorsaswellastothewordlinetransistors.PU,PDstackistheforcedstacktechniqueappliedtothepull-upandpull-downtran-sistors.PU,PD,WLstackistheforcedstacktechniqueappliedtoalltheSRAMtransistors.Pleasenotethatwedonotapplyhigh-Vthtotheforcedstacktechniquebe-causetheforcedstackSRAMwithhigh-Vthincursmorethan2Xdelayincrease.Cases10,11,12and13arethefoursleepystackSRAMcellapproachesaslistedinTa-ble1.ForsleepystackSRAM,high-VthisappliedonlytothesleeptransistorsandthetransistorsparalleltothesleeptransistorsasshowninFigure3.

5.1Area

Table2:Layoutarea

Technique

Area(u2)Area(u2)Normalized

0.18u20.07u2

areaCase1

Low-Vth Std3.8254.50017.2132.8641.00Case2PD high-Vth

3.8254.50017.2132.8641.00Case3PD, WL high-Vth3.8254.50017.2132.8641.00Case4PU, PD high-Vth

3.8254.50017.2132.8641.00Case5PU, PD, WL high-Vth3.8254.50017.2132.8641.00Case6PD stack

3.4654.68016.2162.6980.94Case7PD, WL stack3.4655.76019.9583.3201.16Case8PU, PD stack

3.2854.68015.3742.5580.89Case9PU, PD, WL stack3.4655.76019.9583.3201.16Case10PD sleepy stack

4.5455.04022.9073.8111.33Case11PD, WL sleepy stack4.4556.70529.8714.9691.74Case12PU, PD sleepy stack

5.7605.04029.0304.8291.69Case13

PU, PD, WL sleepy stack

5.535

6.615

36.614

6.0912.13

Table2showstheareaofeachtechnique.PleasenotethatSRAMcellareacanbereducedfurtherbyusingmini-

mumsizetransistors,butreducingtransistorsizeincreasescellreadtime.SomeSRAMcellswiththeforcedstacktechniqueshowsmallerareaevencomparedtothebasecase.Thereasonisthatdividedtransistorscanenableaparticularlysqueezeddesign[4].Thesleepystacktech-niqueincreasesareabybetween33%and113%.TheaddedsleeptransistorsareabottlenecktoreducethesizeofthesleepystackSRAMcells.Further,wiringthesleepcontrolsignals(anoverheadwedonotconsiderinTa-ble2)makesthedesignmorecomplicated.

5.2Cellreadtime

Table3:Normalizedcellreadtime

Technique25°C

110°C

1xVth1.5xVth2xVth

1xVth1.5xVth2xVth

Case1Low-Vth Std1.000

N/A1.000

N/ACase2PD high-Vth1.0221.0431.0201.061Case3PD, WL high-VthCase4PU, PD high-VthN/A

1.1111.280

1.0221.055N/A

1.1171.262

1.0201.048Case5PU, PD, WL high-Vth1.1111.2771.1101.259

Case6PD stack1.3681.345Case7PD, WL stack1.647

1.682

Case8PU, PD stack1.348N/A

1.341N/A

Case9PU, PD, WL stack1.7041.678

Case10PD sleepy stack1.2761.3071.2631.254Case11PD, WL sleepy stack1.458Case12PU, PD sleepy stackN/A

1.551

1.2751.306N/A

1.4351.546

1.2871.319Case13

PU, PD, WL sleepy stack1.4561.605

1.4501.504

AlthoughSRAMcellreadtimechangesslightlyas

temperaturechanges,theimpactoftemperatureonthecellreadtimeisquitesmall.However,theimpactofthresholdvoltageislarge.Weapply1.5xVthand2xVthforthehigh-Vthtechniqueandthesleepystacktechnique.AsshowninTable3,thedelaypenaltyoftheforcedstacktechnique(withalllow-Vthtransistors)isbetween35%and70%comparedtothestandard6-TSRAMcell.Thisisoneoftheprimaryreasonsthattheforcedstacktechniquecannotusehigh-Vthtransistorswithoutincurringdramaticdelayincrease(e.g.,2Xormoredelaypenaltyisobservedusingeither1.5xVthor2xVth).

Amongthethreelow-leakagetechniques,thesleepystacktechniqueisthesecondbestintermsofcellreadtime.ThePU,PD,WLhigh-Vthwith2xVthis16%fasterthanthePU,PD,WLsleepystackwith2xVthat110o.SinceweareawarethatareaanddelayarecriticalfactorswhendesigningSRAM,wewillexploreareaanddelayimpactusingtradeoffsinSection5.4.However,letus rstdiscussleakagereduction(i.e.,withoutyetfocusingontradeoffs,whichwillbethefocusofSection5.4).

5.3Leakagepower

Wemeasureleakagepowerwhilechangingthresholdvoltageandtemperaturebecausetheimpactofthresholdvoltageandtemperatureonleakagepowerissigni cant.Table4showsleakagepowerconsumptionwithtwohigh-Vthvalues,1.5xVothand2xVth,andtwotemperatures,25Cand110oC,whereCase1andthecasesusingtheforcedstacktechnique(Cases6,7,8and9)arenotaf-fectedbychangingVthbecausetheseuseonlylow-Vth.(Pleasenotetheabsolutenumbersareavailablein[4].)

Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula

Table4:Normalizedleakagepower

Normalized leakage powerTechnique

25°C110°C

1xVth1.5xVth2xVth1xVth1.5xVth2xVth

Case1Low-Vth Std1.0000N/A1.0000N/ACase2PD high-Vth

0.54660.52740.57110.5305Case3PD, WL high-Vth0.1860

Case4PU, PD high-Vth

N/A0.20710.17360.25550.37850.3552N/A

0.40220.3522Case5PU, PD, WL high-Vth0.03910.00140.08570.0065

Case6PD stack

0.55410.5641Case7PD, WL stack0.2213Case8PU, PD stack

0.3862N/A

0.2554

0.3950N/ACase9PU, PD, WL stack0.05550.0832

Case10PD sleepy stack

0.53310.53150.52820.5192Case11PD, WL sleepy stack0.18520.1827Case12PU, PD sleepy stack

N/A

0.36460.3630N/A

0.19550.1820

0.35340.3439Case13

PU, PD, WL sleepy stack

0.01670.00330.01670.0024

5.3.1

Resultsat25oC

Ourresultsat25oCshowthatCase5isthebestwith2xVth

andCase13isthebestwith1.5xVth.Specially,at1.5xVth,Case5andCase13achieve25Xand60Xleakagereduc-tionoverCase1,respectively.However,theleakagere-ductioncomeswithdelayincrease.Thedelaypenaltyis11%and45%,respectively,comparedtoCase1.5.3.2

Resultsat110o

C

Absolutepowerconsumptionnumbersat110o

Cshow

morethan10Xincreaseofleakagepowerconsumptioncomparedtotheresultsat25oC.ThiscouldbeaseriousproblemforSRAMbecauseSRAMoftenresidesnexttoamicroprocessorwhosetemperatureishigh.

At110oC,thesleepystacktechniqueshowsthebestre-sultinboth1.5xVthand2xVthevencomparedtothehigh-Vthtechnique.Theleakageperformancedegradationun-derhightemperatureisverynoticeablewiththehigh-Vthtechniqueandtheforcedstacktechnique.Forexample,at25oCthehigh-Vthtechniquewith1.5xVth(Case5)andtheforcedstacktechnique(Case9)showaround96%leak-agereduction.However,at110oCthesametechniquesshowaround91%ofleakagepowerreductioncomparedtoCase1.Onlythesleepystacktechniqueachievessu-periorleakagepowerreduction;afterincreasingtemper-ature,thesleepystackSRAMshows5.1Xand4.8Xre-ductionscomparedtoCase5andCase9,respectively,with1.5xVth.

Whenthelow-leakagetechniquesareappliedonlytothepull-upandpull-downtransistors,leakagepowerreductionisatmost65%(2xVth,110oC)becausebitlineleakagecannotbesuppressed.Theremaining35%ofleakagepowercanbesuppressedbyapplyinglow-leakagetechniquestowordlinetransistors.Thisim-pliesthatbitlineleakagepoweraddressesaround35%ofSRAMcellleakagepowerconsumption.Thistrendisobservedforallthreetechnniquesconsidered,i.e.,high-Vth,forcedstackandsleepystack.

5.4Tradeoffsinlow-leakagetechniques

Althoughthesleepystacktechniqueshowssuperiorre-sultsintermsofleakagepower,weneedtoexplorearea,delayandpowertogetherbecausethesleepystacktech-

niquecomeswithnon-negligibleareaanddelaypenalties.Tobecomparedwiththehigh-Vthtechniqueatthesamecellreadtime,weconsiderfourmorecasesforsleepystackSRAMinadditiontothecasesalreadyconsideredinTable4;weincreasethewidthsofallwordlineandpull-downtransistors(includingsleeptransistors).Specif-ically,forthesleepystacktechnique,we ndnewtransis-torwidthsofwordlinetransistorsandpull-downtran-sistorssuchthattheresultisdelayapproximatelyequaltothedelayofthe6-Thigh-Vthcase,i.e.,Case5.Thenewcasesaremarkedwith‘*’(Cases10*,11*,12*,13*).TheresultsareshowninTable5.Toenhancereadabilityoftradeoffs,eachtableissortedbyleakagepower.Althoughwecomparedfourdifferentsimulationconditions,wetaketheconditionwith2xVthat110oCand2xVthat110oCasimportantrepresentativetechnologypointsatwhichtocomparethetrade-offsbetweentechniques.Wechoose110oCbecausegenerallySRAMoperatesatahightem-peratureandalsobecausehightemperatureisthe“worstcase.”

Table5:Tradeoffs(2xVth,110oC)

Technique

NormalizedNormalizedNormalizedleakagedelayarea

Case1Low-Vth Std1.0001.0001.000Case6PD stack0.5641.3450.942Case2PD high-Vth0.5301.0611.000Case10PD sleepy stack0.5191.2541.331Case10*PD sleepy stack*0.5191.2541.331Case8PU, PD stack0.3951.3410.893Case4PU, PD high-Vth0.3521.0481.000Case12*PU, PD sleepy stack*0.3441.2701.713Case12PU, PD sleepy stack0.3441.3191.687Case7PD, WL stack0.2551.6821.159Case3PD, WL high-Vth0.1861.2621.000Case11*PD, WL sleepy stack*0.1831.2391.876Case11PD, WL sleepy stack0.1821.5461.735Case9PU, PD, WL stack0.0831.6781.159Case5PU, PD, WL high-Vth0.0071.2591.000Case13*PU, PD, WL sleepy stack*0.0031.2652.253Case13

PU, PD, WL sleepy stack

0.0021.5042.127

InTable5,weobservesixParetopoints,respectively,whichareinshadedrows,consideringthreevariablesofleakage,delay,andarea.Case13showsthelowestpossi-bleleakage,2.7Xsmallerthantheleakageofanyofthepriorapproachesconsidered;however,thereisacorre-spondingdelayandareapenalty.Alternatively,Case13*showsthesamedelay(within0.2%)asCase5and2.26XleakagereductionoverCase5;however,Case13*uses125%moreareathanCase5.Inshort,thispaperpresentsnew,previouslyunknownParetopointsatthelow-leakageendofthespectrum(forade nitionofa“Paretopoint,”pleasesee[16]).

5.5Activepower

Table6showspowerconsumptionduringreadopera-tions.TheactivepowerconsumptionincludesdynamicpowerusedtochargeanddischargeSRAMcellsplusleakagepowerconsumption.At25oCleakagepowerislessthan20%oftheactivepowerincaseofthestan-dardlow-VthSRAMcellin0.07µtechnologyaccording

Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula

Table6:Normalizedactivepower

Technique

25°C

110°C

1xVth1.5xVth2xVth

1xVth1.5xVth2xVth

Case1Low-Vth Std1.000

N/A1.000

N/ACase2PD high-Vth0.9360.9130.7240.691Case3PD, WL high-VthCase4PU, PD high-VthN/A

0.8580.829

0.9280.893N/A

0.6180.478

0.5720.582Case5PU, PD, WL high-Vth0.8380.8420.4320.368

Case6PD stack0.9260.669Case7PD, WL stack0.665

0.398

Case8PU, PD stack0.905N/A

0.596N/A

Case9PU, PD, WL stack0.6370.293

Case10PD sleepy stack0.9810.9810.8070.811Case11PD, WL sleepy stack0.773Case12PU, PD sleepy stackN/A

0.717

0.9611.005N/A

0.5860.600

0.7860.797Case13

PU, PD, WL sleepy stack0.7190.708

0.5880.546

toBPTM[14].However,leakagepowerincreases10Xasthetemperaturechangesto110oCalthoughactivepowerincreases3X.At110oC,leakagepowerismorethanhalfoftheactivepowerfromoursimulationresults.There-fore,withoutaneffectiveleakagepowerreductiontech-nique,totalpowerconsumption–eveninactivemode–isaffectedsigni cantly.

5.6Staticnoisemargin

ChangingtheSRAMcellstructuremaychangethestaticnoiseimmunityoftheSRAMcell.Thus,wemea-suretheStaticNoiseMargin(SNM)ofthesleepystackSRAMcellandtheconventional6-TSRAMcell.TheSNMisde nedbythesizeofthemaximumnestedsquareinabutter yplot.TheSNMofthesleepystackSRAMcellismeasuredtwiceinactivemodeandsleepmode.TheSNMofthesleepystackSRAMcellinactivemodeis0.299VandalmostexactlythesameastheSNMofacon-ventionalSRAMcell;theSNMofaconventionalSRAMcellis0.299V.Althoughwedonotperformaprocessvariationanalysis,weexpectthatthehighSNMofthesleepystackSRAMcellmakesthetechniqueasimmunetoprocessvariationsasaconventionalSRAMcell.

6Conclusionsandfuturework

Inthispaperwehavepresentedandevaluatedournewlyproposed“sleepystackSRAM.”OursleepystackSRAMprovidesthelargestleakagesavingsamongallal-ternativesconsidered.Speci cally,comparedtoastan-dardSRAMcell–Case1–Table4showsthatat110oCand2xVth,Case13reducesleakageby424XascomparedtoCase1;unfortunately,this424Xreductioncomesasacostofadelayincreaseof50.4%andanareapenaltyof113%.ResizingthesleepystackSRAMcanreducedelaysigni cantlyatacostoflessleakagesavings;speci cally,Case13*isaninterestingParetopointasdiscussedinSec-tion5.4.

Webelievethatthispaperpresentsanimportantde-velopmentbecauseoursleepystackSRAMseemstopro-vide,ingeneral,thelowestleakageParetopointsofanyVLSIdesignstyleknowntotheauthors.Giventhenon-trivialareapenalty(e.g.,upto125%forCase13*inTa-ble5),perhapssleepystackSRAMwouldbemostap-propriateforasmallSRAMintendedtostoreminimalstandbydataforanembeddedsystemspendingsigni -

canttimeinstandbymode;forsuchasmallSRAM(e.g.,

16KB),theareapenaltymaybeacceptablegivensystem-levelstandbypowerrequirements.Ifabsoluteminimumleakagepowerisextremelycritical,thenperhapsspeci ctargetembeddedsystemscouldusesleepystackSRAMmorewidely.

Forfuturework,wewillexplorehowprocessvaria-tionsaffectleakagepowerreductionusingsleepystackSRAM.

7References

[1]InternationalTechnologyRoadmapforSemiconductorsbySemi-conductorIndustryAssociation,2002.[Online].Availablehttp://www.77cn.com.cn.[2]N.S.Kim,T.Austin,D.Baauw,T.Mudge,K.Flautner,J.Hu,

M.Irwin,M.Kandemir,andV.Narayanan,“LeakageCurrent:Moore’sLawMeetsStaticPower,”IEEEComputer,vol.36,pp.68–75,December2003.[3]L.Clark,E.Hoffman,J.Miller,M.Biyani,L.Luyun,S.Straz-dus,M.Morrow,K.Velarde,andM.Yarch,“AnEmbedded32-bMicroprocessorCoreforLow-PowerandHigh-PerformanceAp-plications,”IEEEJournalofSolid-StateCircuits,vol.36,no.11,pp.1599–1608,November2001.[4]J.Park,“SleepyStack:aNewApproachtoLowPowerVLSI

andMemory,”Ph.D.dissertation,SchoolofElectricalandComputerEngineering,GeorgiaInstituteofTechnology,2005.[Online].Availablehttp://etd.gatech.edu/theses/available/etd-07132005-131806/.[5]N.Azizi,A.Moshovos,andF.Najm,“Low-LeakageAsymmetric-CellSRAM,”ProceedingsoftheInternationalSymposiumonLowPowerElectronicsandDesign,pp.48–51,August2002.[6]K.Nii,H.Makino,Y.Tujihashi,C.Morishima,Y.Hayakawa,

H.Nunogami,T.Arakawa,andH.Hamano,“ALowPowerSRAMUsingAuto-Backgate-ControlledMT-CMOS,”Proceed-ingsoftheInternationalSymposiumonLowPowerElectronicsandDesign,pp.293–298,August1998.[7]S.Narendra,V.D.S.Borkar,D.Antoniadis,andA.Chandrakasan,

“ScalingofStackEffectanditsApplicationforLeakageReduc-tion,”ProceedingsoftheInternationalSymposiumonLowPowerElectronicsandDesign,pp.195–200,August2001.[8]S.Tang,S.Hsu,Y.Ye,J.Tschanz,D.Somasekhar,S.Narendra,

S.-L.Lu,R.Krishnamurthy,andV.De,“ScalingofStackEffectanditsApplicationforLeakageReduction,”SymposiumonVLSICircuitsDigestofTechnicalPapers,pp.320–321,June2002.[9]V.Degalahal,N.Vijaykrishnan,andM.Irwin,“Analyzingsoft

errorsinleakageoptimizedSRAMdesign,”IEEEInternationalConferenceonVLSIDesign,pp.227–233,January2003.[10]M.Powell,S.-H.Yang,B.Falsa ,K.Roy,andT.N.Vijaykumar,

“Gated-Vdd:ACircuitTechniquetoReduceLeakageinDeep-submicronCacheMemories,”ProceedingsoftheInternationalSymposiumonLowPowerElectronicsandDesign,pp.90–95,July2000.[11]K.Flautner,N.S.Kim,S.Martin,D.Blaauw,andT.Mudge,

“DrowsyCaches:SimpleTechniquesforReducingLeakagePower,”ProceedingsoftheInternationalSymposiumonComputerArchitecture,pp.148–157,May2002.[12]S.WiltonandN.Jouppi,AnEnhancedAccessandCy-cleTimeModelforOn-ChipCaches.[Online].Availablehttp://www.77cn.com.cn/wrl/people/jouppi/CACTI.html.[13]NCStateUniversityCadenceToolInformation.[Online].Avail-ablehttp://www.cadence.ncsu.edu.[14]BerkeleyPredictiveTechnologyModel(BPTM).[Online].Avail-ablehttp://www-device.eecs.berkeley.edu/ ptm/.[15]N.Azizi,A.Moshovos,andF.Najm,“Low-LeakageAsymmetric-CellSRAM,”ProceedingsoftheInternationalSymposiumonLowPowerElectronicsandDesign,pp.48–51,August2002.[16]G.D.Micheli,SynthesisandOptimizationofDigitalCircuits.

USA:McGraw-HillInc.,1994.

本文来源:https://www.bwwdw.com/article/8rzj.html

Top