2014浙江省学习数据库入门
更新时间:2023-05-22 13:07:01 阅读量: 实用文档 文档下载
- 2014浙江省考推荐度:
- 相关推荐
2014浙江省学习数据库入门
1、编写一个过程,对一个n×n矩阵,通过行变换,使其每行元素的平均值按递增顺序排列。
2、将顶点放在两个集合V1和V2。对每个顶点,检查其和邻接点是否在同一个集合中,如是,则为非二部图。为此,用整数1和2表示两个集合。再用一队列结构存放图中访问的顶点。 int BPGraph (AdjMatrix g)
//判断以邻接矩阵表示的图g是否是二部图。
{int s[]; //顶点向量,元素值表示其属于那个集合(值1和2表示两个集合) int Q[];//Q为队列,元素为图的顶点,这里设顶点信息就是顶点编号。
int f=0,r,visited[]; //f和r分别是队列的头尾指针,visited[]是访问数组 for (i=1;i<=n;i++) {visited[i]=0;s[i]=0;} //初始化,各顶点未确定属于那个集合
Q[1]=1; r=1; s[1]=1;//顶点1放入集合S1
while(f<r)
{v=Q[++f]; if (s[v]==1) jh=2; else jh=1;//准备v的邻接点的集合号
if (!visited[v])
{visited[v]=1; //确保对每一个顶点,都要检查与其邻接点不应在一个集合中 for (j=1,j<=n;j++)
if (g[v][j]==1){if (!s[j]) {s[j]=jh; Q[++r]=j;} //邻接点入队列
else if (s[j]==s[v]) return(0);} //非二部图
}//if (!visited[v])
}//while
return(1); }//是二部图
[算法讨论] 题目给的是连通无向图,若非连通,则算法要修改。
3、给出折半查找的递归算法,并给出算法时间复杂度性分析。
4、设t是给定的一棵二叉树,下面的递归程序count(t)用于求得:二叉树t中具有非空的左,右两个儿子的结点个数N2;只有非空左儿子的个数NL;只有非空右儿子的结点个数NR和叶子结点个数N0。N2、NL、NR、N0都是全局量,且在调用count(t)之前都置为0.
typedef struct node
{int data; struct node *lchild,*rchild;}node;
int N2,NL,NR,N0;
void count(node *t)
{if (t->lchild!=NULL) if (1)___ N2++; else NL++;
else if (2)___ NR++; else (3)__ ;
if(t->lchild!=NULL)(4)____; if (t->rchild!=NULL) (5)____;
}
26.树的先序非递归算法。
void example(b)
btree *b;
{ btree *stack[20], *p;
int top;
if (b!=null)
{ top=1; stack[top]=b;
while (top>0)
{ p=stack[top]; top--;
2014浙江省学习数据库入门
printf(“%d”,p->data);
if (p->rchild!=null)
{(1)___; (2)___;
}
if (p->lchild!=null)
(3)___; (4)__;
}}}}
5、#define maxsize 栈空间容量
void InOutS(int s[maxsize])
//s是元素为整数的栈,本算法进行入栈和退栈操作。
{int top=0; //top为栈顶指针,定义top=0时为栈空。
for(i=1; i<=n; i++) //n个整数序列作处理。
{scanf(“%d”,&x); //从键盘读入整数序列。
if(x!=-1) // 读入的整数不等于-1时入栈。
if(top==maxsize-1){printf(“栈满\n”);exit(0);}
else s[++top]=x; //x入栈。
else //读入的整数等于-1时退栈。
{if(top==0){printf(“栈空\n”);exit(0);}
else printf(“出栈元素是%d\n”,s[top--]);}
}
}//算法结
6、已知有向图G=(V,E),其中V={V1,V2,V3,V4,V5,V6,V7},E={<V1,V2>,<V1,V3>,<V1,V4>,<V2,V5>,<V3,V5>,<V3,V6>,<V4,V6>,<V5,V7>,<V6,V7>} 写出G的拓扑排序的结果。
G拓扑排序的结果是:V1、V2、V4、V3、V5、V6、V7
7、已知有向图G=(V,E),其中V={V1,V2,V3,V4,V5,V6,V7},E={<V1,V2>,<V1,V3>,<V1,V4>,<V2,V5>,<V3,V5>,<V3,V6>,<V4,V6>,<V5,V7>,<V6,V7>} 写出G的拓扑排序的结果。
G拓扑排序的结果是:V1、V2、V4、V3、V5、V6、V7
8、二叉树的层次遍历序列的第一个结点是二叉树的根。实际上,层次遍历序列中的每个结点都是“局部根”。确定根后,到二叉树的中序序列中,查到该结点,该结点将二叉树分为“左根右”三部分。若左、右子树均有,则层次序列根结点的后面应是左右子树的根;若中序序列中只有左子树或只有右子树,则在层次序列的根结点后也只有左子树的根或右子树的根。这样,定义一个全局变量指针R,指向层次序列待处理元素。算法中先处理根结点,将根结点和左右子女的信息入队列。然后,在队列不空的条件下,循环处理二叉树的结点。队列中元素的数据结构定义如下:
typedef struct
2014浙江省学习数据库入门
{ int lvl; //层次序列指针,总是指向当前“根结点”在层次序列中的位置 int l,h; //中序序列的下上界
int f; //层次序列中当前“根结点”的双亲结点的指针
int lr; // 1—双亲的左子树 2—双亲的右子树
}qnode;
BiTree Creat(datatype in[],level[],int n)
//由二叉树的层次序列level[n]和中序序列in[n]生成二叉树。 n是二叉树的结点数 {if (n<1) {printf(“参数错误\n”); exit(0);}
qnode s,Q[]; //Q是元素为qnode类型的队列,容量足够大
init(Q); int R=0; //R是层次序列指针,指向当前待处理的结点
BiTree p=(BiTree)malloc(sizeof(BiNode)); //生成根结点
p->data=level[0]; p->lchild=null; p->rchild=null; //填写该结点数据
for (i=0; i<n; i++) //在中序序列中查找根结点,然后,左右子女信息入队列 if (in[i]==level[0]) break;
if (i==0) //根结点无左子树,遍历序列的1—n-1是右子树
{p->lchild=null;
s.lvl=++R; s.l=i+1; s.h=n-1; s.f=p; s.lr=2; enqueue(Q,s);
}
else if (i==n-1) //根结点无右子树,遍历序列的1—n-1是左子树
{p->rchild=null;
s.lvl=++R; s.l=1; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);
}
else //根结点有左子树和右子树
{s.lvl=++R; s.l=0; s.h=i-1; s.f=p; s.lr=1;enqueue(Q,s);//左子树有关信息入队列 s.lvl=++R; s.l=i+1;s.h=n-1;s.f=p; s.lr=2;enqueue(Q,s);//右子树有关信息入队列 }
while (!empty(Q)) //当队列不空,进行循环,构造二叉树的左右子树
{ s=delqueue(Q); father=s.f;
for (i=s.l; i<=s.h; i++)
if (in[i]==level[s.lvl]) break;
p=(bitreptr)malloc(sizeof(binode)); //申请结点空间
p->data=level[s.lvl]; p->lchild=null; p->rchild=null; //填写该结点数据 if (s.lr==1) father->lchild=p;
else father->rchild=p; //让双亲的子女指针指向该结点
if (i==s.l)
{p->lchild=null; //处理无左子女
s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s);
}
else if (i==s.h)
{p->rchild=null; //处理无右子女
s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);
}
else{s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);//左子树有关信息入队列
2014浙江省学习数据库入门
s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); //右子树有关信息入队列 }
}//结束while (!empty(Q))
return(p);
}//算法结束
9、将顶点放在两个集合V1和V2。对每个顶点,检查其和邻接点是否在同一个集合中,如是,则为非二部图。为此,用整数1和2表示两个集合。再用一队列结构存放图中访问的顶点。 int BPGraph (AdjMatrix g)
//判断以邻接矩阵表示的图g是否是二部图。
{int s[]; //顶点向量,元素值表示其属于那个集合(值1和2表示两个集合) int Q[];//Q为队列,元素为图的顶点,这里设顶点信息就是顶点编号。
int f=0,r,visited[]; //f和r分别是队列的头尾指针,visited[]是访问数组 for (i=1;i<=n;i++) {visited[i]=0;s[i]=0;} //初始化,各顶点未确定属于那个集合
Q[1]=1; r=1; s[1]=1;//顶点1放入集合S1
while(f<r)
{v=Q[++f]; if (s[v]==1) jh=2; else jh=1;//准备v的邻接点的集合号
if (!visited[v])
{visited[v]=1; //确保对每一个顶点,都要检查与其邻接点不应在一个集合中 for (j=1,j<=n;j++)
if (g[v][j]==1){if (!s[j]) {s[j]=jh; Q[++r]=j;} //邻接点入队列
else if (s[j]==s[v]) return(0);} //非二部图
}//if (!visited[v])
}//while
return(1); }//是二部图
[算法讨论] 题目给的是连通无向图,若非连通,则算法要修改。
10、题目中要求矩阵两行元素的平均值按递增顺序排序,由于每行元素个数相等,按平均值排列与按每行元素之和排列是一个意思。所以应先求出各行元素之和,放入一维数组中,然后选择一种排序方法,对该数组进行排序,注意在排序时若有元素移动,则与之相应的行中各元素也必须做相应变动。
void Translation(float *matrix,int n)
//本算法对n×n的矩阵matrix,通过行变换,使其各行元素的平均值按递增排列。 {int i,j,k,l;
float sum,min; //sum暂存各行元素之和
float *p, *pi, *pk;
for(i=0; i<n; i++)
{sum=0.0; pk=matrix+i*n; //pk指向矩阵各行第1个元素.
for (j=0; j<n; j++){sum+=*(pk); pk++;} //求一行元素之和.
*(p+i)=sum; //将一行元素之和存入一维数组.
}//for i
for(i=0; i<n-1; i++) //用选择法对数组p进行排序
{min=*(p+i); k=i; //初始设第i行元素之和最小.
2014浙江省学习数据库入门
for(j=i+1;j<n;j++) if(p[j]<min) {k=j; min=p[j];} //记新的最小值及行号. if(i!=k) //若最小行不是当前行,要进行交换(行元素及行元素之和) {pk=matrix+n*k; //pk指向第k行第1个元素.
pi=matrix+n*i; //pi指向第i行第1个元素.
for(j=0;j<n;j++) //交换两行中对应元素.
{sum=*(pk+j); *(pk+j)=*(pi+j); *(pi+j)=sum;}
sum=p[i]; p[i]=p[k]; p[k]=sum; //交换一维数组中元素之和.
}//if
}//for i
free(p); //释放p数组.
}// Translation
[算法分析] 算法中使用选择法排序,比较次数较多,但数据交换(移动)较少.若用其它排序方法,虽可减少比较次数,但数据移动会增多.算法时间复杂度为O(n2).
11、设从键盘输入一整数的序列:a1, a2, a3, ,an,试编写算法实现:用栈结构存储输入的整数,当ai≠-1时,将ai进栈;当ai=-1时,输出栈顶整数并出栈。算法应对异常情况(入栈满等)给出相应的信息。
设有一个背包可以放入的物品重量为S,现有n件物品,重量分别为W1,W2,...,Wn。问能否从这n件物品中选择若干件放入背包,使得放入的重量之和正好是S。设布尔函数Knap(S,n)表示背包问题的解,Wi(i=1,2,...,n)均为正整数,并已顺序存储地在数组W中。请在下列算法的下划线处填空,使其正确求解背包问题。
Knap(S,n)
若S=0
则Knap←true
否则若(S<0)或(S>0且n<1)
则Knap←false
否则若Knap(1) , _=true
则print(W[n]);Knap ←true
否则 Knap←Knap(2) _ , _
设有一个顺序栈S,元素s1, s2, s3, s4, s5, s6依次进栈,如果6个元素的出栈顺序为s2, s3, s4, s6, s5, s1,则顺序栈的容量至少应为多少?画出具体进栈、出栈过程。
假定采用带头结点的单链表保存单词,当两个单词有相同的后缀时,则可共享相同的后缀存储空间。例如:
设str1和str2是分别指向两个单词的头结点,请设计一个尽可能的高效算法,找出两个单词共同后缀的起始位置,分析算法时间复杂度。
将n(n>1)个整数存放到一维数组R中。设计一个尽可能高效(时间、空间)的算
法,将R中保存的序列循环左移p(0<p<n)个位置,即将R中的数据(x0, x1, x2, , xn-1),变换为(xp, xp+1, , xn-1 ,x0 , x1, , xp-1)。
2014浙江省学习数据库入门
12、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。
29. ①试找出满足下列条件的二叉树
1)先序序列与后序序列相同 2)中序序列与后序序列相同
3)先序序列与中序序列相同 4)中序序列与层次遍历序列相同
13、有一种简单的排序算法,叫做计数排序(count sorting)。这种排序算法对一个待排序的表(用数组表示)进行排序,并将排序结果存放到另一个新的表中。必须注意的是,表中所有待排序的关键码互不相同,计数排序算法针对表中的每个记录,扫描待排序的表一趟,统计表中有多少个记录的关键码比该记录的关键码小,假设针对某一个记录,统计出的计数值为c,那么,这个记录在新的有序表中的合适的存放位置即为c。
(1) (3分)给出适用于计数排序的数据表定义;
(2) (7分)使用Pascal或C语言编写实现计数排序的算法;
(3) (4分)对于有n个记录的表,关键码比较次数是多少?
(4) (3分)与简单选择排序相比较,这种方法是否更好?为什么?
14、在有向图G中,如果r到G中的每个结点都有路径可达,则称结点r为G的根结点。编写一个算法完成下列功能:
(1).建立有向图G的邻接表存储结构;
(2).判断有向图G是否有根,若有,则打印出所有根结点的值。
15、设一棵二叉树的结点结构为 (LLINK,INFO,RLINK),ROOT为指向该二叉树根结点的指针,p和q分别为指向该二叉树中任意两个结点的指针,试编写一算法ANCESTOR(ROOT,p,q,r),该算法找到p和q的最近共同祖先结点r。
正在阅读:
2014浙江省学习数据库入门05-22
抓娃娃的乐趣作文600字06-18
IP6tables使用方法04-24
新腹泻病患儿的护理查房05-31
内部控制习题及案例(带答案)10-10
公园的早晨作文600字06-29
DGJ08-93-2002民用建筑电线电缆防火设计规程07-19
税制改革对融资租赁企业税负影响的实证研究06-10
承德至秦皇岛高速公路承德段第21标单位、分部、分项工程划分一览表08-16
只在静下心来才能把事情做好11-03
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 浙江省
- 入门
- 数据库
- 学习
- 2014
- 外研版五年级上册英语重点句型、知识点
- 高职院校技能大赛方案V2
- 司机日常工作明细表
- 盛徽工长俱乐部旧房厨房改造、家庭厨房攻略
- 中国传统六大茶类
- 鼓楼区人社局十二五工作总结和十三五工作计划新
- 2011年一建港口与航道实务真题(网友回忆)
- 给迷茫的直销新手指路
- 本专毕业论文考核要求
- 河南省郑州市2016年高三第一次模拟考试文科数学(含答案)
- 操作系统课程设计银行家算法
- 太极拳教学中的一点心得
- 光政综71号(邵光高速公路光泽段征地补偿和拆迁安置实施方案请示)8月3日送市高指
- 沉郁顿挫的杜甫诗
- 现代文阅读、古诗文鉴赏教案
- 内存卡 U盘 修复手册
- 北京中医药大学远程教育学院《大学语文》入学
- 形势政策论文-当代大学生就业形势分析(3000字)
- 绩效执行5步骤 (NXPowerLite)
- 教育局领导班子成员征求意见表