初三数学几何的动点问题专题练习

更新时间:2023-04-26 03:02:01 阅读量: 资格考试认证 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

动点问题专题训练

1、如图,已知ABC

△中,10

AB AC

==厘米,8

BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD

△与

CQP

△是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度

为多少时,能够使BPD

△与CQP

△全等?

(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度

从点B同时出发,都逆时针沿ABC

△三边运动,求经过多长时间点P

与点Q第一次在ABC

△的哪条边上相遇?

2、直线

3

6

4

y x

=-+与坐标轴分别交于A B

、两点,动点P Q

、同时从O点出发,

同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,

点P沿路线O→B→A运动.

(1)直接写出A B

、两点的坐标;

(2)设点Q的运动时间为t秒,OPQ

△的面积为S,求出S

与t之间的函数关系式;

(3)当

48

5

S=时,求出点P的坐标,并直接写出以点

O P Q

、、为顶点的平行四边形的第四个顶点M的坐标.

1

2 3如图,在平面直角坐标系中,直线l :y =-2x -8分别与x 轴,y 轴相交于A ,

B 两点,点P (0,k )是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作⊙P .

(1)连结PA ,若PA =PB ,试判断⊙P 与x 轴的位置关系,并说明理由;

(2)当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?

4 如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(-3,4),

点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H .

(1)求直线AC 的解析式;

(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S ≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);

(3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.

3 5在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点

B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -B

C -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ;

(2)在点P 从C 向A 运动的过程中,求△APQ

的面积S 与

t 的函数关系式;(不必写出t 的取值范围)

(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成

为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..

写出t 的值.

6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;

②当α= 度时,四边形E D B C 是直角梯形,此时AD 的长为 ;

(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.

16

(备用图)

4 7如图,在梯形ABCD

中,3545AD BC AD DC AB B ====?∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终

点D 运动.设运动的时间为t 秒. (1)求BC 的长.

(2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形.

8如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =?∠. (1)求点E 到BC 的距离;

(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =. ①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由; ②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.

C M A

D

E B

F C

图4(备用)

A

D

E B

F C

图5(备用)

A D E B

F C

图1 图2

A D

E

B

F C P

N M 图3

A D E

B

F

C

P

N M

(第25题)

5 9如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在

第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.

(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;

(2)求正方形边长及顶点C 的坐标;

(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标;

(4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.

10数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E

是边BC 的中点.90AEF ∠= ,且EF 交正方形外角DCG ∠的平行线CF 于点F ,

求证:AE =EF .

经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

A D F C G

B 图1 A D F

C G B 图2 A D

F G B 图3

6 11已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,

,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .

(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;

(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;

(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.

7 12问题解决 如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当

12CE CD =时,求AM BN

的值.

类比归纳

在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14

CE CD =,则AM BN 的值等于 ;若1CE CD n =(n 为整数),则AM BN

的值等于 .(用含n 的式子表示)

联系拓广

如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D

,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n

=>=,,则AM BN 的值等于 .(用含m n ,的式子表示)

方法指导: 为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2 图(2) A B C D E F M 图(1) A

B C D E F M N

8 1.解:(1)①∵1t =秒,

∴313BP CQ ==?=厘米,

∵10AB =厘米,点D 为AB 的中点,

∴5BD =厘米.

又∵8PC BC BP BC =-=,厘米,

∴835PC =-=厘米,

∴PC BD =.

又∵AB AC =,

∴B C ∠=∠,

∴BPD CQP △≌△. ············································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,

又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,

∴点P ,点Q 运动的时间433BP t =

=秒, ∴515443

Q CQ v t

===厘米/秒. ·································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得

1532104x x =+?, 解得803

x =秒. ∴点P 共运动了803803

?=厘米. ∵8022824=?+,

∴点P 、点Q 在AB 边上相遇, ∴经过803

秒点P 与点Q 第一次在边AB 上相遇. ········································· (12分) 2.解(1)A (8,0)B (0,6) ············· 1分

(2)86OA OB == ,

10AB ∴=

点Q 由O 到A 的时间是881

=(秒) ∴点P 的速度是61028

+=(单位/秒) · 1分 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,

2S t = ·········································································································· 1分 当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,,

9 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865

t PD -=, ······························ 1分 21324255

S OQ PD t t ∴=?=-+ ······································································· 1分 (自变量取值范围写对给1分,否则不给分.)

(3)82455P ??

???

, ···························································································· 1分 12382412241224555555I M M 2??????-- ? ? ???????

,,,,, ···················································· 3分 3.解:(1)⊙P 与x 轴相切.

∵直线y =-2x -8与x 轴交于A (4,0),

与y 轴交于B (0,-8),

∴OA =4,OB =8.

由题意,OP =-k ,

∴PB =P A =8+k .

在Rt △AOP 中,k 2+42=(8+k )2,

∴k =-3,∴OP 等于⊙P 的半径,

∴⊙P 与x 轴相切.

(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P

在线段OB 上时,作PE ⊥CD 于E .

∵△PCD 为正三角形,∴DE =

12CD =32,PD =3, ∴PE

. ∵∠AOB =∠PEB =90°, ∠ABO =∠PBE ,

∴△AOB ∽△PEB ,

∴2,AO PE AB PB PB

=,

∴PB =

∴8PO BO PB =-=,

∴8)P -,

∴8k =-. 当圆心P 在线段OB 延长线上时,同理可得P (0,

8), ∴k =

8, ∴当k

8或k =

8时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.

10 4.

5.解:(1)1,8

5

11 (2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC

,4BC ==, 得

45QF t =.∴4

5

QF t =. ∴14(3)25

S t t =-?, 即22655

S t t =-+.

(3)能.

①当DE ∥QB 时,如图4.

∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP AC AB

=

, 即335t t -=

. 解得9

8

t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.

此时∠APQ =90°. 由△AQP ∽△ABC ,得

AQ AP

AB AC

=

, 即353t t -=. 解得158

t =.

(4)52t =

或45

14

t =. ①点P 由C 向A 运动,DE 经过点C .

连接QC ,作QG ⊥BC 于点G ,如图6.

PC t =,222QC QG CG =+2234

[(5)][4(5)]55

t t =-+--.

由2

2

PC QC =,得2

2234

[(5)][4(5)]55

t t t =-+--,解得52t =.

②点P 由A 向C 运动,DE 经过点C ,如图7. 22234

(6)[(5)][4(5)]55t t t -=-+--,4514

t =】

6.解(1)①30,1;②60,1.5;

(2)当∠α=900

时,四边形EDBC 是菱形. ∵∠α=∠ACB=900

,∴BC //ED .

∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900

,∠B =600

,BC =2,

∴∠A =300.

∴AB =4,AC 图4

P

图5

12 ∴AO =12

AC

……………………8分 在Rt △AOD 中,∠A =300,∴AD =2.

∴BD =2.

∴BD =BC .

又∵四边形EDBC 是平行四边形,

∴四边形EDBC 是菱形 ……………………10分

7.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK

是矩形

∴3KH AD ==. ················································································ 1分 在Rt ABK △中,sin 4542

AK AB =?== .

cos 454BK AB =?== ·························································· 2分 在Rt CDH △

中,由勾股定理得,3HC

∴43310BC BK KH HC =++=++= ················································· 3分

(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥

∴MN DG ∥

∴3BG AD ==

∴1037GC =-= ············································································· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,.

∵DG MN ∥

∴NMC DGC =∠∠

又C C =∠∠

∴MNC GDC △∽△ ∴

CN CM CD CG

= ··················································································· 5分 即10257

t t -= 解得,5017t = ···················································································· 6分 (图①) A D C B K H (图②) A D C B G M N

13 (3)分三种情况讨论:

①当NC MC =时,如图③,即102t t =- ∴103

t = ·························································································· 7分

②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:

由等腰三角形三线合一性质得()11

102522

EC MC t t ==-=- 在Rt CEN △中,5cos EC t

c NC t -== 又在Rt DHC △中,3

cos 5

CH c CD =

= ∴53

5

t t -= 解得25

8

t = ······················································································· 8分

解法二:

∵90C C DHC NEC =∠=∠=?∠∠, ∴NEC DHC △∽△

NC EC

DC HC = 即553t t -= ∴258

t = ·························································································· 8分

③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.11

22

FC NC t ==

解法一:(方法同②中解法一)

1

3

2cos 1025t

FC C MC t ===-

解得60

17

t =

解法二:

∵90C C MFC DHC =∠=∠=?∠∠, ∴MFC DHC △∽△ ∴

FC MC

HC DC

= A

D

C

B M

N

(图③)

(图④)

A

D C

B

M N

H E

(图⑤)

A D

C

B

H N M

F

14 即1102235

t t -= ∴6017

t = 综上所述,当103

t =、258t =或6017t =时,MNC △为等腰三角形 ··············· 9分 8.解(1)如图1,过点E 作EG BC ⊥于点G . ··················· 1分

∵E 为AB 的中点, ∴122BE AB ==. 在Rt EBG △中,60B =?∠,∴30BEG =?∠. ············ 2分

∴112BG BE EG ====, 即点E 到BC

····································· 3分

(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.

∵PM EF EG EF ⊥⊥,,∴PM EG ∥.

∵EF BC ∥,∴EP GM =

,PM EG ==

同理4MN AB ==. ·················································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,

∴6030NMC B PMH ==?=?∠∠,∠.

∴12PH PM == ∴3cos302MH PM =?= . 则35422

NH MN MH =-=-=. 在Rt PNH △

中,PN == ∴PMN △的周长

=4PM PN MN ++. ······································· 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.

当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =. 类似①,32

MR =

. ∴23MN MR ==. ··················································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.

此时,6132x EP GM BC BG MC ===--=--=. ··································· 8分 图1 A D E B F C G

图2 A D E B F C

P N H

15 当MP MN =时,如图4

,这时MC MN MP ===

此时,615x EP GM ===-=

当NP NM =时,如图5,30NPM PMN ==?∠∠.

则120PMN =?∠,又60MNC =?∠, ∴180PNM MNC +=?∠∠.

因此点P 与F 重合,PMC △为直角三角形.

∴tan 301MC PM =?= .

此时,6114x EP GM ===--=.

综上所述,当2x =或4

或(5-时,PMN △为等腰三角形. ···················· 10分 9解:(1)Q (1,0) ····················································································· 1分 点P 运动速度每秒钟1个单位长度.································································· 2分 (2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.

在Rt △AFB

中,10AB 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=?= ∴△ABF ≌△BCH . ∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.

∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴

AP AM MP AB AF BF ==. 1068

t A M M P

∴==

. ∴3455AM t PM t ==,. ∴34

10,55

PN OM t ON PM t ==-==.

设△OPQ 的面积为S (平方单位)

∴213473

(10)(1)5251010

S t t t t =?-+=+-(0≤t ≤10) ················································· 5分

说明:未注明自变量的取值范围不扣分.

∵3

10a =-

<0 ∴当474710

362()10

t =-=

?-时, △OPQ 的面积最大. ························· 6分 图3

A D E B

F

C

P

N M 图4

A D E

B

F C

P

M N 图5

A D E

B

F (P )

C

M

N G

G

R

G

16 此时P 的坐标为(9415,5310

) . ····································································· 7分 (4) 当 53t =或29513

t =时, OP 与PQ 相等. ················································· 9分

10.解:(1)正确. ················································· (1分)

证明:在AB 上取一点M ,使AM EC =,连接ME . (2分) BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,

45DCF ∴∠=°, 135ECF ∴∠=°.

AME ECF ∴∠=∠.

90AEB BAE ∠+∠= °,90AEB CEF ∠+∠=°,

∴BAE CEF ∠=∠.

AME BCF ∴△≌△(ASA ). ··································································· (5分) AE EF ∴=. ························································································· (6分)

(2)正确. ····················································· (7分)

证明:在BA 的延长线上取一点N .

使AN CE =,连接NE . ··································· (8分) BN BE ∴=. 45N PCE ∴∠=∠=°.

四边形ABCD 是正方形,

AD BE ∴∥. DAE BEA ∴∠=∠.

NAE CEF ∴∠=∠.

ANE ECF ∴△≌△(ASA ). ································································· (10分) AE EF ∴=. (11分)

11.解(Ⅰ)如图①,折叠后点B 与点A 重合,

则ACD BCD △≌△.

设点C 的坐标为()()00m m >,.

则4BC OB OC m =-=-.

于是4AC BC m ==-.

在Rt AOC △中,由勾股定理,得222AC OC OA =+,

即()22242m m -=+,解得32

m =. ∴点C 的坐标为302?? ???

,. ··················································································· 4分 (Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ',

则B CD BCD '△≌△.

由题设OB x OC y '==,, A D F C G E B M A D F G E B N

17 则4B C BC OB OC y '==-=-,

在Rt B OC '△中,由勾股定理,得222

B C OC OB ''=+. ()2

224y y x ∴-=+, 即2128

y x =-

+ ···························································································· 6分 由点B '在边OA 上,有02x ≤≤,

∴ 解析式2128y x =-+()02x ≤≤为所求. ∴ 当02x ≤≤时,y 随x 的增大而减小,

y ∴的取值范围为322

y ≤≤. ····································································· 7分 (Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥.

则OCB CB D ''''∠=∠.

又CBD CB D OCB CBD ''''∠=∠∴∠=∠ ,

,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OC OA OB

''=,得2OC OB ''=. ·································································· 9分 在Rt B OC ''△中,

设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2001228

x x =-+,

解得000808x x x =-±>∴=-+,∴点C

的坐标为()

016. ··································································· 10分

12解:方法一:如图(1-1),连接BM EM BE ,,.

由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.

∴MN 垂直平分BE .∴BM EM BN EN ==,. ···································· 1分 ∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,. ∵112

CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-. N 图(1-1) A B C E F M

18 在Rt CNE △中,222NE CN CE =+.

∴()22221x x =-+.解得54x =,即54

BN =. ········································· 3分 在Rt ABM △和在Rt DEM △中,

222AM AB BM +=,

222DM DE EM +=,

∴2222AM AB DM DE +=+.

····························································· 5分 设AM y =,则2DM y =-,∴()2222221y y +=-+.

解得14y =,即14

AM =. ····································································· 6分 ∴15

AM BN =. ····················································································· 7分 方法二:同方法一,54

BN =. ································································ 3分 如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .

∵AD BC ∥,∴四边形GDCN 是平行四边形.

∴NG CD BC ==.

同理,四边形ABNG 也是平行四边形.∴54

AG BN ==. ∵90MN BE EBC BNM ⊥∴∠+∠=,°.

90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠ ,°,.

在BCE △与NGM △中

90EBC MNG BC NG C NGM ∠=∠??=??∠=∠=?

,,°.∴BCE NGM EC MG =△≌△,. ························· 5分 ∵114AM AG MG AM =--=5,=

.4 ····················································· 6分 ∴

15

AM BN =. ··················································································· 7分 类比归纳 25(或410);917; ()2211

n n -+ ································································· 10分 联系拓广

N 图(1-2)

A B C D E F M G

19 2222211

n m n n m -++ ······················································································ 12分

本文来源:https://www.bwwdw.com/article/8qaq.html

Top