Pareto Points in SRAM Design Using the Sleepy Stack Approach
更新时间:2023-08-08 01:44:01 阅读量: 实用文档 文档下载
- pareto推荐度:
- 相关推荐
Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula
ParetoPointsinSRAMDesignUsingtheSleepyStackApproach
JunCheolParkandVincentJ.MooneyIIISchoolofElectricalandComputerEngineeringGeorgiaInstituteofTechnology,Atlanta,GA30332
{jcpark,mooney}@ece.gatech.eduAbstract
LeakagepowerconsumptionofcurrentCMOStech-nologyisalreadyagreatchallenge.ITRSprojectsthatleakagepowerconsumptionmaycometodominateto-talchippowerconsumptionasthetechnologyfeaturesizeshrinks.LeakageisaseriousproblemparticularlyforSRAMwhichoccupieslargetransistorcountinmoststate-of-the-artchipdesigns.Weproposeanovelultra-lowleakageSRAMdesignwhichwecall“sleepystackSRAM.”Unlikemanyotherpreviousapproaches,sleepystackSRAMcanretainlogicstateduringsleepmode,http://www.77cn.com.cnparedtothebestalternativewecould nd,a6-TSRAMcellwithhigh-Vthtransistors,thesleepystackSRAMcellwith2xVthat110oCachievesmorethan2.77Xleakagepowerreduc-tionatacostof16%delayincreaseand113%areain-crease.Alternatively,bywideningwordlinetransistorsandtransistorsinthepull-downnetwork,thesleepystackSRAMcellcanachieves2.26Xleakagereductionwithoutincreasingdelayatacostofa125%areapenalty.
1Introduction
PowerconsumptionisoneofthetopconcernsofVeryLargeScaleIntegration(VLSI)circuitdesign,forwhichComplementaryMetalOxideSemiconductor(CMOS)istheprimarytechnology.Today’sfocusonlowpowerisnotonlybecauseoftherecentgrowingdemandsofmobileapplications.Evenbeforethemobileera,powerconsump-tionhasbeenafundamentalproblem.PowerconsumptionofCMOSconsistsofdynamicandstaticcomponents.Al-thoughdynamicpoweraccountedfor90%ormoreofthetotalchippowerpreviously,asthefeaturesizeshrinks,e.g.,to0.09µand0.065µ,staticpowerhasbecomeagreatchallengeforcurrentandfuturetechnologies.BasedontheInternationalTechnologyRoadmapforSemiconduc-tors(ITRS)[1],Kimetal.reportthatsubthresholdleakagepowerdissipationofachipmayexceeddynamicpowerdissipationatthe65nmfeaturesize[2].
Oneofthemainreasonscausingtheleakagepowerin-creaseisincreaseofsubthresholdleakagepower.Whentechnologyfeaturesizescalesdown,supplyvoltageandthresholdvoltagealsoscaledown.Subthresholdleakagepowerincreasesexponentiallyasthresholdvoltagede-creases.Furthermore,thestructureoftheshortchanneldevicelowersthethresholdvoltageevenlower.Anothercontributortoleakagepowerisgate-oxideleakagepower
duetothetunnelingcurrentthroughthegate-oxideinsu-lator.Althoughgate-oxideleakagepowermaybecom-parabletosubthresholdleakagepowerinnanoscaletech-nology,weassumeothertechniqueswilladdressgate-oxideleakage;forexample,high-kdielectricgateinsu-latorsmayprovideasolutiontoreducegate-leakage[2].Therefore,thispaperfocusesonreducingsubthresholdleakagepowerconsumption.
AlthoughleakagepowerconsumptionisaproblemforallCMOScircuits,inthispaperwefocusonSRAMbe-causeSRAMtypicallyoccupieslargeareaandtransistorcountinaSystem-on-a-Chip(SoC).Furthermore,consid-eringanembeddedprocessorexample,SRAMaccountsfor60%ofareaand90%ofthetransistorcountinIntelXScale[3],andthusmaypotentiallyconsumelargeleak-agepower.
Inthispaper,weproposethesleepystackSRAMcelldesign,whichisamixtureofchangingthecircuitstructureaswellasusinghigh-Vth.Thesleepystacktechnique[4]achievesgreatlyreducedleakagepowerwhilemaintainingpreciselogicstateinsleepmode,whichmaybecrucialforaproductspendingthemajorityofitstimeinsleeporstand-bymode.Basedonthesleepystacktechnique,thesleepystackSRAMcelldesigntakesadvantageofultra-lowleakageandstatesaving.
Thispaperisorganizedasfollows.InSection2,priorworkinlow-leakageSRAMdesignisdiscussed.InSec-tion3,oursleepystackSRAMcelldesignapproachisproposed.InSection4and5,experimentalmethodologyandtheresultsarepresented.InSection6,conclusionsaregiven.
2Previouswork
Inthissection,wediscussstate-of-the-artlow-powermemorytechniques,especiallySRAMandcachetech-niquesonwhichourresearchfocuses.
Oneeasywaytoreduceleakagepowerconsumptionisbyadoptinghigh-VthtransistorsforallSRAMcelltran-sistors.Thissolutionissimplebutincursdelayincrease.Azizietal.observethatinnormalprograms,mostofthebitsinacachearezeros.Therefore,Azizietal.pro-poseanAsymmetric-CellCache(ACC),whichpartiallyapplieshigh-VthtransistorsinanSRAMcelltosaveleak-agepoweriftheSRAMcellisinthezerostate[5].How-ever,theACCleakagepowersavingsarequitelimitedincaseofabenchmarkwhich llsSRAMwithmostlynon-
Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula
zerovalues.Niietal.proposeAuto-Backgate-ControlledMulti-ThresholdCMOS(ABC-MTCMOS),whichusesReverse-BodyBias(RBB)toreduceleakagepowercon-sumption[6].RBBincreasesthresholdvoltagewithoutlosinglogicstate.Thisincreasedthresholdvoltagere-ducesleakagepowerconsumptionduringsleepmode.However,sincetheABC-MTCMOStechniqueneedstochargelargewells,ABC-MTCMOSrequiressigni canttransitiontimeandpowerconsumption.
Theforcedstacktechniqueachievesleakagepowerre-ductionbyforcingastackstructure[7].Thistechniquebreaksdownexistingtransistorsintotwotransistorsandtakesanadvantageofthestackeffect,whichreducesleak-agepowerconsumptionbyconnectingtwoormoreturnedofftransistorsserially.Theforcedstacktechniquecanbeappliedtoamemoryelementsuchasaregister[8]oranSRAMcell[9].However,delayincreasemayoccurduetoincreasedresistance,andthelargestleakagesavingsre-portedunderspeci cconditionsis90%comparedtocon-ventionalSRAMin0.07µtechnology[9].
http://www.77cn.com.cningsleeptransistors,thegated-VddSRAMcellblockspull-upnetworksfromtheVddrail(pMOSgated-Vdd)and/orblockspull-downnetworksfromtheGndrail(nMOSgated-Vdd)[10].Thegated-VddSRAMcellachieveslowleakagepowerconsumptionfromboththestackeffectandhigh-Vthsleeptransistors.However,thegated-VddSRAMcell[10]losesstatewhenthesleeptran-sistorsareturnedoff.
Flautneretal.proposethe“drowsycache”techniquethatswitchesVdddynamically[11].Forshort-channeldevicessuchas0.07µchannellengthdevices,leakagepowerincreasesduetoDrainInducedBarrierLower-ing(DIBL),therebyincreasingsubthresholdleakagecur-rent.ThedrowsycachelowersthesupplyvoltageduringdrowsymodeandsuppressesleakagecurrentusingDIBL.Thedrowsycachetechniquecanretainstoreddataataleakagepowerreductionofupto86%[11].
OursleepystackSRAMcellcanachievemorepowersavingsthanahigh-Vth,anACCoradrowsycacheSRAMcell.Furthermore,thesleepystackSRAMdoesnotrequirelargetransitiontimeandtransitionpowercon-sumptionunlikeABC-MTCMOS.
3Approach
We rstintroduceourrecentlyproposedlow-leakagestructurenamed“sleepystack”inSection3.1.Then,weexplainournewlyproposed“sleepystackSRAM”inSec-tion3.2.
3.1Sleepystackleakagereduction
Thesleepystacktechniquehasastructuremergingtheforcedstacktechniqueandthesleeptransistortechnique.Figure1showsasleepystackinverter.ThesleepystacktechniquedividesexistingtransistorsintotwotransistorseachtypicallywiththesamewidthW1halfthesizeoftheoriginalsingletransistor’swidthW0(i.e.,W1=W0/2),
’=1
’=0
Figure1:(a)Sleepystackinverteractivemode(left)and(b)sleepmode(right)
thusmaintainingequivalentinputcapacitance.ThesleepystackinverterinFigure1(a)usesW/L=3forthepull-uptransistorsandW/L=1.5forthepull-downtransis-tors,whileaconventionalinverterwiththesameinputca-pacitancewoulduseW/L=6forthepull-uptransis-torandW/L=3forthepull-downtransistor(assumingµn=2µp).Thensleeptransistorsareaddedinparalleltooneofthetransistorsineachsetoftwostackedtransistors.Weusehalfsizetransistorwidthoftheoriginaltransistor(i.e.,weuseW0/2)forthesleeptransistorwidthofthesleepystack.
Duringactivemode,S=0andS =1areasserted,andthusallsleeptransistorsareturnedon.Thisstructurepo-tentiallyreducescircuitdelay(comparedtonotaddingsleeptransistors)because(i)addedsleeptransistorsarealwaysonduringactivemodeandthusateachsleeptran-sistordrain,thevoltagevalueconnectedtoasleeptran-sistorisalwaysreadyduringactivemodeand(ii)thereisareducedresistanceduetothetwoparalleltransistors.Therefore,wecanintroducehigh-Vthtransistorstothesleeptransistorsandtransistorsinparallelwiththesleeptransistorwithoutincurringlarge(e.g.,2Xormore)de-layoverhead.Duringsleepmode,S=1andS =0areas-serted,andsobothofthesleeptransistorsareturnedoff.Thehigh-Vthtransistorsandthestackedtransistorsinthesleepystackapproachsuppressleakagecurrent.Inshort,usinghigh-Vthtransistors,thesleepystacktechniquepo-tentiallyachieves200Xleakagereductionovertheforcedstacktechnique.Furthermore,unlikethesleeptransistortechnique[10],thesleepystacktechniquecanretainexactlogicstatewhileachievingsimilarleakagereduction.
3.2SleepystackSRAMcell
Figure2:SRAMcellleakagepaths
WedesignanSRAMcellbasedonthesleepystacktechnique.Theconventional6-TSRAMcellconsistsoftwocoupledinvertersandtwowordlinepasstransistorsasshowninFigure2.Sincethesleepystacktechniquecan
Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula
beappliedtoeachtransistorseparately,thesixtransistorscanbechangedindividually.However,tobalancecurrent ow(failuretodosopotentiallyincreasestheriskofsofterrors[9]),asymmetricdesignapproachisused.
Table1:SleepystackappliedtoanSRAMcell
Combinations
cell leakagebitline leakagereduction
reductionPull-Down (PD) sleepy stackmediumlowPull-Down (PD), wordline (WL) sleepy stackmediumhighPull-Up (PU), Pull-Down (PD) sleepy stackhighlow
Pull-Up (PU), Pull-Down (PD),
wordline (WL) sleepy stack
high
high
Therearetwomaintypesofsubthresholdleakagecur-rentsina6-TSRAMcell:cellleakageandbitlineleak-age(seeFigure2).Itisveryimportantwhenapply-ingthesleepystacktechniquetoconsiderthevariousleakagepathsintheSRAMcell.Toaddresstheeffectofthesleepystacktechniqueproperly,weconsiderfourcombinationsofthesleepystackSRAMcellasshowninTable1.InTable1,“Pull-Down(PD)sleepystack”meansthatthesleepystacktechniqueisonlyappliedtothepull-downtransistorsofanSRAMcellasindicatedinthebottomdashedboxinFigure3.“Pull-Down(PD),wordline(WL)sleepystack”meansthatthesleepystacktechniqueisappliedtothepull-downtransistorsaswellaswordlinetransistors.Similarly,“Pull-Up(PU),Pull-Down(PD)sleepystack”meansthatthesleepystacktechniqueisappliedtothepull-uptransistorsandthepull-downtransistors(butnottothewordlinetran-sistors)ofanSRAMcell.Finally,“Pull-Up(PU),Pull-Down(PD),wordline(WL)sleepystack”meansthatthesleepystacktechniqueisappliedtoallthetransistorsinanSRAMcell.
ThePDsleepystackcansuppresssomepartofthecellleakage.Meanwhile,thePU,PDsleepystackcansup-pressthemajorityofthecellleakage.However,with-outapplyingthesleepystacktechniquetothewordline(WL)transistors,bitlineleakagecannotbesigni -cantlysuppressed.Althoughlyinginthebitlineleak-agepath,thepull-downsleepystackisnoteffectivetosuppressbothbitlineleakagepathsbecauseoneofthepull-downsleepystacksisalwayson.Therefore,tosup-presssubthresholdleakagecurrentinaSRAMcellfully,thePU,PDandWLsleepystackapproachneedstobeconsideredasshowninFigure3.
ThesleepystackSRAMcelldesignresultsinareain-creasebecauseoftheincreaseinthenumberoftransis-tors.However,wehalvethetransistorwidthsinaconven-tionalSRAMcelltomaketheareaincreaseofthesleepystackSRAMcellnotnecessarilydirectlyproportionaltothenumberoftransistors.Halvingatransistorwidthispossiblewhentheoriginaltransistorwidthisatleast2Xlargerthantheminimumtransistorwidth(whichistypi-callythecaseinmodernhighperformanceSRAMcellde-sign).Unliketheconventional6-TSRAMcell,thesleepystackSRAMcellrequirestheroutingofoneortwoextrawiresforthesleepcontrolsignal(s).
Figure3:SleepystackSRAMcell
4Experimentalmethodology
ToevaluatethesleepystackSRAMcell,wecompareourtechniqueto(i)usinghigh-Vthtransistorsasdirectre-placementsforlow-Vthtransistors(thusmaintainingonly6transistorsinanSRAMcell)and(ii)theforcedstacktechnique[7];wechoosethesetechniquesbecausethesetwotechniquesarestatesavingtechniqueswithouthighriskofsofterror[9].AlthoughAsymmetric-CellSRAMexplainedinSection2isalsoastate-savingSRAMcelldesign,wedonotconsiderAsymmetric-CellSRAMbe-causeweassumethatourSRAMcellsare lledequallywith‘1s’and‘0s.’ThisisnottheconditionthatACCprefers,andunderthisconditiontheleakagepowersav-ingsofACCaresmallerthanthehigh-VthSRAMcell,whichuseshigh-Vthforallsixtransistors.
We rstlayoutSRAMcellsofeachtechnique.Insteadofstartingfromscratch,weusetheCACTImodelfortheSRAMstructureandtransistorsizing[12].WeuseNCSUCadencedesignkittargetingTSMC0.18µtech-nology[13].Byscalingdownthe0.18µlayout,weobtain0.07µtechnologytransistorlevelHSPICEschematics[4],andwedesigna64x64bitSRAMcellarray.
Weestimateareadirectlyfromourcustomlayoutus-ingTSMC0.18µtechnologyandscaleto0.07µusingthefollowingformula:0.07µarea=0.18µarea×(0.07µ)2/(0.18µ)2×1.1(non-linearoverhead)[4].Weareawarethisisnotexact,hencetheword“estimate.”Wealsoas-sumetheareaoftheSRAMcellwithhigh-Vthtransistorsisthesameaswithlow-Vthtransistors.Thisassumptionisreasonablebecausehigh-Vthcanbeimplementedbychanginggateoxidethickness,andthisalmostdoesnotaf-fectareaatall.Weestimatedynamicpower,staticpowerandreadtimeofeachofthevariousSRAMcelldesignsusingHSPICEsimulationwithBerkeleyPredictiveTech-nologyModel(BPTM)targeting0.07µtechnology[14].Thereadtimeismeasuredfromthetimewhenanenabledwordlinereaches10%oftheVddvoltagetothetimewheneitherbitlineorbitline’dropsfrom100%oftheprechargedvoltageto90%oftheprechargedvolt-agevaluewhiletheotherremainshigh.Therefore,oneofthebitlinesignalremainsatVdd,andtheotheris0.9xVdd.This10%voltagedifferencebetweenbitlineandbitline’istypicallyenoughforasenseampli ertodetectthestoredcellvalue[15].Dynamicpowerof
Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula
theSRAMarrayismeasuredduringthereadoperationwithcycletimeof4ns.StaticpoweroftheSRAMcellismeasuredbyturningoffsleeptransistorsifapplicable.Toavoidleakagepowermeasurementbiasedbyamajorityof‘1’versus‘0’(orvice-versa)values,halfofthecellsarerandomlysetto‘0,’withtheremaininghalfofthecellssetto‘1.’
5Results
WecomparethesleepystackSRAMcelltothecon-ventional6-TSRAMcell,high-Vth6-TSRAMcellandforcedstackSRAMcell.Forthe“high-Vth”techniqueandtheforcedstacktechnique,weconsiderthesametech-niquecombinationsweappliedtothesleepystackSRAMcell–seeTable1.
Toproperlyobservethetechniques,wecompare13differentcasesasshowninTable2.Case1istheconven-tional6-TSRAMcell,whichisourbasecase.Cases2,3,4and5are6-TSRAMcellsusingthehigh-Vthtechnique.PDhigh-Vthisthehigh-Vthtechniqueappliedonlytothepull-downtransistors.PD,WLhigh-Vthisthehigh-Vthtechniqueappliedtothepull-downtransistorsaswellastothewordlinetransistors.PU,PDhigh-Vthisthehigh-Vthtechniqueappliedtothepull-upandpull-downtran-sistors.PU,PD,WLhigh-Vthisthehigh-VthtechniqueappliedtoalltheSRAMtransistors.Cases6,7,8and9are6-TSRAMcellswiththeforcedstacktechnique[7].PDstackistheforcedstacktechniqueappliedonlytothepull-downtransistors.PD,WLstackistheforcedstacktechniqueappliedtothepull-downtransistorsaswellastothewordlinetransistors.PU,PDstackistheforcedstacktechniqueappliedtothepull-upandpull-downtran-sistors.PU,PD,WLstackistheforcedstacktechniqueappliedtoalltheSRAMtransistors.Pleasenotethatwedonotapplyhigh-Vthtotheforcedstacktechniquebe-causetheforcedstackSRAMwithhigh-Vthincursmorethan2Xdelayincrease.Cases10,11,12and13arethefoursleepystackSRAMcellapproachesaslistedinTa-ble1.ForsleepystackSRAM,high-VthisappliedonlytothesleeptransistorsandthetransistorsparalleltothesleeptransistorsasshowninFigure3.
5.1Area
Table2:Layoutarea
Technique
Area(u2)Area(u2)Normalized
0.18u20.07u2
areaCase1
Low-Vth Std3.8254.50017.2132.8641.00Case2PD high-Vth
3.8254.50017.2132.8641.00Case3PD, WL high-Vth3.8254.50017.2132.8641.00Case4PU, PD high-Vth
3.8254.50017.2132.8641.00Case5PU, PD, WL high-Vth3.8254.50017.2132.8641.00Case6PD stack
3.4654.68016.2162.6980.94Case7PD, WL stack3.4655.76019.9583.3201.16Case8PU, PD stack
3.2854.68015.3742.5580.89Case9PU, PD, WL stack3.4655.76019.9583.3201.16Case10PD sleepy stack
4.5455.04022.9073.8111.33Case11PD, WL sleepy stack4.4556.70529.8714.9691.74Case12PU, PD sleepy stack
5.7605.04029.0304.8291.69Case13
PU, PD, WL sleepy stack
5.535
6.615
36.614
6.0912.13
Table2showstheareaofeachtechnique.PleasenotethatSRAMcellareacanbereducedfurtherbyusingmini-
mumsizetransistors,butreducingtransistorsizeincreasescellreadtime.SomeSRAMcellswiththeforcedstacktechniqueshowsmallerareaevencomparedtothebasecase.Thereasonisthatdividedtransistorscanenableaparticularlysqueezeddesign[4].Thesleepystacktech-niqueincreasesareabybetween33%and113%.TheaddedsleeptransistorsareabottlenecktoreducethesizeofthesleepystackSRAMcells.Further,wiringthesleepcontrolsignals(anoverheadwedonotconsiderinTa-ble2)makesthedesignmorecomplicated.
5.2Cellreadtime
Table3:Normalizedcellreadtime
Technique25°C
110°C
1xVth1.5xVth2xVth
1xVth1.5xVth2xVth
Case1Low-Vth Std1.000
N/A1.000
N/ACase2PD high-Vth1.0221.0431.0201.061Case3PD, WL high-VthCase4PU, PD high-VthN/A
1.1111.280
1.0221.055N/A
1.1171.262
1.0201.048Case5PU, PD, WL high-Vth1.1111.2771.1101.259
Case6PD stack1.3681.345Case7PD, WL stack1.647
1.682
Case8PU, PD stack1.348N/A
1.341N/A
Case9PU, PD, WL stack1.7041.678
Case10PD sleepy stack1.2761.3071.2631.254Case11PD, WL sleepy stack1.458Case12PU, PD sleepy stackN/A
1.551
1.2751.306N/A
1.4351.546
1.2871.319Case13
PU, PD, WL sleepy stack1.4561.605
1.4501.504
AlthoughSRAMcellreadtimechangesslightlyas
temperaturechanges,theimpactoftemperatureonthecellreadtimeisquitesmall.However,theimpactofthresholdvoltageislarge.Weapply1.5xVthand2xVthforthehigh-Vthtechniqueandthesleepystacktechnique.AsshowninTable3,thedelaypenaltyoftheforcedstacktechnique(withalllow-Vthtransistors)isbetween35%and70%comparedtothestandard6-TSRAMcell.Thisisoneoftheprimaryreasonsthattheforcedstacktechniquecannotusehigh-Vthtransistorswithoutincurringdramaticdelayincrease(e.g.,2Xormoredelaypenaltyisobservedusingeither1.5xVthor2xVth).
Amongthethreelow-leakagetechniques,thesleepystacktechniqueisthesecondbestintermsofcellreadtime.ThePU,PD,WLhigh-Vthwith2xVthis16%fasterthanthePU,PD,WLsleepystackwith2xVthat110o.SinceweareawarethatareaanddelayarecriticalfactorswhendesigningSRAM,wewillexploreareaanddelayimpactusingtradeoffsinSection5.4.However,letus rstdiscussleakagereduction(i.e.,withoutyetfocusingontradeoffs,whichwillbethefocusofSection5.4).
5.3Leakagepower
Wemeasureleakagepowerwhilechangingthresholdvoltageandtemperaturebecausetheimpactofthresholdvoltageandtemperatureonleakagepowerissigni cant.Table4showsleakagepowerconsumptionwithtwohigh-Vthvalues,1.5xVothand2xVth,andtwotemperatures,25Cand110oC,whereCase1andthecasesusingtheforcedstacktechnique(Cases6,7,8and9)arenotaf-fectedbychangingVthbecausetheseuseonlylow-Vth.(Pleasenotetheabsolutenumbersareavailablein[4].)
Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula
Table4:Normalizedleakagepower
Normalized leakage powerTechnique
25°C110°C
1xVth1.5xVth2xVth1xVth1.5xVth2xVth
Case1Low-Vth Std1.0000N/A1.0000N/ACase2PD high-Vth
0.54660.52740.57110.5305Case3PD, WL high-Vth0.1860
Case4PU, PD high-Vth
N/A0.20710.17360.25550.37850.3552N/A
0.40220.3522Case5PU, PD, WL high-Vth0.03910.00140.08570.0065
Case6PD stack
0.55410.5641Case7PD, WL stack0.2213Case8PU, PD stack
0.3862N/A
0.2554
0.3950N/ACase9PU, PD, WL stack0.05550.0832
Case10PD sleepy stack
0.53310.53150.52820.5192Case11PD, WL sleepy stack0.18520.1827Case12PU, PD sleepy stack
N/A
0.36460.3630N/A
0.19550.1820
0.35340.3439Case13
PU, PD, WL sleepy stack
0.01670.00330.01670.0024
5.3.1
Resultsat25oC
Ourresultsat25oCshowthatCase5isthebestwith2xVth
andCase13isthebestwith1.5xVth.Specially,at1.5xVth,Case5andCase13achieve25Xand60Xleakagereduc-tionoverCase1,respectively.However,theleakagere-ductioncomeswithdelayincrease.Thedelaypenaltyis11%and45%,respectively,comparedtoCase1.5.3.2
Resultsat110o
C
Absolutepowerconsumptionnumbersat110o
Cshow
morethan10Xincreaseofleakagepowerconsumptioncomparedtotheresultsat25oC.ThiscouldbeaseriousproblemforSRAMbecauseSRAMoftenresidesnexttoamicroprocessorwhosetemperatureishigh.
At110oC,thesleepystacktechniqueshowsthebestre-sultinboth1.5xVthand2xVthevencomparedtothehigh-Vthtechnique.Theleakageperformancedegradationun-derhightemperatureisverynoticeablewiththehigh-Vthtechniqueandtheforcedstacktechnique.Forexample,at25oCthehigh-Vthtechniquewith1.5xVth(Case5)andtheforcedstacktechnique(Case9)showaround96%leak-agereduction.However,at110oCthesametechniquesshowaround91%ofleakagepowerreductioncomparedtoCase1.Onlythesleepystacktechniqueachievessu-periorleakagepowerreduction;afterincreasingtemper-ature,thesleepystackSRAMshows5.1Xand4.8Xre-ductionscomparedtoCase5andCase9,respectively,with1.5xVth.
Whenthelow-leakagetechniquesareappliedonlytothepull-upandpull-downtransistors,leakagepowerreductionisatmost65%(2xVth,110oC)becausebitlineleakagecannotbesuppressed.Theremaining35%ofleakagepowercanbesuppressedbyapplyinglow-leakagetechniquestowordlinetransistors.Thisim-pliesthatbitlineleakagepoweraddressesaround35%ofSRAMcellleakagepowerconsumption.Thistrendisobservedforallthreetechnniquesconsidered,i.e.,high-Vth,forcedstackandsleepystack.
5.4Tradeoffsinlow-leakagetechniques
Althoughthesleepystacktechniqueshowssuperiorre-sultsintermsofleakagepower,weneedtoexplorearea,delayandpowertogetherbecausethesleepystacktech-
niquecomeswithnon-negligibleareaanddelaypenalties.Tobecomparedwiththehigh-Vthtechniqueatthesamecellreadtime,weconsiderfourmorecasesforsleepystackSRAMinadditiontothecasesalreadyconsideredinTable4;weincreasethewidthsofallwordlineandpull-downtransistors(includingsleeptransistors).Specif-ically,forthesleepystacktechnique,we ndnewtransis-torwidthsofwordlinetransistorsandpull-downtran-sistorssuchthattheresultisdelayapproximatelyequaltothedelayofthe6-Thigh-Vthcase,i.e.,Case5.Thenewcasesaremarkedwith‘*’(Cases10*,11*,12*,13*).TheresultsareshowninTable5.Toenhancereadabilityoftradeoffs,eachtableissortedbyleakagepower.Althoughwecomparedfourdifferentsimulationconditions,wetaketheconditionwith2xVthat110oCand2xVthat110oCasimportantrepresentativetechnologypointsatwhichtocomparethetrade-offsbetweentechniques.Wechoose110oCbecausegenerallySRAMoperatesatahightem-peratureandalsobecausehightemperatureisthe“worstcase.”
Table5:Tradeoffs(2xVth,110oC)
Technique
NormalizedNormalizedNormalizedleakagedelayarea
Case1Low-Vth Std1.0001.0001.000Case6PD stack0.5641.3450.942Case2PD high-Vth0.5301.0611.000Case10PD sleepy stack0.5191.2541.331Case10*PD sleepy stack*0.5191.2541.331Case8PU, PD stack0.3951.3410.893Case4PU, PD high-Vth0.3521.0481.000Case12*PU, PD sleepy stack*0.3441.2701.713Case12PU, PD sleepy stack0.3441.3191.687Case7PD, WL stack0.2551.6821.159Case3PD, WL high-Vth0.1861.2621.000Case11*PD, WL sleepy stack*0.1831.2391.876Case11PD, WL sleepy stack0.1821.5461.735Case9PU, PD, WL stack0.0831.6781.159Case5PU, PD, WL high-Vth0.0071.2591.000Case13*PU, PD, WL sleepy stack*0.0031.2652.253Case13
PU, PD, WL sleepy stack
0.0021.5042.127
InTable5,weobservesixParetopoints,respectively,whichareinshadedrows,consideringthreevariablesofleakage,delay,andarea.Case13showsthelowestpossi-bleleakage,2.7Xsmallerthantheleakageofanyofthepriorapproachesconsidered;however,thereisacorre-spondingdelayandareapenalty.Alternatively,Case13*showsthesamedelay(within0.2%)asCase5and2.26XleakagereductionoverCase5;however,Case13*uses125%moreareathanCase5.Inshort,thispaperpresentsnew,previouslyunknownParetopointsatthelow-leakageendofthespectrum(forade nitionofa“Paretopoint,”pleasesee[16]).
5.5Activepower
Table6showspowerconsumptionduringreadopera-tions.TheactivepowerconsumptionincludesdynamicpowerusedtochargeanddischargeSRAMcellsplusleakagepowerconsumption.At25oCleakagepowerislessthan20%oftheactivepowerincaseofthestan-dardlow-VthSRAMcellin0.07µtechnologyaccording
Leakage power consumption of current CMOS technology is already a great challenge. ITRS projects that leakage power consumption may come to dominate total chip power consumption as the technology feature size shrinks. Leakage is a serious problem particula
Table6:Normalizedactivepower
Technique
25°C
110°C
1xVth1.5xVth2xVth
1xVth1.5xVth2xVth
Case1Low-Vth Std1.000
N/A1.000
N/ACase2PD high-Vth0.9360.9130.7240.691Case3PD, WL high-VthCase4PU, PD high-VthN/A
0.8580.829
0.9280.893N/A
0.6180.478
0.5720.582Case5PU, PD, WL high-Vth0.8380.8420.4320.368
Case6PD stack0.9260.669Case7PD, WL stack0.665
0.398
Case8PU, PD stack0.905N/A
0.596N/A
Case9PU, PD, WL stack0.6370.293
Case10PD sleepy stack0.9810.9810.8070.811Case11PD, WL sleepy stack0.773Case12PU, PD sleepy stackN/A
0.717
0.9611.005N/A
0.5860.600
0.7860.797Case13
PU, PD, WL sleepy stack0.7190.708
0.5880.546
toBPTM[14].However,leakagepowerincreases10Xasthetemperaturechangesto110oCalthoughactivepowerincreases3X.At110oC,leakagepowerismorethanhalfoftheactivepowerfromoursimulationresults.There-fore,withoutaneffectiveleakagepowerreductiontech-nique,totalpowerconsumption–eveninactivemode–isaffectedsigni cantly.
5.6Staticnoisemargin
ChangingtheSRAMcellstructuremaychangethestaticnoiseimmunityoftheSRAMcell.Thus,wemea-suretheStaticNoiseMargin(SNM)ofthesleepystackSRAMcellandtheconventional6-TSRAMcell.TheSNMisde nedbythesizeofthemaximumnestedsquareinabutter yplot.TheSNMofthesleepystackSRAMcellismeasuredtwiceinactivemodeandsleepmode.TheSNMofthesleepystackSRAMcellinactivemodeis0.299VandalmostexactlythesameastheSNMofacon-ventionalSRAMcell;theSNMofaconventionalSRAMcellis0.299V.Althoughwedonotperformaprocessvariationanalysis,weexpectthatthehighSNMofthesleepystackSRAMcellmakesthetechniqueasimmunetoprocessvariationsasaconventionalSRAMcell.
6Conclusionsandfuturework
Inthispaperwehavepresentedandevaluatedournewlyproposed“sleepystackSRAM.”OursleepystackSRAMprovidesthelargestleakagesavingsamongallal-ternativesconsidered.Speci cally,comparedtoastan-dardSRAMcell–Case1–Table4showsthatat110oCand2xVth,Case13reducesleakageby424XascomparedtoCase1;unfortunately,this424Xreductioncomesasacostofadelayincreaseof50.4%andanareapenaltyof113%.ResizingthesleepystackSRAMcanreducedelaysigni cantlyatacostoflessleakagesavings;speci cally,Case13*isaninterestingParetopointasdiscussedinSec-tion5.4.
Webelievethatthispaperpresentsanimportantde-velopmentbecauseoursleepystackSRAMseemstopro-vide,ingeneral,thelowestleakageParetopointsofanyVLSIdesignstyleknowntotheauthors.Giventhenon-trivialareapenalty(e.g.,upto125%forCase13*inTa-ble5),perhapssleepystackSRAMwouldbemostap-propriateforasmallSRAMintendedtostoreminimalstandbydataforanembeddedsystemspendingsigni -
canttimeinstandbymode;forsuchasmallSRAM(e.g.,
16KB),theareapenaltymaybeacceptablegivensystem-levelstandbypowerrequirements.Ifabsoluteminimumleakagepowerisextremelycritical,thenperhapsspeci ctargetembeddedsystemscouldusesleepystackSRAMmorewidely.
Forfuturework,wewillexplorehowprocessvaria-tionsaffectleakagepowerreductionusingsleepystackSRAM.
7References
[1]InternationalTechnologyRoadmapforSemiconductorsbySemi-conductorIndustryAssociation,2002.[Online].Availablehttp://www.77cn.com.cn.[2]N.S.Kim,T.Austin,D.Baauw,T.Mudge,K.Flautner,J.Hu,
M.Irwin,M.Kandemir,andV.Narayanan,“LeakageCurrent:Moore’sLawMeetsStaticPower,”IEEEComputer,vol.36,pp.68–75,December2003.[3]L.Clark,E.Hoffman,J.Miller,M.Biyani,L.Luyun,S.Straz-dus,M.Morrow,K.Velarde,andM.Yarch,“AnEmbedded32-bMicroprocessorCoreforLow-PowerandHigh-PerformanceAp-plications,”IEEEJournalofSolid-StateCircuits,vol.36,no.11,pp.1599–1608,November2001.[4]J.Park,“SleepyStack:aNewApproachtoLowPowerVLSI
andMemory,”Ph.D.dissertation,SchoolofElectricalandComputerEngineering,GeorgiaInstituteofTechnology,2005.[Online].Availablehttp://etd.gatech.edu/theses/available/etd-07132005-131806/.[5]N.Azizi,A.Moshovos,andF.Najm,“Low-LeakageAsymmetric-CellSRAM,”ProceedingsoftheInternationalSymposiumonLowPowerElectronicsandDesign,pp.48–51,August2002.[6]K.Nii,H.Makino,Y.Tujihashi,C.Morishima,Y.Hayakawa,
H.Nunogami,T.Arakawa,andH.Hamano,“ALowPowerSRAMUsingAuto-Backgate-ControlledMT-CMOS,”Proceed-ingsoftheInternationalSymposiumonLowPowerElectronicsandDesign,pp.293–298,August1998.[7]S.Narendra,V.D.S.Borkar,D.Antoniadis,andA.Chandrakasan,
“ScalingofStackEffectanditsApplicationforLeakageReduc-tion,”ProceedingsoftheInternationalSymposiumonLowPowerElectronicsandDesign,pp.195–200,August2001.[8]S.Tang,S.Hsu,Y.Ye,J.Tschanz,D.Somasekhar,S.Narendra,
S.-L.Lu,R.Krishnamurthy,andV.De,“ScalingofStackEffectanditsApplicationforLeakageReduction,”SymposiumonVLSICircuitsDigestofTechnicalPapers,pp.320–321,June2002.[9]V.Degalahal,N.Vijaykrishnan,andM.Irwin,“Analyzingsoft
errorsinleakageoptimizedSRAMdesign,”IEEEInternationalConferenceonVLSIDesign,pp.227–233,January2003.[10]M.Powell,S.-H.Yang,B.Falsa ,K.Roy,andT.N.Vijaykumar,
“Gated-Vdd:ACircuitTechniquetoReduceLeakageinDeep-submicronCacheMemories,”ProceedingsoftheInternationalSymposiumonLowPowerElectronicsandDesign,pp.90–95,July2000.[11]K.Flautner,N.S.Kim,S.Martin,D.Blaauw,andT.Mudge,
“DrowsyCaches:SimpleTechniquesforReducingLeakagePower,”ProceedingsoftheInternationalSymposiumonComputerArchitecture,pp.148–157,May2002.[12]S.WiltonandN.Jouppi,AnEnhancedAccessandCy-cleTimeModelforOn-ChipCaches.[Online].Availablehttp://www.77cn.com.cn/wrl/people/jouppi/CACTI.html.[13]NCStateUniversityCadenceToolInformation.[Online].Avail-ablehttp://www.cadence.ncsu.edu.[14]BerkeleyPredictiveTechnologyModel(BPTM).[Online].Avail-ablehttp://www-device.eecs.berkeley.edu/ ptm/.[15]N.Azizi,A.Moshovos,andF.Najm,“Low-LeakageAsymmetric-CellSRAM,”ProceedingsoftheInternationalSymposiumonLowPowerElectronicsandDesign,pp.48–51,August2002.[16]G.D.Micheli,SynthesisandOptimizationofDigitalCircuits.
USA:McGraw-HillInc.,1994.
- 1浏览器出现stack overflow at line 0
- 2Disordes of Fluids and Electrolytes--Physiological Approach
- 3sizing in conceptual design at BWM
- 4A Novel Approach for Automatic Palmprint Recognition
- 5Design-Expert 8.0使用指南-Multifactor RSM-Optimal design
- 6Interaction Design Group
- 7RTM - Design and Implementation
- 8Interaction Design Group
- 9Simulation in Hardware Design and Testing
- 10Cadence IC Design - 图文
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Approach
- Pareto
- Points
- Design
- Sleepy
- Using
- Stack
- SRAM
- 使用Word轻松编排学位论文
- 2010年高考作文热点素材——流感防治中的中美文化
- 汛期幼儿园安全排查情况
- 领取机动车牌照需要啥手续,车管所上牌流程是什么-上牌.doc
- 商场不支付我的工资能否向法院要求强制执行《劳动监察指令书》
- 高一物理时间和位移1
- 地理教学小故事
- 高中物理选修3-1知识点归纳(完美版)
- 立足文化打造广西旅游景点新品牌
- 小学五年级上学期综合实践教案
- 浮力压强计算题(含答案)
- 行政执法证考试题库
- 初中英语SectionA1a—1c(1)
- 《多边形和圆的初步认识》解答题-掌门1对1
- 从现代舞看金星的女性意识
- 新概念英语新世界
- 黄山旅游全攻略
- 低甲醇酿酒酵母的选育与酿造酒的发酵
- 股票模拟交易实验报告
- FTP工具CuteFTP 8 Professional配置与使用简要指南