Galaxy Size Problem at z=3 Simulated Galaxies Are Too Small

更新时间:2023-05-25 14:27:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

Using state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations with a spatial resolution of 0.15 h-1kpc on a cosmological volume (20 h-1Mpc), we investigate the sizes of galaxies at z=3 in the standard cold dark matter model where re

8

2

y

a

M

2

]h

p

-

o

r

t

s

a

[

2

v

5

1

3

.

5

8

:0v

i

X

r

aGalaxySizeProblematz=3:SimulatedGalaxiesAreTooSmallM.RyanJoung1,RenyueCen1,&GregL.Bryan2Received

Using state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations with a spatial resolution of 0.15 h-1kpc on a cosmological volume (20 h-1Mpc), we investigate the sizes of galaxies at z=3 in the standard cold dark matter model where re

ABSTRACT

Usingstate-of-the-artadaptivemeshre nementcosmologicalhydrodynamic

simulationswithaspatialresolutionof~0.15h 1kpconacosmologicalvolume(20h 1Mpc)3,weinvestigatethesizesofgalaxiesatz=3inthestandardcolddarkmattermodelwherereionizationisassumedtocompleteatzri~6.OursimulatedLymanbreakgalaxies(LBGs)aresmallerthantheobservedonesbyafactorof2.Speci cally,takingintoaccountbothdustextinctionandinstrumen-talresolution,we ndthatthedistributionofhalf-lightradiiofthesimulatedLBGsintheobservedg′-bandpeaksat~1kpc,whereasthedistributionoftheLBGsobservedwiththeAdvancedCameraforSurveysonHSTpeaksat~2kpc.Withoutdustextinctionandwithin niteinstrumentalresolution,boththein-trinsichalf-lightandhalf-stellar-massradiipeakat~0.3kpc.Corroborativeevidenceisprovidedbytherotationcurvesofthesimulatedgalaxieswithtotalmassesof1011-1012M⊙,whichdisplayvalues(300-1000kms 1)atsmallradii(~0.5kpc),largerthanthoseofanyobservedgalaxies.Thesehighrotationve-locitiesarisebecausestellarmassesareconcentratedinsmall(<1kpc)centralregionsofthesimulatedLBGs.Anypotentialsolutiontothisseriousproblemwouldhavetoreducetheamountofstarsthatformearlyandeventuallygetcollectedinthecentraldenseregionsofgalaxiesviadynamicalfriction.Possiblephysicalmechanismsinclude:(1)anearlyreionizationatzri 6tosuppressgascondensationhencestarformation,(2)astrong,internalenergeticfeedbackfromstarsorcentralblackholestoreducetheoverallstarformatione ciency,or(3)asubstantialsmall-scalecuto inthematterpowerspectrum.

Subjectheadings:hydrodynamics—galaxies:formation—galaxies:kinematicsand

dynamics—cosmology:theory—methods:numerical—ultraviolet:galaxies

Using state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations with a spatial resolution of 0.15 h-1kpc on a cosmological volume (20 h-1Mpc), we investigate the sizes of galaxies at z=3 in the standard cold dark matter model where re

1.INTRODUCTION

Thestandardcosmologicalmodelhasbeenremarkablysuccessfulinaccountingforobservationsonscaleslargerthangalaxysizes(Krauss&Turner1995;Ostriker&Steinhardt1995;Bahcalletal.1999;Tegmarketal.2004;Spergeletal.2007).Weintendtotestthissamemodelwithregardtogalaxyformationandevolution,aregimewhereastrophysicalprocessesareimportantandhenceadetailedtestingofthecosmologicalmodelbecomesmoreintricate.Inthispaper,the rstofaseries,wefocusonthesizesofgalaxiesatredshiftz=3,primarilyLymanbreakgalaxies(LBGs;Steideletal.2003).Previousworksonthissubjectincludethosebasedonsemi-analyticmethods(e.g.,Mao&Mo1999).Here,wetakeabrute-forceapproachusinghigh-resolutionadaptivemeshre nement(AMR)cosmologicalsimulationstominimizethenumberofadjustableastrophysicalparametersandtherebymaximizethepredictabilityofthestandardmodel.

Aphysicalresolutionofoursimulationsof0.15h 1kpcatz=3permits,incosmologicalsimulationsofboxsize20h 1Mpccomoving,anaccuratecharacterizationofthesizesofgalaxiesatz=3.Weshowthattheintrinsichalf-lightradiiofsimulatedgalaxiesintheobservedg′-bandpeakat~0.3kpcatz=3.Takingintoaccountaself-consistenttreatmentofdustextinctionthatattenuatestheobserved uxbyafactorof~15,assuggestedbyobservations(Meureretal.1997;Pettinietal.1998;Sawicki&Yee1998),movesthepeakto~1.0kpc.Includingfurtherthepointspreadfunction(PSF)oftheobservationalinstrument,inparticular,FWHM≈0.05′′fortheAdvancedCameraforSurveys(ACS)onHST,slightlynarrowstheoveralldistributionbutleavesthepeaklocationlittlechangedat~1kpc,smallerthantheobservedsizes(Fergusonetal.2004)byafactorof~2.

Consistentwiththisintriguingresult,therotationcurvesofthesimulatedgalaxieswithtotalmassesof1011-1012M⊙haveunusuallyhighvalues(300-1000kms 1)atsmallradii(~0.5kpc).Suchhighrotationvelocitiesarisebecausestellarmassesarehighly

Using state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations with a spatial resolution of 0.15 h-1kpc on a cosmological volume (20 h-1Mpc), we investigate the sizes of galaxies at z=3 in the standard cold dark matter model where re

concentratedinsmallcentralregionsofthesimulatedLBGs.Ontheotherhand,thesevelocitieshavenotbeenseeninanyrealgalaxieswithmeasuredrotationcurves.

Thisproblemmightberelatedtodisksizeproblematz=0(e.g,Navarro,Frenk,&White1995;Navarro&Steinmetz1997;Governatoetal.2004).Physicalprocessesathighredshiftthatmayberesponsiblefortheeventualresolutionofthisproblemmaybeless“diluted”atz=3.Therefore,onemaybeabletoobtainimportant“cleaner”cluestothenatureofthedarkmatterand/orimportantastrophysicalprocessesathighredshiftsusingz=3galaxies.Moreover,combiningobservationsatbothz=3andz=0mayprovidestillmorepowerfulconstraints.

2.SIMULATIONANDANALYSISMETHODS

Weperformcosmologicalsimulationswiththeadaptivemeshre nement(AMR)Eulerianhydrocode,Enzo(Bryan1999;Norman&Bryan1999;O’Sheaetal.2004).Firstweranalowresolutionsimulationwithaperiodicboxof20h 1MpconasideinaΛCDMuniversewithcosmologicalparametersconsistentwiththeWMAP3results:( m, Λ, b,h,σ8,ns)=(0.24,0.76,0.042,0.73,0.74,0.95).Weidenti edvirializeddarkmatterhalosinthissimulationatz=3andresimulated11ofthemostmassive20halosinasuiteof vehighresolutionsimulationsembeddedwithinthesame(20h 1Mpc)3boxusingthemultimassinitializationtechnique,whileevolvingtherestoftheboxatlowresolution.The vehighresolutionsimulationshaveavolumerangingfrom~(2.5h 1Mpc)3to~(6.4h 1Mpc)3.Withinresimulatedregions,thecellsizeoftherootgridis39h 1kpcandadditionalgridre nementsareallowedinanadaptivefashiontoreachamaximumleveloflmax=6,resultinginthemaximumspatialresolutionof0.61h 1kpc(comoving)or0.21kpc(proper)atz=3.Thedarkmatterparticlemassis4.6×106M⊙.ThesimulationsincludeametagalacticUVbackground(Haardt&Madau1996),adi use

Using state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations with a spatial resolution of 0.15 h-1kpc on a cosmological volume (20 h-1Mpc), we investigate the sizes of galaxies at z=3 in the standard cold dark matter model where re

formofphotoelectricandphotoionizationheating(Abbott1982;Joung&MacLow2006),andamodelforshieldingofUVradiationbyneutralhydrogen(Cenetal.2005).Theyalsoincludemetallicity-dependentradiativecooling(Cenetal.1995)includingmolecularhydrogen(Abeletal.1997)andmetalcoolingextendeddownto10K(Dalgarno&McCray1972).StarformationandsupernovaefeedbackaremodeledfollowingCenetal.(2005)witheSN=3×10 6.StarparticlesarecreatedincellsthatsatisfyasetofcriteriaforstarformationproposedbyCen&Ostriker(1992).Eachstarparticleistaggedwithitsinitialmass,creationtime,andmetallicity;starparticlestypicallyhavemassesof~105M⊙.Feedbackenergyandejectedmetalsaredistributedinto27localgascellscenteredatthestarparticleinquestion,weightedbythespeci cvolumeofeachcell.Themetalenrichmentinsidegalaxiesandintheintergalaticmediumisfollowedself-consistentlyinaspatiallyresolvedfashion(Cenetal.2005).

WeidentifyvirializedobjectsinourhighresolutionsimulationsusingtheHOPalgorithm(Eisenstein&Hut1998),whichistestedtoberobust.We nd49haloswithvirialmasses>5×1010M⊙aspotentialLymanbreakgalaxy(LBG)hosts(Somervilleetal.2001)andchoosethemostmassivegalaxieswithinthevirialradiiofthesehalosasLBGcandidates.

ThelightdistributioniscomputedfromthestarparticlesusingtheGISSELstellarsynthesiscode(Bruzual&Charlot2003).WefocusontheluminosityintheSDSSg′-band

[notethattheG lterinSteidel&Hamilton(1993)isnearlyidenticaltotheg′-band],correspondingtorestframeλeff≈1200 A.WeadoptanapproximatemodelfordustextinctionfollowingBinney&Merri eld(1998)butassumethatdustattenuationis

proportionaltothemetalcolumndensityratherthanthetotalhydrogendensityandcorrectfordepletionofrefractoryelements(Zn)ontodustgrainsparametrizedbyfFe,fractionofironindust(Vladilo&Peroux2005):AV=ΣZfFe/(4×1019mpFcm 2)mag,where

Using state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations with a spatial resolution of 0.15 h-1kpc on a cosmological volume (20 h-1Mpc), we investigate the sizes of galaxies at z=3 in the standard cold dark matter model where re

mpistheprotonmass,ΣZisthemasscolumndensityofmetalsinfrontofagivenstarparticle.Thefactor,F=5,ischosensothattheescapefractionintheUVbandisabout1/15(Meureretal.1997;Pettinietal.1998;Sawicki&Yee1998).Theconversionfrom

′isbasedonthedustextinctionlawproposedbyCalzettietal.(2000).Finally,AVtoAgobs

weapplyaGaussian lterwithFWHM=0.052′′totheprojectedluminositydensitymap(afterdustattenuation)tofacilitatedirectcomparisonbetweenthesimulatedimagesandtheHSTobservationsofhigh-zgalaxiesinFergusonetal.(2004).

3.RESULTS

Figure1showstheprojectedstellarmassdensityofaregionofcomovingsize(1.0h 1Mpc)2withadepthofcomoving2.4h 1Mpcatz=3,cutoutfromourlargesthighresolutionsimulationsub-volumeofsize~(6.4h 1Mpc)3.Theinsetsshowmagni edimagesofthefourmostmassivehalosinthedisplayedregionintheirprojectedluminositydensitydistributions.Foreachgalaxy,theimagesshow,fromlefttoright,intrinsic(beforedustattenuationisapplied),apparent(afterdustattenuation),andsmoothed(afterdustattenuationandPSF ltering)luminositydensities,respectively,allintheobservedg′-band.Ontheonehand,weseethatourhighresolutionpermitsformationofextremelydensestructures.Ontheotherhand,manyrichandsalientfeaturesproducedbycosmologicalprocesses,suchasmergersandtidaltails,paringtheleftmostandmiddlepicturesofeachrowoftheinsetssuggeststhatdustextinctionsigni cantlya ectstheobservedluminositydensitydistributionintheobservedg′-band.ThiscanbeunderstoodsimplyasaconsequenceoftheempiricalSchmidt-Kennicuttrelation(Kennicutt1998):gassurfacedensityincreasesmonotonicallyasstarformationratedensityincreases;andweassumedthatdustextinctionisproportionaltothemetalsurfacedensityhencegassurfacedensity.

Using state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations with a spatial resolution of 0.15 h-1kpc on a cosmological volume (20 h-1Mpc), we investigate the sizes of galaxies at z=3 in the standard cold dark matter model where re

Fig.1.—Thelargeimagedisplaystheprojectedstellarmassdensityofaregionofcomovingsize(1.0h 1Mpc)2withadepthofcomoving2.4h 1Mpcatz=3,cutoutfromoneofoursimulationvolumes.Theinsetszoominonthefourmostmassivegalaxiesinvolumeregionintermsofvirialmassandshowtheirprojectedluminositydensitydistributions.Foreachgalaxy,theimagesshow,fromlefttoright,intrinsic(beforedustattenuationisapplied),apparent(afterdustattenuation),andsmoothed(afterdustattenuationandPSF ltering)luminositydensities,respectively,allintheobservedg′-band.Thebarsindicatelengthsinproperkpc.

Using state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations with a spatial resolution of 0.15 h-1kpc on a cosmological volume (20 h-1Mpc), we investigate the sizes of galaxies at z=3 in the standard cold dark matter model where re

Fig.2.—Histogramsofhalf-lightradii(rhl)ofsimulatedgalaxiesatz=3intheobservedg′-band.Ineachpanel,redsolidhistogramrepresentsgalaxieswithhighSFR(>10M⊙yr 1)thatweidentifyasLBGs,whilegreendottedhistogramrepresentsthosewithlowSFR(<10M⊙yr 1),insixorthogonalprojectiondirections.Panels(a),(b),and(c)showhistogramsofhalf-lightradii,respectively,beforedustattenuation,afterdustattenuation,andafterdustattenuationandPSF ltering.(SeetextfordetailsonhowdustattenuationandPSF lteringwereapplied.)In(a),ahistogramofhalf-stellar-massradiiisshowninblackdashedlineforcomparison.Theintrinsicrhlin(a)rangebetween0.2and0.6kpc(proper)butpeakat~1kpcforLBGsafterdustattenuationisapplied.Thethickbluesolidhistogramin(c)istheobservedsizedistributionforthe140galaxiesinthez=3redshiftbinofFergusonetal.(2004),normalizedtothenumberofLBGsinoursimulation.

Using state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations with a spatial resolution of 0.15 h-1kpc on a cosmological volume (20 h-1Mpc), we investigate the sizes of galaxies at z=3 in the standard cold dark matter model where re

Fig.3.—Rotationvelocitycurvesforthethreegalaxieslabeled“1”,“2”and“3”inFig.1.Thesolidcurvesrepresentrotationvelocitiesduetoallthematterwithinagivengalacto-centricradius,whilethedottedcurvesshowthoseduetostellarmassonly.Thevirialmassesofthethreegalaxiesare8×1011,4×1011and1×1011M⊙,respectively.

Using state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations with a spatial resolution of 0.15 h-1kpc on a cosmological volume (20 h-1Mpc), we investigate the sizes of galaxies at z=3 in the standard cold dark matter model where re

Figure2showsthehistogramsofhalf-lightradii(rhl)ofsimulatedgalaxiesatz=3intheobservedg′-band.Ineachpanel,redsolidhistogramrepresentsgalaxieswithhighSFR(>10M⊙yr 1)thatweidentifywiththeobservedLBGs,whilegreendottedhistogramrepresentsthosewithlowSFR(<10M⊙yr 1).ThedistributionofthesimulatedLBGs(shadedinred)inpanel(c)ofFigure2di ersfromtheobservedone(bluehistogram).Inparticular,itappearsthatthesimulatedLBGsaresmallerthantheobservedLBGsbyafactorof~2.ThissuggeststhatthecurrentSFactivitiesaswellastheoverallstellarmassdistributionsinthesimulatedgalaxiesatz=3aretooconcentratednearthegalacticcenters.Thisfactcanbeshowninanalternativewayusingrotationcurves.Figure3showsrotationvelocitycurvesforthethreetopgalaxiesinFig.1.Thesecurvesseemtopeakattoohighavalue(300-1000kms 1)atsmallradii(~0.5kpc).

4.DISCUSSIONANDCONCLUSIONS

Thestandardcolddarkmattercosmologicalmodelisingoodagreementwitharichsetofobservationsonlargescales.Ourmainpurposeistosystematicallyexamineit,throughaseriesofpapers,inthecontextofgalaxyformationandevolution,aregimewhere,relativelyspeaking,ithasnotbeenseriouslycontested.Becauseastrophysicalprocessestendtoplayaprogressivelymoreimportantrolewithatsmallerscales,inparticular,ongalacticscalesandsmaller,itisvitaltoemployasfewadjustableastrophysicalparametersaspossible,tohaveatruetestofthecosmologicalmodel.

Inthispaper,the rstofaseries,wefocusonthesizesofgalaxies,primarilyLymanbreakgalaxies(LBGs;Steideletal.2003),atredshiftz=3,usingstate-of-the-artAMRcosmologicalhydrodynamicsimulationswithaspatialresolutionof~0.15h 1kpcinacosmologicalvolume.We ndthat,takingintoaccountbothdustextinctionandinstrumentalresolution,thecomputeddistributionofhalf-lightradiiofLBGsinthe

Using state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations with a spatial resolution of 0.15 h-1kpc on a cosmological volume (20 h-1Mpc), we investigate the sizes of galaxies at z=3 in the standard cold dark matter model where re

observedg′-bandpeaksat~1kpc,smallerthanthatobservedwithHSTACSthatpeaksat~2kpc.Intheabsenceofdustextinctionandwithin niteinstrumentalresolution,theintrinsichalf-lightradiiaswellasthehalf-stellar-massradiiactuallypeakat~0.3kpc.ConsistentwiththisapparentdiscrepancybetweensimulatedandobservedLBGs,therotationcurvesofthesimulatedgalaxiesoftotalmassesof5×1010-1012M⊙haveunusuallyhighvalues(300-1000kms 1)atsmallradii(~0.5kpc)forgalaxiesoftotalmassof1011-1012M⊙.Suchrotationcurvesarenotseeninlocalgalaxiesforwhichmeasurementsareavailable.

Theoriginofbothoftheseproblemsmaybethatstellarmassesaretoohighlyconcentratedinsmall(<1kpc)centralregionsofthesimulatedLBGs.Thisislikelycausedbyanover-abundanceofsmallergalaxiesthatformedathighredshifts(z>~6)andsubsequentlysanktothecentersoftheLBGsviadynamicalfriction.Thegalaxysizeproblematz=3foundinthepresentworkmayberelatedtoanapparentlargeexcessofpredictedbutunobserveddwarfhalos(Klypinetal.1999;Mooreetal.1999)andanover-concentrationofdarkmatterinsimulateddwarfgalaxiesonthescaleof~1kpc(Moore1994;Flores&Primack1994;Burkert1995;McGaugh&deBlok1998;Kravtsovetal.1998;Mooreetal.1999).

Likely,anypotentialviablesolutiontothisapparentproblemwouldhavetoreducetheamountofstarsthatformearlyandeventuallygetcollectedinthecentraldenseregionsofgalaxies.Possiblephysicalmechanismsinclude:(1)anearlyreionizationwithzri 6tosuppressgascondensationthatwillreduceearlierstarformation(e.g.,Bullock,Kravtsov,&Weinberg2000),(2)astrong,internalenergeticfeedbackfromstarsorcentralblackholestoreducetheoverallstarformatione ciency(e.g.,Sommer-Larsonetal.2003;Governatoetal.2007),or(3)asubstantialsmall-scalecuto inthematterpowerspectrum,forexample,ifthedarkmatterparticlesarewarmratherthancold(e.g.,Hogan&Dalcanton2000;

Using state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations with a spatial resolution of 0.15 h-1kpc on a cosmological volume (20 h-1Mpc), we investigate the sizes of galaxies at z=3 in the standard cold dark matter model where re

Sommer-Larsen&Dolgov2001;Bode,Ostriker&Turok2001)

Sincetheageoftheuniverseatz=3isonlyabout1/6ofthepresentage,asuccessfulresolutiontothegalaxysizeproblematz~3mayprovideimportant“cleaner”cluestothenatureofthedarkmatterand/orimportantastrophysicalprocessesathighredshifts.Moreover,combiningobservationsatbothz=3andz=0mayprovidestillmorepowerfulconstraints.

WethankDrs.Yen-TingLin,Mordecai-MarkMacLow,andAliceShapleyforhelpfuldiscussions.Wegratefullyacknowledge nancialsupportbygrantsAST-0507521andNNG05GK10G.

Using state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations with a spatial resolution of 0.15 h-1kpc on a cosmological volume (20 h-1Mpc), we investigate the sizes of galaxies at z=3 in the standard cold dark matter model where re

REFERENCES

Abbott,D.C.1982,ApJ,263,723

Abel,T.,Anninos,P.,Zhang,Y.,&Norman,M.L.1997,NewAstronomy,2,181

Bahcall,N.A.,Ostriker,J.P.,Perlmutter,S.,&Steinhardt,P.1999,Science,284,1481Binney,J.,&Merri eld,M.1998,GalacticAstronomy(Princeton:PrincetonUniv.Press)Bode,P.,Ostriker,J.P.,&Turok,N.2001,ApJ,556,93

Bruzual,G.,&Charlot,S.2003,MNRAS,344,1000

Bryan,G.L.,1999,Comp.Sci.Eng.,1,46

Bullock,J.S.,Kravtsov,A.V.,&Weinberg,D.H.2000,539,517

Burkert,A.1995,ApJ,447,L25

Calzetti,D.,Armus,L.,Bohlin,R.C.etal.2000,ApJ,533,682

Cen,R.,&Ostriker,J.P.1992,ApJ,399,L113

Cen,R.,Kang,H.,Ostriker,J.P.,&Ryu,D.1995,ApJ,451,436

Cen,R.,Nagamine,K.,&Ostriker,J.P.2005,ApJ,635,86

Dalgarno,A.,&McCray,R.A.1972,ARA&A,10,375

Eisenstein,D.J.,&Hut,P.1998,ApJ,498,137

Ferguson,H.,Dickinson,M.,Giavalisco,M.etal.2004,ApJ,600,L107

Flores,R.A.,&Primack,J.R.1995,ApJ,457,L5

Governato,F.,etal.2004,ApJ,607,688

Using state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations with a spatial resolution of 0.15 h-1kpc on a cosmological volume (20 h-1Mpc), we investigate the sizes of galaxies at z=3 in the standard cold dark matter model where re

Governato,F.,etal.2007,MNRAS,374,1479

Haardt,F.,&Madau,P.1996,ApJ,461,20

Hogan,C.J.,&Dalcanton,J.J.2000,PhRvD,62,063511

Joung,M.K.R.,&MacLow,M.-M.2006,ApJ,653,1266

Klypin,A.A.,Kravtsov,A.V.,Valenzuela,O.,&Prada,F.1999,ApJ,522,82

Krauss,L.,&Turner,M.S.1995,Gen.Rel.Grav.,27,1137

Kravtsov,A.V.,Klypin,A.A.,Bullock,J.S.,&Primack,J.R.1998,ApJ,502,48

Mao,S.,&Mo,H.J.1999,“FromStarstoGalaxiestotheUniverse”,ed.G.Borner&H.J.

Mo,(Garching:Max-Planck-InstitutfurAstrophysik),116(arXiv:astro-ph/9809360)McGaugh,S.S.,deBlok,W.J.G.1998,ApJ,499,41

Meurer,G.R.,Heckman,T.M.,Lehnert,M.D.,Leitherer,C.,&Lowenthal,J.AJ,114,54Moore,B.1994,Nature,370,629

Moore,B.,Quinn,T.,Governato,F.etal.1999,MNRAS,310,1147

Navarro,J.F.,Frenk,C.S.,&White,S.D.M.1995,MNRAS,275,56

Navarro,J.F.,&Steinmetz,M.1997,ApJ,478,13

Norman,M.L.,&Bryan,G.L.1999,ASSLVol.240:NumericalAstrophysics,19

O’Shea,B.W.,Bryan,G.L.,Bordner,J.,Norman,M.L.etal.2004,“AdaptiveMesh

Re nement-TheoryandApplications”,ed.T.Plewa,T.Linde&V.G.Weirs,SpringerLectureNotesinComp.Sci.Eng.(arXiv:astro-ph/0403044)

Ostriker,J.P.,&Steinhardt,P.1995,Nature,377,600

Using state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations with a spatial resolution of 0.15 h-1kpc on a cosmological volume (20 h-1Mpc), we investigate the sizes of galaxies at z=3 in the standard cold dark matter model where re

Pettini,M.,Kellogg,M.,Steidel,C.C.,Dickinson,M.,Adelberger,K.L.,&Giavalisco,M.

1998,ApJ,508,539

Sawicki,M.,&Yee,H.K.1998,AJ,115,1329

Sommer-Larsen,J.,&Dolgov,A.2001,ApJ,551,608

Sommer-Larsen,J.,Gotz,M.,&Portinari,L.2003,ApJ,596,47

Spergel,D.N.,etal.2007,ApJS,170,377

Steidel,C.C.,&Hamilton,D.1993,AJ,105,2017

Steidel,C.C.,etal.2003,ApJ,592,728

Tegmark,M.,etal.2004,Phys.Rev.D69,103501

Vladilo,G.,Peroux,C.,2005,A&A,444,461

本文来源:https://www.bwwdw.com/article/8n54.html

Top