Robust perceptual image hashing using feature points
更新时间:2023-09-01 04:18:01 阅读量: 教育文库 文档下载
- robust推荐度:
- 相关推荐
Perceptual image hashing maps an image to a fixed length binary string based on the image’s appearance to the human eye, and has applications in image indexing, authentication, and watermarking. In this paper, we present a general framework for perceptual
ROBUSTPERCEPTUALIMAGEHASHINGUSINGFEATUREPOINTS
VishalMongaandBrianL.Evans
EmbeddedSignalProcessingLaboratory,CenterforPerceptualSystems
TheUniversityofTexasatAustin,Austin,TX78712
{vishal,bevans}@ece.utexas.edu
ABSTRACT
Perceptualimagehashingmapsanimagetoa xedlengthbinarystringbasedontheimage’sappearancetothehu-maneye,andhasapplicationsinimageindexing,authenti-cation,andwatermarking.Inthispaper,wepresentagen-eralframeworkforperceptualimagehashingusingfeaturepoints.Thefeaturepointsshouldbelargelyinvariantun-derperceptuallyinsigni cantdistortions.Tosatisfythis,weproposeaniterativefeaturedetectortoextractsigni cantgeometrypreservingfeaturepoints.Weapplyprobabilis-ticquantizationonthederivedfeaturestofurtherenhanceperceptualrobustness.Theproposedhashalgorithmwith-standsstandardbenchmark(e.g.Stirmark)attacksinclud-ingcompression,geometricdistortionsofscalingandsmallanglerotation,andcommonsignalprocessingoperations.Contentchanging(malicious)manipulationsofimagedataarealsoaccuratelydetected.
1.INTRODUCTION
Incryptography,hashfunctionsaretypicallyusedfordig-italsignaturestoauthenticatethemessagebeingsentsothattherecipientcanverifyitssource.AkeyfeatureofconventionalhashingalgorithmssuchasMD5andSHA-1isthattheyareextremelysensitivetothemessage[1];i.e.,aonebitchangeintheinputchangestheoutputdramati-cally.Datasuchasdigitalimages,however,undergovariousmanipulationssuchascompressionandenhancement.
Animagehashfunctiontakesintoaccountchangesinthevisualdomain.Inparticular,aperceptualimagehashisrequiredtobeinvariantunderimagemanipulationsthatdonotaltertheimageappearancesigni cantly.Suchafunctioncouldbeusefulforidenti cation/searchofimagesinlargedatabases.Otherapplicationsofimagehashinglieintheareaofauthenticationandwatermarking[2].
Signi cantattentionhasbeengiventogeneratingdig-italsignaturesforimageauthenticationundercertainat-tacks.Thisincludesmethodsbasedonstatisticsoftheim-age(oritstransformedversion)[3,4],relation-basedmeth-odsthatuseinformationabouttheDCT/Waveletcoe -cientsoftheimage[5,6],andmethodsbasedonextractionoflow-levelimagefeaturessuchasedgesandcorners[7,8].
Acommoncharacteristicofthemethodsin[3]–[8]isthatwhiletheyauthenticatetheimageunderspecialformsofmanipulation,e.g.JPEGcompression,theyarestillvulner-abletoseveralincidentalmodi cationsthatdonotcauseperceptuallysigni cantchanges.
Robustimagehashingmethodsthattolerateawiderrangeofperceptuallyinsigni cantdistortionshavebeenproposedrecently[9–12].Themethodsinin[9]and[10]arerelationbased.In[11]Venkatesanetal.formahashbasedonanimagestatisticsvectorextractedfromsubbandsinawaveletdecompositionoftheimage.Mihcaketal.[12]developanotherhashbyusinganiterativeapproachtobi-narizetheDCsubband.
Wepresentaframeworkforperceptualimagehashingusingfeature-points.Currentapproachesbasedonfeaturepointshavelimitedutilityastheyhavepoorrobustnessproperties.Weextractsigni cantimagefeaturesbyus-ingawaveletbasedfeaturedetectionalgorithmbasedonthecharacteristicsofthevisualsystem[13].Further,aniterativeprocedurebasedonobservationsin[12]isusedtolockontoasetofimagefeature-pointswithexcellentinvariancepropertiestoperceptuallyinsigni cantpertur-bations.Unlike,theuseofpublic-keyencryptionschemesin[7],[8]probabilisticquantizationisusedtobinarizetheextractedfeaturevector.Previousworkonimagehashinghasfocussedextensivelyontheproblemofcapturingimagecharacteristicsbutperformancetrade-o ssuchasthosebe-tweenperceptualrobustness,fragilityandrandomizationofthehasharenotexplicitlyanalyzed.Thesetrade-o saredirectlyaddressedviaparametersinourhashalgorithm.
2.FEATUREEXTRACTION
2.1.End-StoppedWavelets
Psychovisualstudieshaveidenti edthepresenceofcertaincells,calledhypercomplexorend-stoppedcells,inthepri-maryvisualcortex[13].Forreal-worldscenes,thesecellsrespondstronglytoextremelyrobustimagefeaturessuchascornerlikestimuliandpointsofhighcurvatureingen-eral[14],[15].Bhattacherjeeetal.[15]constructed“end-stopped”waveletstocapturethisbehavior.Morletwaveletscanbeusedtodetectlinearstructureshavingaspeci corientation.Inspatialdomain,thetwodimensional(2-D)
Perceptual image hashing maps an image to a fixed length binary string based on the image’s appearance to the human eye, and has applications in image indexing, authentication, and watermarking. In this paper, we present a general framework for perceptual
Morletwaveletisgivenby[16]
ψM(x)=(e
jk0.x
e 1|k0|2)(e
1|x|2)(1)
wherex=(x,y)represents2-Dspatialco-ordinates,andk0=(k0,k1)isthewave-vectorofthemotherwavelet,whichdeterminesscale-resolvingpower(SRP)andangular-resolvingpower(ARP)ofthewavelet[16].Thefrequencydomainrepresentation,ψM(k),ofaMorletwaveletis
ψ
)=(e 1M(k|k k0|2 e 121
2|k0|)(e |x|)(2)
Here,krepresentsthe2-Dfrequencyvariable(u,v).Intwodimensions,theendpointsoflinearstructurescanbede-tectedbyapplyingthe rst-derivativeofGaussian(FDoG) lterparalleltotheorientationofstructuresinquestion.Thetwo lteringstages,the rsttodetectlineshavingaspeci corientationandthesecondtodetecttheend-pointsofsuchlines,canbecombinedintoasingle lter.Thisre-sultsinan“end-stopped”wavelet[15].Anexampleofanend-stoppedwaveletandits2-DFouriertransformfollow:
x2+y2
ψ(x,y)=1
+k0(k0 2jx)
E4
ye
(3)
ψ
E(u,v)=2πe
(u k0)2+(v)2 ( (u2+
)
)
jve
v2
(4)
Equation(4)showsthatψ
Eisaproductoftwocomponents.The rstisaMorletwaveletorientedalongtheu axis.ThesecondfactorisaFDoGoperatorappliedalongthefrequency-axisv,thatisinthedirectionperpendiculartotheMorletwavelet.Hence,thiswaveletdetectslineendsandhighcurvaturepointsintheverticaldirection.2.2.Proposedfeaturedetectionmethod
Ourapproachtofeaturedetectioncomputesawavelettrans-formbasedonanend-stoppedwaveletobtainedbyapplyingtheFDoGoperatortotheMorletwavelet:
ψE(x,y,θ)=(FDoG)o(ψM(x,y,θ))
(5)
Orientationtuningisgivenbyθ=tan 1(k).Lettheorientationrange[0,π]bediscretizedintoMintervals0
andthescaleparameterαbesampledexponentiallyasαi,i∈Z.Thisresultsinthewaveletfamily
ψE(αi(x,y,θk)
,α∈R,i∈Z
(6)
whereθk=(kπ)/M,k=0,...,M-1.Thetransformis
Wi(x,y,θ)=
f(x1,y1)ψE αi(x x1,y y1),θ
dx1dy1
(7)
Thesamplingparameterαischosentobe2.
Fig.1describestheproposedfeaturedetectionmethod.Themethodhastwofreeparameters:integerscaleiandrealthresholdT.WeadaptthethresholdTtoselecta xednumber(P)offeaturepointsfromtheimage.ThelengthPfeaturevectorislabeledasf.
————————————–
http://www.77cn.com.cnputethewavelettransformin(7)atasuitably
chosenscaleiforseveraldi erentorientations.Thecoarsestscale(i=1)isnotselectedasitistoosensitivetoglobalvariations.Finerthescale,themoresensitiveitistodistortionssuchasquantiza-tionnoise.Wechoosei=3.2.Locations(x,y)intheimagethatareidenti edascandidatefeaturepointssatisfy
Wi(x,y,θ)=
(x ,y max
)∈N
|Wi(x ,y,θ)|
(8)
(x,y)
whereN(x,y)representsthelocalneighborhoodof
(x,y)withinwhichthesearchisconducted.3.Fromthecandidatepointsselectedinstep2,qualifyalocationas nalfeaturepointif
maxθ
Wi(x,y,θ)>T
(9)
whereTisauser-de nedthreshold.
————————————–
Figure1:Featuredetectionmethodthatpreservessigni -cantimagegeometryfeaturepointsofanimage.
Previousapproaches[3,7,8]haveusedpublic-keyen-cryptionmethodsonimagefeaturestoarriveatadigitalsignature.Suchasignaturewouldbeverysensitivetosmallperturbationsinthefeaturepoints.Thefeaturepointsde-tectedforperceptuallysimilarimagesmaynotalwaysbeidenticalbut“close”.Forexample,asmallanglerotationwouldresultintheoriginalfeaturepointsshiftedslightlybasedontherotation.Moregenerally,weobservethatunderperceptuallyinsigni cantdistortionstotheimage,thefeaturepointsarepreservedina“probabilistic”sense.Tomaintainperceptualrobustness,wequantizethefea-turevectorbasedontheprobabilitydistributionoffeaturepointsextractedfromtheimage.Inparticular,weusethenormalizedhistogramoffasanestimateofitsdistribution.Thenormalizedhistogramappearstobelargelyinsensitivetoattacksthatdonotcausesigni cantperceptualchanges.
3.HASHALGORITHMS
ThehashfunctionforimageIisrepresentedasH(I)andletDH(·,·)denotethenormalizedHammingdistancebetweenitsarguments(binarystrings).3.1.Algorithm1–Deterministic
Mihcaketal.[12]observethatprimarygeometricfeaturesoftheimagearelargelyinvariantundersmallperturbationstotheimage.Theyproposeaniterative lteringschemethatminimizesthepresenceof“geometricallyweakcompo-nents”andenhances“geometricallystrongcomponents”by
Perceptual image hashing maps an image to a fixed length binary string based on the image’s appearance to the human eye, and has applications in image indexing, authentication, and watermarking. In this paper, we present a general framework for perceptual
meansofregiongrowing.Weadaptthealgorithmin[12]tolockontoasetoffeature-pointsthatarelargelypreservedinperceptuallysimilarversionsoftheimage.Thestoppingcriterionforourproposediterativealgorithmisachievinga xedpointforthebinarystringobtainedonquantizingthevectoroffeaturepointsf.Thealgorithmfollows:1.GetparametersMaxIter, andP,setcount=http://www.77cn.com.cnethefeaturedetectorinFig.1toextractthelengthPvectoroffeaturepointsf3.Quantizefinaprobabilisticsensetoobtainabinarystringb1f4.Performorder-statistics ltering.LetIos=OS(I;p,q,r)whichisthe2-Dorderstatistics lteringoftheinputI.Fora2-DinputX,Y=OS(X;p,q,r)where i,j,Y(i,j)isequaltotherthelementofthesortedsetofX(i ,j ),wherei ∈{i p,i p+1,...,i+p}andj ∈{j q,j q+1,...,j+q}.5.Performlow-passlinearshiftinvariant lteringonIos
toobtainIlp.6.Repeatsteps(2)and(3)withIlptoobtainb2f7.If(count=maxIter)gotostep8.
elseifDH(b1f,b2
f)< gotostep8.elsesetI=Ilpandgotostep2.8.SetH(I)=b2f
Step4eliminatesisolatedsigni cantcomponents.Step5preservesthe“geometricallystrong”componentsbylow-pass ltering(whichintroducesblurredregions).Thesuc-cessofthedeterministicalgorithmreliesupontheself-correctingnatureoftheiterativealgorithmaswellastherobustnessofthefeaturedetector.Theaboveiterativeal-gorithmisfairlygeneralinthatanyfeaturedetectorthatextractsvisuallyrobustimagefeaturesmaybeused.3.2.Algorithm2–Randomized
Randomizingthehashoutputisdesirablenotonlyforse-curityagainstinputsdesignedbyanadversary(maliciousattacks)butalsoforscalability,i.e.theabilitytoworkwithlargedatasetswhilekeepingthecollisionprobabilityfordistinctinputsincheck.RandomnessresultsfromusingthesecretkeyKtogenerateNrandomlocations(row-columnpairs)intheimage.ApartitioningofanimageintoNregions{Ri}Ni=1isthenobtainedusingk meansclus-tering[17].Therandomlocationsserveasinitialguessesfortheclustercenters.Finally,featurepointsareextractedfromeachrandomlyselectedregion(sub-image)andcom-binedtoformthecompletefeaturevector.
Weemployk-meansclusteringtopartitiontheimagefortwomajorreasons.First,theclusteringachievedbyk-meansdependsheavilyontheinitialchoiceofclustercen-ters[18].Sincetheinitialcentersaregeneratedrandomlybythesecretkey,thismakesthepartioningalsorandomandingeneralthesamepartioningcannotbeachieved(withahighprobability)unlessthesecretkeyisavailable.Second,theresultingclustershavefewornoregionsthatareverysmall.Itisimportanttoavoidverysmallregionssincethey
Table1:NormalizedHammingdistancebetweenhashval-uesoforiginalandattacked(similar)images.
wouldnotyieldinterestingandrobustimagefeatures.AslongasmostoftheRiarebigenoughthegeometricrobust-nesspropertiesofAlgorithm1areretainedinAlgorithm2.
4.RESULTS
Wecomparethehashvaluesobtainedfromtwodi erentim-agesforcloseness(butnotequality)inHammingdistance.LetIsimrepresentstheclassofimagessuchthatIsimisperceptuallysimilartoI.Likewise,aperceptuallydistinctimagewillbedenotedbyIdiff.Then,werequire
DH(H(I),H(Isim))<0.2(10)DH(H(I),H(Idiff))>0.3
(11)
Thisisareasonableapproachasperceptualsimilarityisnottransitive.PerceptualsimilarityofapairofobjectsAandBandofanotherpairBandCdoesnotimplythesimilar-ityofAandC.However,modelingofperceptualsimilaritybyequalityofhashvalueswouldleadtoatransitiverela-tionship.Asimilarapproachwastakenin[12].
Fig.2showsthreeperceptuallysimilarimagesandtheextractedfeaturepointsatalgorithmconvergence.TheoriginalbridgeimageisshowninFig.2(a).Figs.2(c)and(e),respectively,aretheimagein(a)attackedbyJPEGcompressionwithqualityfactor(QF)of10andadditivewhiteGaussiannoise(AWGN)withσ=20.The nalfea-turepointsforthethreeimages(Figs.2(b),(d)and(f))arelargelythesame(orclose).Table1tabulatesthequantita-tivedeviationasthenormalizedHammingdistancebetweenthehashvaluesoftheoriginalandmanipulatedimagesforvariousattacks.Theattackedimagesweregeneratedus-ingtheStirmarkbenchmarksoftware[19].Thedeviationislessthan0.2exceptforlargerotation(greaterthan5o)andcropping(morethan20%).Wealsotestedunderseveralcontentchangingattacksincludingobjectinsertionandremoval,additionofexcessivenoise,alterationofthepositionofimageelements,andalterationofasigni cantimagecharacteristicsuchastextureandstructure.Inallcases,thedetectionwasaccurate.Thatis,thenormal-izedHammingdistancebetweentheimageanditsattacked
Perceptual image hashing maps an image to a fixed length binary string based on the image’s appearance to the human eye, and has applications in image indexing, authentication, and watermarking. In this paper, we present a general framework for perceptual
(a)Original
Image
(b)Feature
Points
(c)
JPEG,QF=10(d)Feature
Points
(e)AWGN,σ=
20(f)FeaturePoints
Figure2:Original/attackedimageswithfeaturepointsatalgorithmconvergence.Featurepointsoverlaidonimagesversionwasfoundtobegreaterthan0.3.Theperceptualsigni canceofthehashishencevalidated.
5.PERFORMANCETRADE-OFFS
AsthenumberoffeaturepointsPincreases,thespeci ca-tionofimagecharacteristicsbecomesmorepreciseandthefragilitytoperceptuallydistinctinputsimprovesaswell.However,theclassofperceptuallysimilarinputsbecomessmaller.TheparameterPfacilitatesaperceptualrobust-nessvs.fragilitytrade-o .Pisinturndeterminedbythesizeofthesearchneighborhoodandthethresholdparame-terT(e.g.asmallTimpliesmorefeaturepoints).
WhenthenumberofrandompartitionsNisone,norandomnessisinvolvedandalgorithms1and2arethesame.IfNisverylarge,thentherandomregionsshrinktoanex-tentthattheydonotcontainsigni cantchunksofgeomet-ricallystrongcomponentsandhencetheresultingfeaturesarenotrobust.TheparameterNfacilitatesarandomnessvs.perceptualrobustnesstrade-o .
Thechoiceofalgorithmparametersisgovernedlargely
bytheapplication.Forimageindexing,thereisnomoti-vationtorandomize(N=1).Alsoinindexing,thehashcomputationshouldbefast,whereasrandomizationasinAlgorithm2comesatthecostofpartitioningtheimagepriortofeatureextraction.Forsecurityapplications,itmaybedesirabletorandomizeasmuchaspossibletominimizethevulnerabilityagainstmaliciousattacks.
6.REFERENCES
[1]A.Menezes,V.Oorschot,andS.Vanstone,Handbookof
AppliedCryptography,CRCPress,1998.
[2]G.L.Friedman,“Thetrustworthydigitalcamera:restor-ingcredibilitytothephotographicimage,”IEEETrans.ConsumerElectronics,vol.39,pp.905–910,Nov.1993.[3]M.SchneiderandS.F.Chang,“Arobustcontentbased
digitalsignatureforimageauthentication,”Proc.IEEEConf.ImageProc.,Sept.1996.
[4]C.KailasanathanandR.SafaviNaini,“Imageauthen-ticationsurvivingacceptablemodi cationsusingstatisti-calmeasuresandk-meansegmentation,”IEEE-EURASIPWork.NonlinearSig.andImageProc.,June2001.
[5]C.Y.LinandS.F.Chang,“Generatingrobustdigitalsig-natureforimage/videoauthentication,”Proc.ACMWork.onMultimediaandSecurity,Sept.1998.
[6]C.Y.LinandS.F.Chang,“Arobustimageauthenti-cationsystemdistingushingJPEGcompressionfromma-liciousmanipulation,”IEEETrans.CircuitsandSystemsforVideoTechnology,pp.153–168,Feb.2001.
[7]S.BhatacherjeeandM.Kutter,“Compressiontolerantim-ageauthentication,”Proc.IEEEConf.ImageProc.,1998.[8]J.Dittman,A.Steinmetz,andR.Steinmetz,“Content
baseddigitalsignatureformotionpictureauthenticationandcontent-fragilewatermarking,”Proc.IEEEInt.Conf.MultimediaComp.andSys.,pp.209–213,1999.
[9]J.FridrichandM.Goljan,“Robusthashfunctionsfordig-italwatermarking,”http://www.77cn.com.cn.Tech.:CodingandComp.,Mar.2000.
[10]C.-S.LuandH.-Y.M.Liao,“Structuraldigitalsignature
forimageauthentication,”IEEETrans.Multimedia,pp.161–173,June2003.
[11]R.Venkatesan,S.M.Koon,M.H.Jakubowski,and
P.Moulin,“Robustimagehashing,”Proc.IEEEConf.ImageProc.,Sept.2000.
[12]K.MihcakandR.Venkatesan,“Newiterativegeometric
techniquesforrobustimagehashing,”Proc.ACMWork.SecurityandPrivacyinDig.RightsMan.,Nov.2001.
[13]D.H.HubelandT.N.Wiesel,“Receptive eldsandfunc-tionalarchitectureintwononstriatevisualareasofthecat,”J.Neurophysiology,pp.229–289,1965.
[14]A.Dobbins,S.W.Zucker,andM.S.Cynader,“End-stoppingandcurvature,”VisionResearch,1989.[15]S.BhatacherjeeandP.Vandergheynst,“End-stopped
waveletsfordetectinglow-levelfeatures,”Proc.SPIEWaveletAppl.inSig.&ImageProc.,pp.732–741,1999.[16]J.-P.AntoineandR.Murenzi,“Two-dimensionaldirec-tionalwaveletsandthescale-anglerepresentation,”Sig.Proc.,pp.259–281,1996.
[17]J.B.MacQueen,“Somemethodsforclassi cationandanal-ysisofmultivariateobservations,”Proc.Sym.Math,Statis-ticsandProbability,pp.281–297,1967.
[18]A.GershoandR.M.Gray,VectorQuantizationandSig.
Compression,KluwerAcademic,1991.
[19]“Fairevaluationproceduresforwatermarkingsystems,”
http://www.77cn.com.cn/fabien/watermarking/stirmark,2000.
正在阅读:
Robust perceptual image hashing using feature points09-01
转口与过境贸易的区别06-11
web毕业论文04-28
晚托班管理规章制度09-16
膨胀节常用标准01-26
有趣的数学悖论10-13
四年级英语上册教案03-31
专家详解植发手术多长时间08-11
- 1Robust sampled-data control of linear singularly pertu
- 2选修6 unit3 language points
- 3Multi-view ensemble learning an optimal feature set
- 4C 读写SQL数据库Image字段
- 5Acronis True Image 使用说明
- 6advantage and disadvantage to using science techonology for
- 7image J软件分析western blot灰度值
- 8B4U3 language points
- 9Using Prosody in Automatic Segmentation of Speech
- 10Management of a WWW Server using SNMP
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- perceptual
- hashing
- feature
- Robust
- points
- image
- using
- 做好现场签证是控制工程造价重要环节
- 民族音乐小论文:二泉映月欣赏
- 内燃机车JZ-7型制动机各阀检修作业指导书
- ContigExpress拼接程序使用说明
- 汽车美容装饰行业员工提成方案
- 氧化钾化学品安全技术说明书
- 会计制度设计第四章知识点任务完成情况
- 校园车辆管理规定
- 高中化学必修一第二章第二节离子反应
- 单片机仿真软件概述
- 意识形态工作承诺书
- 第二章 文化心理学的研究方法
- 六年级总复习数学简便计算教案
- 人教版五年级上册语文选择题
- 网上选课系统的设计与实现
- 铣床参数公式计算
- 2019年河南科技大学艺术与设计学院969艺术设计概论考研冲刺五套模拟题
- 刑事诉讼法修正案修改部分新旧对照
- 螺纹和螺纹紧固件详细介绍
- 新目标九年级全一册重点短语英译汉默写表