电磁学(赵凯华_陈熙谋_)__第二版_课后答案1
更新时间:2023-04-06 17:21:01 阅读量: 教育文库 文档下载
1 第一章 静 电 场
§1.1 静电的基本现象和基本规律
计 算 题 :
1、 真空中两个点电荷q 1=1.0×10-10C ,q 2=1.0×10-11C ,相距100mm ,求q 1受的力。 解:)(100.941
102210排斥力N r q q F -?==πε 2、 真空中两个点电荷q 与Q ,相距5.0mm,吸引力为40达因。已知q=1.2×10-6C,求Q 。
解:1达因=克·厘米/秒=10-5牛顿
C q F r Q r qQ F 1320201093441
-?-==?=πεπε 3、 为了得到一库仑电量大小的概念,试计算两个都是一库仑的点电荷在真空中相距一米时
的相互作用力和相距一千米时的相互作用力。 解:???=?=?==物体的重量相当于当万吨物体的重量相当于当kg m r N m r N r q q F 900)1000(100.990)1(100.941
392210πε 4、 氢原子由一个质子(即氢原子核)和一个电子组成。根据经典模型,在正常状态下,电
子绕核作圆周运动,轨道半径是r=5.29×10-11m 。已知质子质量M=1.67×10-27kg ,电子质量m=9.11×10-31kg 。电荷分别为e=±1.6×10-19 C,万有引力常数G=6.67×10-11N ·m 2/kg 2。
(1)求电子所受的库仑力;(2)库仑力是万有引力的多少倍?(3)求电子的速度。 解:不计
万有引力完全可以略去与库仑力相比在原子范围内由此可知吸引力吸引力,,,/1019.24141)3(1026.2/)(1063.3)2()(1022.841
)1(62
0220239
47221822
0s m mr e v r
e r v m F F N r
m m G F N r e F g e g e ?==?=?=??==?==--πεπεπε 5、 卢瑟福实验证明:当两个原子核之间的距离小到10-15米时,它们之间的排斥力仍遵守
库仑定律。金的原子核中有79个质子,氦的原子核(即α粒子)中有2个质子。已知每个质子带电e=1.6×10-19 C ,α粒子的质量为6.68×10-27 kg.。当α粒子与金核相距为
6.9×10-15m 时(设这时它们仍都可当作点电荷)。求(1)α粒子所受的力;(2)α粒子的加速度。
2
解:
s m m
F
a N r q q F /1014.1)2()(1064.741
)1(292
2
210?==
?==
排斥力πε 6、 铁原子核里两质子间相距4.0×10-15m,每个质子带电e=1.6×10-19 C 。(1)求它们之间的库
仑力;(2)比较这力与所受重力的大小。
解:
262622
2
0108.8/1064.1)2()(4.1441
)1(?=??====-g e g e F F N R
mM
G
F N r e F 排斥力πε
7、 两个点电荷带电2q 和q ,相距l ,第三个点电荷放在何处所受的合力为零?
解:设所放的点电荷电量为Q 。若Q 与q 同号,则三者互相排斥,不可能达到平衡;故Q 只能与q 异号。当Q 在2q 和q 联线之外的任何地方,也不可能达到平衡。由此可知,只有Q 与q 异号,且处于两点荷之间的联线上,才有可能达到平衡。设Q 到q 的距离为x.
l
x x l Qq x Qq F )12(0
)(241
412
020-==-+=πεπε 8、 三个相同的点电荷放置在等边三角形的各顶点上。在此三角形的中
心应放置怎样的电荷,才能使作用在每一点电荷上的合力为零?
解:设所放电荷为Q ,Q 应与顶点上电荷q 异号。中心Q 所受合力总是为零,只需考虑q 受力平衡。
3/0)
3/(4130cos 41
22
00
220q Q a qQ a q F -=?=+=πεπε 平衡与三角形边长无关,是不稳定平衡。
9、 电量都是Q 的两个点电荷相距为l ,联线中点为O ;有另
一点电荷q ,在联线的中垂面上距O 为r 处。(1)求q 所受的力;(2)若q 开始时是静止的,然后让它自己运动,它将如何运动?分别就q 与Q 同号和异号两种情况加以讨论。 解:
(1) []
2
3
220222
20)2/(2)2/()2/(41
2r l r Qq r r r
l r
r l Qq F +=
++=
πεπε
(2)q 与Q 同号时,F 背离O 点,q 将沿两Q 的中垂线加速地趋向无穷远处。
q Q 2q
x a
q
q
q
q r
Q Q
l/2 O l/2
3 q 与Q 异号时,F 指向O 点,q 将以O 为中心作周期性振动,振幅为r .
<讨论>:设q 是质量为m 的粒子,粒子的加速度为
[]
30302223220224,4)2/(2ml Qq qQ r ml Qq dt r d l r r l r m Qq m F dt r d a πεωπεπε-==<<+===为简谐运动方程异号时当
因此,在r< 10、 两小球质量都是m ,都用长为l 的细线挂在同一点,若它们带上相同的电量,平衡 时两线夹角为2θ。设小球的半径都可以略去不计,求每个小球上的电量。 解:小球静止时,作用其上的库仑力和重力在垂直于悬线方向上 的分量必定相等。 θ πεθθθπεθ θ θtan 4sin 2tan )sin 2(41 tan sin cos 02 20mg l q mg l q F F F F g e g e ±==== --------------------------------------------------------------------------------------------------------------------- §1.2 电场 电场强度 ----------------------------------------------------------------------------------------------------------- 计算题: 1、 在地球表面上某处电子受到的电场力与它本身的重量相等,求该处的电场强度(已知电 子质量m=9.1×10-31kg,电荷为-e=-1.610-19C ). 解: C N e mg E mg eE F /106.511-?==== 2、 电子所带的电荷量(基本电荷-e )最先是由密立根通过油滴实验测出的。密立根设计的 实验装置如图所示。一个很小的带电油滴在电场E 内。调节E ,使作用在油滴上的电场力与油滴的重量平衡。如果油滴的半径为 1.64×10-4cm,在平衡时,E=1.92×105N/C 。求油滴上的电荷(已知油的密度为0.851g/cm 3) θ θ l l 4 解: C E g R q g R mg qE F 193 31003.8)34()3 4 (-?=====πρπρ 3、 在早期(1911年)的一连串实验中,密立根在不同时刻观察单个油滴上呈现的电荷,其 测量结果(绝对值)如下: 6.568×10-19 库仑 13.13×10-19 库仑 19.71×10-19 库仑 8.204×10-19 库仑 16.48×10-19 库仑 22.89×10-19 库仑 11.50×10-19 库仑 18.08×10-19 库仑 26.13×10-19 库仑 根据这些数据,可以推得基本电荷e 的数值为多少? 解:油滴所带电荷为基本电荷的整数倍。则各实验数据可表示为k i e 。取各项之差点儿 C e C e k k k k k k k k k k k k k k k k C e C k e C e k k C e k k C e k k C e k k C e k k C e k k C e k k C e k k 191989867452356341219191989197819671956194519341923191210)046.0629.1(),10(63.1,63.1,62.1,60.1,648.1,59.1,675.1,636.12 ,11060.1,1060.11024.3)(1018.3)(1018.3)(1060.1)(10350.3)(10630.1)(10296.3)(10636.1)(------------?±=?=-=-=-=-=-=-=-=-???=-?=-?=-?=-?=-?=-?=-?=-取平均值的数值有所以只能有没有理由认为的最小值接近 4、 根据经典理论,在正常状态下,氢原子中电子绕核作圆周运动,其轨道半径为5.29×10-11 米。已知质子电荷为e=1.60×10-19 库,求电子所在处原子核(即质子)的电场强度。 解: C N r e E /1014.541 11 2 0?== πε 5、 两个点电荷,q 1=+8微库仑,q 2=-16微库仑(1微库仑=10-6库仑),相距20厘米。求离 它们都是20厘米处的电场强度。 qE mg q 1 q 2 E E E 1 E 1 E 2 E 2 θ θ 5 解:00160212 2212 162 202 2621 01130)2 1 arcsin()60sin arcsin( ) /(101.360cos 2) /(106.34)/(108.14===?=-+=+=?== ?==E E C N E E E E E E E E C N r q E C N r q E θπεπε 与两电荷相距20cm 的点在一个圆周上,各点E 大小相等,方向在圆锥在上。 6、 如图所示,一电偶极子的电偶极矩P=ql.P 点到偶极子中心O 的距离为r ,r 与l 的夹角 为。在r>>l 时,求P 点的电场强度E 在r=OP 方向的分量Er 和垂直于r 方向上的分量E θ。 解: θπεθπεπεθ πεθ πεπεcos 41 cos )2 (4141 cos 41 cos )2(414120220 2 020 22020rl r q rl l r q r q E rl r q rl l r q r q E +≈ ++= = -≈ -+= = --++ 30302 20 3030220 sin 4sin 4)sin sin ( 4cos 42cos 42)cos cos ( 4r p r ql r r q E E E r p r ql r r q E E E E E E r r r θ πεθπεθθπεθ πεθπεθθπεθθθ= =+= +===-=+=+=--++-+--++-+-+ 其中—— - ++= -=r l r os r l r θ θθθcos 2cos 2cos 21 -+ ==r l r l θθθθs i n 2s i n s i n 2s i n 21 7、 把电偶极矩P= ql 的电偶极子放在点电荷Q 的电场内,P 的中心O 到Q 的距离为r(r>>l), 分别求:(1)P//QO 和(2)P ⊥QO 时偶极子所受的力F 和力矩L 。 θ -q q r + r - r O P Er E θ E- E+ θ1 θ2 6 解:(1)3022042))2()2((41 r pQ l r qQ l r qQ F πεπε=++--= F 的作用线过轴心O ,力矩为零 (2)3 03022044cos 20 ,)4/(4r r p Q L r Qp F F F O l r qQ F F y x ?=- ===+= =+-+πεπεθπε有力矩对中点形成一对力偶 8、 附图中所示是一种电四极子,它由两个相同的电偶极子P=ql 组成,这两偶极子在一直 线上,但方向相反,它们的负电荷重合在一起。证明:在它们的延长线上离中心为r 处,叫做它的电四极矩式中ql Q l r r Q E 2)(4340=>>=πε 解: ()())2(433421)1(42241240222022222 2202220ql Q r Q r l r q E l r r l r l r r q l r q r q l r q E ===>>????? ???????--+=??????++--=πεπεπεπε时当 9、附图中所示为另一种电四极子,设q 和l 都已知,图中P 点到电四极子中心O 的距离为 x.PO 与正方形的一对边平行。求P 点的电场强度E 。当x>>l 时,E=? 解:()()402 40232223220214334,2/12/1422r ql r l ql E l r l rl r l rl r ql E E E E y y y πεπεπε==>>?? ????????++-+-=+==时当 10、均匀带电细棒(1)在通过自身端点的垂直面上和(2)在自身的延长线上的场强分布,设棒长为2l ,带电总量为q . 解:(1)一端的垂直面上任一点A 处 Q r P O Q r P O +q –2q +q P r +q -q -q +q O r P 7 2202202 20414)411(8sin cos )(41l r r q dE E l r r l q dE E dE dE dE dE z l r dq dE l l r r l l z z r z +±==+-====-+=??+-+-πεπεθ θπε (2)延长线上任一点B 处 2202 01 4)(41l z q dE E l z dq dE l l z z z -±==-= ?+-πεπε 11、 两条平行的无限长直均匀带电线,相距为a ,电荷线密度分别为±ηe ,(1)求这两 线构成的平面上任一点(设这点到其中一线的垂直距离为x )的场强;(2)求两线单位长度间的相互吸引力。 解:(1)根据场强叠加原理,任一点场强为两无限长直带电线产生场强的矢量和 )(2)11(2)(2)11(20000a x x a a x x E P x a x a x a x E P e e e e -=--=-=-+= πεηπεηπεηπεη点在两带电线之外当点在两带电线之间 当 (2)a dl dF a dl a dl dqE dF e e e e 02 020222πεηπεηπεηη==== 12、 如图所示,一半径为R 的均匀带电圆环,电荷总量为q 。(1)求轴线上离环中心 O 为x 处的场强E ;(2)画出E —x 曲线;(3)轴线上什么地方场强最大?其值是多少? 解:(1)由对称性可知,所求场强E 的方向平行于圆环的轴线 r z r -l +l 0 l-z A +ηe , -ηe , a p X 0 8 2 322020 2 32 2 02 2 2 2 2022 202220)(4) (81 8c o s 1 814R x x q dl R x x R q dl R x x R x R q dE E dl R x R q R x dq dE R += += ++= =+=+= ? ? ?πεεπεπθεππεπ (2)由场强表达式得到E-X 曲线如图所示 (3)求极大值: 为极大值 时当有极值处当m m E dx E d R r R x x R qx dx E d R q R R qR E E R r R x x R q R x x dx d q dx dE ∴<=+--== += =+-=+=0 2/)(2343183) 2/(42/2/)(24)(4222722220222 02 322025222 2023 220πεπεπεπεπε 13、 半径为R 的圆面上均匀带电,电荷面密度为σe ,(1)求轴线上离圆心的坐标为x 处的场强;(2)在保持σe 不变的情况下,当R →0和R →∞时结果各如何?(3)在保持总电荷Q=πR 2σe 不变的情况下,当R →0和R →∞时结果各如何? 解:(1)由对称性可知,场强E 沿轴线方向 利用上题结果 ) 1(2)(2) (42)(422002 3220232 2 02 322 0R x x dE E r x dr x r x x rdr r x x dq dE e R e e +-= =+=+= +=?εσεσπεπσπε (2)保持σe 不变时, 2,;0,0εσe E R E R = ∞→=→时时 (3)保持总电量不变时, O R P x 0 R/√2 R x E O R P x r 9 ,;4,0)1(2)1(22 02220 220=∞→= →+-=+-= E R x Q E R R x x R Q R x x E e 时时πεπεεσ 14、 一均匀带电的正方形细框,边长为l ,总电量为q ,求这正方形轴线上离中心为x 处的场强。 解:根据对称性,所求场强沿正方形的轴线方向 对于一段长为l 的均匀带电直线,在中垂面上离中点为a 处产生的电场强度为 4 /414) (442 2 02 22220 22 2 3220 2222 220 1l a a l a x x a a a x dx a a x a a x dx E e l l e l l e l l e += ? ? ????+=+=++=---? ? πεηπεηπεηπεη 正方形四边在考察点产生的场强为 () 3 022********,2/4/44/44c o s 4r r q E l r l r l r qr a r l r a l E E e πεπεπεηθ = >>++= += =时当 15、 证明带电粒子在均匀外电场中运动时,它的轨迹一般是抛物线。这抛物线在什么情况下退化为直线? 解:(1)设带电粒子的初速度方向与电场方向夹角为θ,其运动方程为 ()抛物线粒子运动的轨迹方程消去时间2 02 2 00) cos (2,21sin cos θθθθv x m qE x tg y t t m qE t v y t v x -=∴- == (2)当E 为均匀电场且粒子的初速度为零时,或初速度平行于电场方向时,初速度 没有垂直于场强方向的分量,抛物线退化为直线。 212 0=+=y t m qE t v x 16、 如图所示,示波管偏转电极的长度l=1.5cm,两极间电场是均匀的,E=1.2×104V/m(E 方向垂直于管轴),一个电子以初速度v 0=2.6×107m/s 沿管轴注入。已知电子质量 r O P l l l l a 10 m=9.1×10-31kg, 电荷为e=-1.6×10-19.C. (1) 求电子经过电极后所发生的偏转; (2) 若可以认为一出偏转电极的区域后,电场立即为零。设偏转电极的边缘到荧光屏 的距离D=10厘米,求电子打在荧光屏上产生的光点偏离中心O 的距离。 解:(1)电子的运动方程得 t m eE dt dy v v v eE dt dv m dt dv m y x y x =====0 mm m v l m eE y t v t v l t m eE y x 35.0105.3224 2 02=?=??? ? ??=?==?= ∴- (2 ) mm y mm dx dy y y y dx dy l x mv eEx dx dy 56.4046.020='?==-'=?=?=抛物线的斜率为 ------------------------------------------------------------------------------------------------------------------ §1.3 高斯定理 (1) 如果第二个点电荷放在高斯球面内; (2) 如果将原来的点电荷移离了高斯球面的球心,但仍在高斯球面内。 答:由于穿过高斯面的电通量仅与其内电量的代数和有关,与面内电荷的分布及面外电 荷无关,所以 (1)不变电通量0 1 εφq = ; (2)0 2 1εφq q +=电通量变为;(3)0 1 εφq = 电通量仍为 4、(1)如果上题中高斯球面被一个体积减小一半的立方体表面所代替,而点电荷在立方体的 中心,则穿过该高斯面的电通量如何变化?(2)通过这立方体六个表面之一的电通量是多少? 答:(1)立方形高斯面内电荷不变,因此电通量不变; (2)通过立方体六个表面之一的电通量为总通量的1/6。即0 61εφq = ++++++++++ ------------ l D y y ′ 电子V 0 偏转电极 荧 光屏 P O 11 1、 附图所示,在一个绝缘不带电的导体球的周围作一同心高斯面S 。试定性地回答,在将一 正点荷q 移至导体表面的过程中, (1) A 点的场强大小和方向怎样变化? (2) B 点的场强大小和方向怎样变化? (3) 通过S 面的电通量如何变化? 答:由于电荷q 的作用,导体上靠近A 点的球面感应电荷-q ′,远离A 点的球面感应等量的+q ′,其分布与过电荷q 所在点和球心O 的联线成轴对称,故±q ′在A 、B 两点的场强E ′沿AOB 方向。 (1) E=E 0+E ′,q 移到A 点前,E 0和E ′同向,随着q 的移近不断增大,总场强E A 也不断增大。q 移过A 点后,E 0反向,且E 0> E ′,E A 方向与前相反。随着q 的 远离A 点,E 0不断减小,±q ′和E ′增大,但因E ′始终小于E 0,所以E A 不断 减小。 (2) 由于q 及±q ′在B 点的场强始终同向,且随着q 移近导体球,二者都增大,所 以E B 不断增大。 (3) q 在S 面外时,面内电荷代数和为零,故Φ=0;q 在S 面内时,Φ=q/ε0;当q 在 S 面上时,它已不能视为点电荷,因高斯面是无厚度的几何面,而实际电荷总有 一定大小,此时Φ=△q/ε0,△q 为带电体处于S 面内的那部分电量。 2、 有一个球形的橡皮气球,电荷均匀分布在表面上,在此气球被吹大的过程中,下列各处的 场强怎样变化? (1) 始终在气球内部的点;(2)始终在气球外部的点;(3)被气球表面掠过的点。 答:气球在膨胀过程中,电荷始终均匀分布在球面上,即电荷成球对称分布,故场强分 布也呈球对称。由高斯定理可知: 始终在气球内部的点,E=0,且不发生变化; 始终在气球外的点,场强相当于点电荷的场强,也不发生变化; 被气球表面掠过的点,当它们位于面外时,相当于点电荷的场强;当位于面内时, E=0,所以场强发生跃变。 3、 求均匀带正电的无限大平面薄板的场强时,高斯面为什么取成两底面与带电面平行且对称 的柱体的形状?具体地说, (1) 为什么柱体的两底面要对于带电面对称?不对称行不行? (2) 柱体底面是否需要是圆的?面积取多大合适? (3) 为了求距带电平面为x 处的场强,柱面应取多长? 答:(1)对称性分析可知,两侧距带电面等远的点,场强大小相等,方向与带电面垂直。 只有当高斯面的两底面对带电面对称时,才有E 1=E 2=E ,从而求得E 。如果两底在 不对称,由于不知E 1和E 2的关系,不能求出场强。若已先证明场强处处相等,就 不必要求两底面对称。 + q A 导体球 B S 12 (2) 底面积在运算中被消去,所以不一定要求柱体底面是圆,面积大小也任意。 (3) 求距带电面x 处的场强时,柱面的每一底应距带电面为x ,柱体长为2x 。 同样,若已先证明场强处处相等,则柱面的长度可任取。 17、 求一对带等量异号或等量同号电荷的无限大平行平面板之间的场强时,能否只取一 个高斯面? 答:如果先用高斯定理求出单个无限大均匀带电平面的场强,再利用叠加原理,可以得到两个无限大均匀带电平面间的场强。在这样的计算过程中,只取了一个高斯面。 18、 已知一高斯面上场强处处为零,在它所包围的空间内任一点都没有电荷吗? 答:不一定。高斯面上E=0,S 内电荷的代数和为零,有两种可能:一是面内无电荷,如 高斯面取在带电导体内部;二是面内有电荷,只是正负电荷的电量相等,如导体空腔内有电荷q 时,将高斯面取在导体中,S 包围导体内表面的情况。 19、 要是库仑定律中的指数不恰好是2(譬如为3),高斯定理是否还成立? 答:不成立。设库仑定律中指数为2+δ,δ πε+=2041r q E 穿过以q 为中心的球面上的电通量为 δ εφr q S d E S 0=?=?? ,此时通量不仅与面内电荷有关,还与球面半径有关,高斯定理不再成立。 ―――――――――――――――――――――――――――――――――――――― 习题: 1、 设一半径为5厘米的圆形平面,放在场强为300N/C的匀强电场中,试计算平面法 线与场强的夹角θ取下列数值时通过此平面的电通量。(1)θ=00;(2)θ=300; (3)θ=900;(4)θ=1200;(5)θ=1800。 解: 2 252243222221/;75.0/;375.0.0,/;3375.0,/75.0cos C m N C m N C m N C m N dS E S d E S S ?-=?-==?=?==?=????πφπφφπφπφθφ 2、 均匀电场与半径为a 的半球面的轴线平行,试用面积分计算通过此半球面的电通量。 解:通过半球面的电通量与通过半球面在 垂直于场强方向上的投影面积的电通量相等。 E a ds E S d E S S 2πφ±=±=?=???? 3、 如附图所示,在半径为R1和R2的两个同心球面上,分别均匀地分布着电荷Q1和Q2, 求: (1)Ⅰ、Ⅱ、Ⅲ三个区域内的场强分布; (2)若Q1=-Q2,情况如何?画出此情形的E-r 曲线。 O Q 1 Q 2 R 1 R 2 13 解:(1)应用高斯定理可求得三个区域内的场强为 E -r 曲线01=E (r 0124r r Q E πε = (R 1 r r Q Q E 3 02134πε+= ( r> R 2) ( 2 ) 若Q1=-Q2,E 1=E 3=0, 3 0124r r Q E πε = E -r 曲线如图所示。 4、 根据量子理论,氢原子中心是一个带正电子q e 的原子核(可以看成是点电荷),外面是带 负电的电子云。在正常状态(核外电子处在S态)下,电子云的电荷密度分布是球对称的: ()0 /23 a r e e e a q r -- =πρ 式中a 0为一常数(它相当于经典原子模型中s 电子圆形轨道的半径,称为玻尔半径)。求原子内电场的分布。 解:电子云是球对称分布,核外电子的总电荷量为 () e e a r e V a r e q a a q dr e r a q dr r e a q dV Q -=- =-=?-==? ???? ∞ -∞ -3 0300 /2230 2 /23 /22 44400 ππρ 可见核外电荷的总电荷量等于电子的电荷量。 应用高斯定理:核外电荷产生的场强为 } 20202002022030020 230 020000 )122(2 1444εεεππεπe a r e r a r a r e r a r e S q e a r a r q dr e r a e r a a q dr r e a q r E S d E -++-= ??+--=?-=?=?---- ?? ?? 原子核与核外电荷产生的总场强为 0020202202220200201224112244a r a r e a r a r r q r e r r a a q r q E E E --??? ? ??++=??? ?????-???? ??+++=+=πεπεπε外 核总 5、 实验表明:在靠近地面处有相当强的电场,E垂直于地面向下,大小约为100N/C; 在离地面1.5千米高的地方,E也是垂直地面向下的,大小约为25N/C。 (1) 试计算从地面到此高度大气中电荷的平均密度; (2) 如果地球上的电荷全部均匀分布在表面,求地面上电荷的面密度。 解:(1)以地心为心作球形高斯面,恰好包住地面,由对称性和高斯定理得 E r R 1 R 2 14 [ ] )/(104.4) (4)(4/)()2()(4)()(4cos )(4cos 3132102 122120120122212220 22 22 2110 12 111m C h E E h R Q Q E E R Q Q Q Q E h R h E E R S Q Q h R E dS E S d E h R S Q Q R E dS E S d E S S S S -?=-=-= ?-≈--=+--=+?==?+=?==??????? ??επρπεεπεπθεπθ相减包围电荷代数和是为半径作同心球面 再以包围电荷代数和是 (2) 以地球表面作高斯面 2 1002 2 11 1/1085.841 14cos m C E R dS R E dS E S d E S S S -?-=== =?-==???????εσπσεσεπθ 6、 半径为R的无穷长直圆筒面上均匀带电,沿轴线单位长度的电量为λ.求场强分布,并画 出E -r 曲线。 解:应用高斯定理,求得场强分布为 E=0 r r r E 2 02πελ= r>R E -r 曲线如图所示。 7、 一对无限长的共轴直圆筒,半径分别为R1和R2,筒面上都均匀带电。沿轴线单位长度 的电量分别为λ1和λ2, (1) 求各区域内的场强分布; (2) 若λ1=-λ2,情况如何?画出此情形的E -r 曲线。 解:(1)由高斯定理,求得场强分布为 r R 1 r r E 2 022πελ= r> R 2 r r E 2 02132πελλ+= (2)若λ 1 =-λ2 ,E1=E3=0,E2不变。此情形的E -r 曲线如图所示。 8、 半径为R的无限长直圆柱体内均匀带电,电荷的体密度为ρ,求场强分布,并画出E— r 曲线。 E r R E r R 1 R 2 15 解:应用高斯定理,求得场强分布为 圆柱体内 r E 12ερ= 圆柱体外 r r R E 2 0222ερ= E -r 曲线如图所示 9、 设气体放电形成的等离子体圆柱内的体电荷分布可用下式表示 ()()[] 2 20 /1a r r += ρρ , 式中r 是到轴线的距离,ρ0是轴线上的密度值,a 是常数,求场强的分布。 解:应用高斯定理,作同轴圆柱形闭合柱面为高斯面。 ()()[ ] ()[] ) (2)1(222/11 /11 12220022 2 2 00 2 20 2 2 00r a r a E a r r L rLdr a r dV a r dV r rLE S d E V V V S += ?? ? ??+= += += ==?? ???? ερρεππρερερεπ E方向沿矢径r 方向。 10、 两无限大的平行平面均匀带电,电荷的面密度分别为±σ,求各区域的场强分布。 解:无限大均匀带电平面所产生的电场强度为 n E 0 2εσ= 根据场强的叠加原理,各区域场强分别为 22)(220 )(2)(20 030 0020 01=-+==--+= =--+-=n n E n n n E n n E εσεσεσεσεσεσεσ 可见两面外电场强度为零,两面间电场是均匀电场。平行板电容器充电后,略去边缘效应,其电场就是这样的分布。 11、 两无限大的平行平面均匀带电,电荷的面密度都是σ,求各区域的场强分布。 解:与上题同理,无限大均匀带电平面所产生的电场强度为n E 0 2εσ= 应用场强叠加原理,场强在各区域的分布为 E r R σ -σ n E 1 E 2 E 3 16 n n n E n n E n n n E 0 0030 02 001220)(22)(2)(2εσεσεσεσεσεσεσεσ=+==-+=-=-+-= 可见两面间电场强度为零,两面外是均匀电场,电场强度大小相等,方向相反。 12、 三个无限大的平行平面均匀带电,电荷的面密度分别为σ1、σ2、σ3,求下列情况 各处的场强:(1)σ1=σ2=σ3=σ;(2)σ1=σ3=σ;σ2=-σ;(3)σ1 =σ3=-σ;σ2=σ;(4)σ1=σ;σ2=σ3=-σ。 解:无限大均匀带电平面所产生的电场强度为n E 0 2εσ= 各区域场强为各带电面产生场强的叠加 E1 E2 E3 E4 (1) 023εσ- 2εσ- 2εσ+ 23εσ+ (2) 02εσ- 2εσ+ 0 2εσ- 0 2εσ+ (3) 02εσ+ 2εσ- 02εσ+ 02εσ- (4) 02εσ+ 23εσ+ 2εσ+ 2εσ- 13、 一厚度为d 的无限大平板,平板体内均匀带电,电荷的体密度为ρ,求板内、板外 场强的分布。 解:根据对称性,板内外的电场强度方向均垂直于板面,并对中心对称。 应用高斯定理可求得: 板内(r 0ερ= 板外(r>d/2)r r d E 02ερ= 14、 在半导体p-n 结附近总是堆积着正、负电荷,在n 区内有正电荷,P 区内有负电荷, 两区电荷的代数和为零。把p-n 结看成是一对带正、负电荷的无限大平板,它们相互接触。取坐标x 的原点在p 、n 区的交界面上,n 区的范围是-x n ≤x ≤0,p 区的范围是0≤x ≤x P .设两区内电荷体密度分布都是均匀的: n 区 e N x D =)(ρ, P 区 e N x A -=)(ρ (突变结模型) σ σ n E 1 E 2 E 3 σ1 σ2 σ3 E1 E2 E3 E4 + + + + + - - - - - - - - - - - - - - - O x -x n x p n 区 p 区 17 这里ND、NA是常数,且NAx p =N D x n (两区电荷数量相等)。 试证明电场的分布为: n 区 )()(0 x x e N x E n D += ε, P 区 )()(0 x x e N x E p A -= ε 并画出ρ和E随x 变化的曲线。 解:将带电层看成无数无限大均匀带电平面的叠加, 由叠加原理可知,在p-n 结以外区域,E=0 (1) 对高斯面S 1,应用高斯定理 ) (1 )(10 10 1x x e N E x x eS N S E S d E n p n p S += +==?? εε ( 2 )对高斯面S 2,应用高斯定理 ) (1 )(10 10 2x x e N E x x eS N S E S d E p A p A S -= -==?? εε ( 3 )ρ和E随x 变化的曲线如图所示。 - 15、 如果在上题中电荷的体分布为 p-n 结外 ρ(x )=0 -x n ≤x ≤x p ρ(x )=-eax (线性缓变结模型) 这里a 是常数,x n = x p (为什么?),统一用x m /2 表示。试证明电场分布为 )4(8)(22 x x ae x E m -= ε并画出ρ和E随x 变化的曲线。 解:正负电荷代数和仍为零,p-n 结外E=0 作高斯面 )4(8)4 (2)(2)(122 2 2 02200x x ea E x x eaS x x eaS Sdx eax ES S d E m m n x x S n -= -=-=-==??? -εεεε + + + + + - - - - - - - - - - - - - - - O x -x n x p n 区 p 区 S 1 S 2 -x n 0 x p x E -x n 0 x p x ρ 18 ρ和E随x 变化的曲线如图所示。 ---------------------------------------------------------------------- §1.4 电位及其梯度 思考题: 1、 假如电场力的功与路径有关,定义电位差的公式??=-=Q P PQ l d E Q U P U U )()(还有没有意义?从原则上说,这时还能不能引入电位差、电位的概念? 答:如果电场力的功与路径有关,积分??Q P l d E 在未指明积分路径以前就没有意义,路径不同,积分结果也不同,相同的位置,可以有无限多取值,所以)()(Q U P U U PQ -=就没有确定的意义,即不能根据它引入电位、电位差的概念来描写电场的性质。 2、 (1)在附图a 所示的情形里,把一个正电荷从P 点移动到Q ,电场力的功A PQ 是 正还量负?它的电位能是增加还是减少?P 、Q 两点的电位哪里高? (2)若移动负电荷,情况怎样?(3)若电力线的方向如附图b 所 示,情况怎样? 答:(1)正电荷在电场中任一点受电场力F= qE ,方向与该点E 方向相 同,在PQ路径上取任一微元, dA>0 P →Q ,电场力的功A PQ >0, A PQ =q(U P -U Q )=W p -W Q >0,所以电位能减少, q>o ,A>0,所以UP>U Q (2)负电荷受力与电场方向相反,P →Q ,电场力的功A PQ <0,电位能增加,但仍有 UP>U Q (3)由于场强方向与前述相反,则所有结论与(1)(2)相反。 3、 电场中两点电位的高低是否与试探电荷的正负有关?电位差的数值是否与试探电 荷的电量有关? 答:电位高低是电场本身的性质,与试探电荷无关。电位差的数值也与试探电荷的电量无关。 4、 沿着电力线移动负试探电荷时,它的电位能是增加还是减少? -x n 0 x p x ρ -x n 0 x p x E P Q 图a P Q 图b 答:沿着电力线移动负试探电荷时,若dl与E同向,电场力作负功,电位能增加;反之电位能减少。 5、说明电场中各处的电位永远逆着电力线方向升高。 答:在任何情况下,电力线的方向总是正电荷所受电场力的方向,将单位正电荷逆着电力线方向由一点移动到另一点时,必须外力克服电场力作功,电位能增加。电场中某点的电位,在数值上等于单位正电荷在该点所具有的电位能,因此,电位永远逆着电力线方向升高。 6、(1)将初速度为零的电子放在电场中时,在电场力作用下,这电子是向电场中高电位处跑还是向低电位处跑?为什么?(2)说明无论对正负电荷来说,仅在电场力作用下移动时,电荷总是从电位能高处移向电位能低处。 答:(1)电子带负电,被电场加速,逆着电力线方向运动,而电场中各点的电位永远逆着电力线方向升高——电子向高电位处移动。 (2)若电子初速度为零,无论正负电荷,单在电场力作用下移动,电场力方向与位移方向总是一致的,电场力作正功,电位能减少,所以电荷总是从电位能高处向电位能低处移动。 7、可否规定地球的电位为+100伏,而不规定它为零?这样规定后,对测量电位、电位差的数值有什么影响? 答:可以。因为电位零点的选择是任意的,假如选取地球的电位是100V而不是0V,测量的电位等于以地为零电位的数值加上100V,而对电位差无影响。 8、若甲、乙两导体都带负电,但甲导体比乙导体电位高,当用细导线把二者连接起来后,试分析电荷流动的情况。 答:在电场力作用下,电荷总是从电位能高处向电位能低处移动。负电荷由乙流向甲,直至电位相等。 9、在技术工作中有时把整机机壳作为电位零点。若机壳未接地,能不能说因为机壳电位为零,人站在地上就可以任意接触机壳?若机壳接地则如何? 答:把整机机壳作为零电位是对机上其他各点电位而言,并非是对地而言。若机壳未接地,它与地之间可能有一定的电位差,而人站在地上,与地等电位,这时人与机壳接触,就有一定电位差加在人体上。当电压较高时,可能造成危险,所以一般机壳都要接地,这样人与机壳等电位,人站在地上可以接触机壳。 10、(1)场强大的地方,是否电位就高?电位高的地方是否场强大? (2)带正电的物体的电位是否一定是正的?电位等于零的物体是否一定不带电? (3)场强为零的地方,电位是否一定为零?电位为零的地方,场强是否一定为零? 19 (4)场强大小相等的地方电位是否相等?等位面上场强的大小是否相等? 以上各问题分别举例说明之。 答: (1)不一定。E仅与电势的变化率有关,场强大仅说明U的变化率大,但U本身并不一定很大。例如平行板电容器,B板附近的电场可以很强,但电位可以 很低。同样电位高的地方,场强不一定大,因为电位高不一定电位的变化率 大。如平行板电容器A板的电位远高于B板电位,但A板附近场强并不比B 板附近场强大。 (2)当选取无限远处电位为零或地球电位为零后,孤立的带正电的物体电位恒为正,带负电的物体电位恒为负。但电位的正负与零电位的选取有关。假如有 两个电位不同的带正电的物体,将相对于无限远电位高者取作零电位,则另 一带电体就为负电位,由引可说明电位为零的物体不一定不带电。 (3)不一定。场强为零仅说明U的变化率为零,但U本身并不一定为零。例如两等量同号电荷的连线中点处,E=0而U≠0。U为零时,U的变化率不一定为 零,因此E也不一定为零。例如两等量异号电荷的连线中点处,U=0而E≠0 (4)场强相等的地方电位不一定相等。例如平行板电容器内部,E是均匀的,但U并不相等。等位面上场强大小不一定相等。如带电导体表面是等位面,而 表面附近的场强与面电荷密度及表面曲率有关。 11、两个不同电位的等位面是否可以相交?同一等位面是否可以与自身相交? 答:在零电位选定之后,每一等位面上电位有一确定值,不同等位面U值不同,故不能相交。同一等位面可与自身相交。如带电导体内部场强为零,电位为一常量,在导体内任意作两个平面或曲面让它们相交,由于其上各点的电位都相同,等于导体的电位,这种情况就属于同一等位面自身相交。 习题: 1、在夏季雷雨中,通常一次闪电里两点间的电位差约为100MV(十亿伏特),通过的电量约为30C。问一次闪电消耗的能量是多少?如果用这些能量来烧水,能把多少水从00C加热到1000C? 解:一次闪电消耗的能量为W=QU=30×109=3×1010(J) 所求的水的质量为M=W/J=72(t) 2、已知空气的击穿场强为2×106V/m,测得某次闪电的火花长100米,求发生这次闪电时两端的电位差。 解:U=2×106×100=2×108(V) 3、证明:在真空静电场中凡是电力线都是平行直线的地方,电场强度的大小必定处 20 21 处相等;或者凡是电场强度的方向处处相同的地方,电场强度的大小必定处处相等。 证明:在电场中作任意矩形闭合回路 abcd , 移动电荷q 一周,电场力作功为 场强大小处处相等 cd ab cd ab E E l E E q A ==-=0 )( 4、 求与点电荷q=1.0×10-6C 分别相距为a=1.0m 和b=2.0m 的两点间的电位差。 解:)(105.4)11(430V b a q U ab ?=-= πε 5、 一点电荷q 在离它10厘米处产生的电位为100V ,求q 。 解:C r U q r q U 9001011.144-?=?=?= πεπε 6、 求一对等量同号电荷联线中点的场强和电位,设电荷都是q ,两者之间距离为2l. 解:l q l q l q U l q l q E 000202 04244044πεπεπεπεπε=+= =-= 7、 求一对等量异号电荷联线中点的场强和电位,设电荷分别是±q ,两者之间距离为 2l. 解:044424400202020=-= -+=+= l q l q U q q l q l q l q E πεπεπεπεπε指向方向由 8、 如图所示,AB=2l,OCD 是以B 为中心,l 为半径的半圆,A 点有正点电荷+q ,B 点 有负点电荷-q 。 (1) 把单位正电荷从O 点沿OCD 移到D 点,电场力对它作了多少功? (2) 把单位负电荷从D 点沿AB 的延长线移到无穷远去,电场力对它作了多少功? 解:电荷在电场中移动时,电场力作功等于电势能减少的值。 (1)l q l q l q U U U l d E l d F W D D D D O D O 00064)3(4πεπεπε=??????-+-=-=-=?=?=?? a b c d C q -q A O B D
正在阅读:
自己选路跪着也要走完04-30
劳动关系与争议处理08-26
苏版语文初二上册(2022部编版)第4单元第16课《昆明的雨》教学实04-19
建筑工程企业形象CI标准培训讲义03-19
婴儿推车项目可行性研究报告立项申请报告模板 - 图文12-18
我不喜欢雾霾天作文400字07-11
诊断复习题呼吸困难04-25
C程序设计课程设计任务书12-30
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 电磁学
- 课后
- 答案
- 赵凯华
- 陈熙谋
- 常用安全生产管理制度、规程、台帐汇编(修订稿)1.doc
- 2022-2022年小学英语山东三年级月考试卷模拟试题【1】含答案考点
- 汽车面料专用丝项目可行性研究报告评审方案设计(2013年发改委标
- 二级红星功勋荣誉章获得者简历(6)空军
- 07-Appendix 7 施工方案2
- 初三数学专题复习教案第12讲:二次函数
- 【免费下载】艽野尘梦白话原版
- RFC2459(证书和CRL简介)
- 2022年赣南师范学院体育概论(同等学力加试)复试实战预测五套卷
- 沪粤版八年级物理下册第八章2. 研究液体的压强教案
- 生鲜肉食项目可行性研究报告(技术工艺+设备选型+财务方案+厂区规
- 2022优化方案高考总复习·地理(人教版)第十六章章末过关检测
- 2010年中考物理试题分类汇编__电学部分
- (整理)年期货从业《投资分析》命题预测试卷51.
- 最新-广播电视技术维护工作总结 精品
- 市七中2008级毕业生去向(理科)
- 2010年公布最新JCR分区表
- 20162型糖尿病培训试题及答案解析
- 按高矮排序活动反思
- Chiral symmetry breaking from five dimensional spaces