2014浙江省学习数据库入门

更新时间:2023-05-22 13:07:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2014浙江省学习数据库入门

1、编写一个过程,对一个n×n矩阵,通过行变换,使其每行元素的平均值按递增顺序排列。

2、将顶点放在两个集合V1和V2。对每个顶点,检查其和邻接点是否在同一个集合中,如是,则为非二部图。为此,用整数1和2表示两个集合。再用一队列结构存放图中访问的顶点。 int BPGraph (AdjMatrix g)

//判断以邻接矩阵表示的图g是否是二部图。

{int s[]; //顶点向量,元素值表示其属于那个集合(值1和2表示两个集合) int Q[];//Q为队列,元素为图的顶点,这里设顶点信息就是顶点编号。

int f=0,r,visited[]; //f和r分别是队列的头尾指针,visited[]是访问数组 for (i=1;i<=n;i++) {visited[i]=0;s[i]=0;} //初始化,各顶点未确定属于那个集合

Q[1]=1; r=1; s[1]=1;//顶点1放入集合S1

while(f<r)

{v=Q[++f]; if (s[v]==1) jh=2; else jh=1;//准备v的邻接点的集合号

if (!visited[v])

{visited[v]=1; //确保对每一个顶点,都要检查与其邻接点不应在一个集合中 for (j=1,j<=n;j++)

if (g[v][j]==1){if (!s[j]) {s[j]=jh; Q[++r]=j;} //邻接点入队列

else if (s[j]==s[v]) return(0);} //非二部图

}//if (!visited[v])

}//while

return(1); }//是二部图

[算法讨论] 题目给的是连通无向图,若非连通,则算法要修改。

3、给出折半查找的递归算法,并给出算法时间复杂度性分析。

4、设t是给定的一棵二叉树,下面的递归程序count(t)用于求得:二叉树t中具有非空的左,右两个儿子的结点个数N2;只有非空左儿子的个数NL;只有非空右儿子的结点个数NR和叶子结点个数N0。N2、NL、NR、N0都是全局量,且在调用count(t)之前都置为0.

typedef struct node

{int data; struct node *lchild,*rchild;}node;

int N2,NL,NR,N0;

void count(node *t)

{if (t->lchild!=NULL) if (1)___ N2++; else NL++;

else if (2)___ NR++; else (3)__ ;

if(t->lchild!=NULL)(4)____; if (t->rchild!=NULL) (5)____;

}

26.树的先序非递归算法。

void example(b)

btree *b;

{ btree *stack[20], *p;

int top;

if (b!=null)

{ top=1; stack[top]=b;

while (top>0)

{ p=stack[top]; top--;

2014浙江省学习数据库入门

printf(“%d”,p->data);

if (p->rchild!=null)

{(1)___; (2)___;

}

if (p->lchild!=null)

(3)___; (4)__;

}}}}

5、#define maxsize 栈空间容量

void InOutS(int s[maxsize])

//s是元素为整数的栈,本算法进行入栈和退栈操作。

{int top=0; //top为栈顶指针,定义top=0时为栈空。

for(i=1; i<=n; i++) //n个整数序列作处理。

{scanf(“%d”,&x); //从键盘读入整数序列。

if(x!=-1) // 读入的整数不等于-1时入栈。

if(top==maxsize-1){printf(“栈满\n”);exit(0);}

else s[++top]=x; //x入栈。

else //读入的整数等于-1时退栈。

{if(top==0){printf(“栈空\n”);exit(0);}

else printf(“出栈元素是%d\n”,s[top--]);}

}

}//算法结

6、已知有向图G=(V,E),其中V={V1,V2,V3,V4,V5,V6,V7},E={<V1,V2>,<V1,V3>,<V1,V4>,<V2,V5>,<V3,V5>,<V3,V6>,<V4,V6>,<V5,V7>,<V6,V7>} 写出G的拓扑排序的结果。

G拓扑排序的结果是:V1、V2、V4、V3、V5、V6、V7

7、已知有向图G=(V,E),其中V={V1,V2,V3,V4,V5,V6,V7},E={<V1,V2>,<V1,V3>,<V1,V4>,<V2,V5>,<V3,V5>,<V3,V6>,<V4,V6>,<V5,V7>,<V6,V7>} 写出G的拓扑排序的结果。

G拓扑排序的结果是:V1、V2、V4、V3、V5、V6、V7

8、二叉树的层次遍历序列的第一个结点是二叉树的根。实际上,层次遍历序列中的每个结点都是“局部根”。确定根后,到二叉树的中序序列中,查到该结点,该结点将二叉树分为“左根右”三部分。若左、右子树均有,则层次序列根结点的后面应是左右子树的根;若中序序列中只有左子树或只有右子树,则在层次序列的根结点后也只有左子树的根或右子树的根。这样,定义一个全局变量指针R,指向层次序列待处理元素。算法中先处理根结点,将根结点和左右子女的信息入队列。然后,在队列不空的条件下,循环处理二叉树的结点。队列中元素的数据结构定义如下:

typedef struct

2014浙江省学习数据库入门

{ int lvl; //层次序列指针,总是指向当前“根结点”在层次序列中的位置 int l,h; //中序序列的下上界

int f; //层次序列中当前“根结点”的双亲结点的指针

int lr; // 1—双亲的左子树 2—双亲的右子树

}qnode;

BiTree Creat(datatype in[],level[],int n)

//由二叉树的层次序列level[n]和中序序列in[n]生成二叉树。 n是二叉树的结点数 {if (n<1) {printf(“参数错误\n”); exit(0);}

qnode s,Q[]; //Q是元素为qnode类型的队列,容量足够大

init(Q); int R=0; //R是层次序列指针,指向当前待处理的结点

BiTree p=(BiTree)malloc(sizeof(BiNode)); //生成根结点

p->data=level[0]; p->lchild=null; p->rchild=null; //填写该结点数据

for (i=0; i<n; i++) //在中序序列中查找根结点,然后,左右子女信息入队列 if (in[i]==level[0]) break;

if (i==0) //根结点无左子树,遍历序列的1—n-1是右子树

{p->lchild=null;

s.lvl=++R; s.l=i+1; s.h=n-1; s.f=p; s.lr=2; enqueue(Q,s);

}

else if (i==n-1) //根结点无右子树,遍历序列的1—n-1是左子树

{p->rchild=null;

s.lvl=++R; s.l=1; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);

}

else //根结点有左子树和右子树

{s.lvl=++R; s.l=0; s.h=i-1; s.f=p; s.lr=1;enqueue(Q,s);//左子树有关信息入队列 s.lvl=++R; s.l=i+1;s.h=n-1;s.f=p; s.lr=2;enqueue(Q,s);//右子树有关信息入队列 }

while (!empty(Q)) //当队列不空,进行循环,构造二叉树的左右子树

{ s=delqueue(Q); father=s.f;

for (i=s.l; i<=s.h; i++)

if (in[i]==level[s.lvl]) break;

p=(bitreptr)malloc(sizeof(binode)); //申请结点空间

p->data=level[s.lvl]; p->lchild=null; p->rchild=null; //填写该结点数据 if (s.lr==1) father->lchild=p;

else father->rchild=p; //让双亲的子女指针指向该结点

if (i==s.l)

{p->lchild=null; //处理无左子女

s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s);

}

else if (i==s.h)

{p->rchild=null; //处理无右子女

s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);

}

else{s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);//左子树有关信息入队列

2014浙江省学习数据库入门

s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); //右子树有关信息入队列 }

}//结束while (!empty(Q))

return(p);

}//算法结束

9、将顶点放在两个集合V1和V2。对每个顶点,检查其和邻接点是否在同一个集合中,如是,则为非二部图。为此,用整数1和2表示两个集合。再用一队列结构存放图中访问的顶点。 int BPGraph (AdjMatrix g)

//判断以邻接矩阵表示的图g是否是二部图。

{int s[]; //顶点向量,元素值表示其属于那个集合(值1和2表示两个集合) int Q[];//Q为队列,元素为图的顶点,这里设顶点信息就是顶点编号。

int f=0,r,visited[]; //f和r分别是队列的头尾指针,visited[]是访问数组 for (i=1;i<=n;i++) {visited[i]=0;s[i]=0;} //初始化,各顶点未确定属于那个集合

Q[1]=1; r=1; s[1]=1;//顶点1放入集合S1

while(f<r)

{v=Q[++f]; if (s[v]==1) jh=2; else jh=1;//准备v的邻接点的集合号

if (!visited[v])

{visited[v]=1; //确保对每一个顶点,都要检查与其邻接点不应在一个集合中 for (j=1,j<=n;j++)

if (g[v][j]==1){if (!s[j]) {s[j]=jh; Q[++r]=j;} //邻接点入队列

else if (s[j]==s[v]) return(0);} //非二部图

}//if (!visited[v])

}//while

return(1); }//是二部图

[算法讨论] 题目给的是连通无向图,若非连通,则算法要修改。

10、题目中要求矩阵两行元素的平均值按递增顺序排序,由于每行元素个数相等,按平均值排列与按每行元素之和排列是一个意思。所以应先求出各行元素之和,放入一维数组中,然后选择一种排序方法,对该数组进行排序,注意在排序时若有元素移动,则与之相应的行中各元素也必须做相应变动。

void Translation(float *matrix,int n)

//本算法对n×n的矩阵matrix,通过行变换,使其各行元素的平均值按递增排列。 {int i,j,k,l;

float sum,min; //sum暂存各行元素之和

float *p, *pi, *pk;

for(i=0; i<n; i++)

{sum=0.0; pk=matrix+i*n; //pk指向矩阵各行第1个元素.

for (j=0; j<n; j++){sum+=*(pk); pk++;} //求一行元素之和.

*(p+i)=sum; //将一行元素之和存入一维数组.

}//for i

for(i=0; i<n-1; i++) //用选择法对数组p进行排序

{min=*(p+i); k=i; //初始设第i行元素之和最小.

2014浙江省学习数据库入门

for(j=i+1;j<n;j++) if(p[j]<min) {k=j; min=p[j];} //记新的最小值及行号. if(i!=k) //若最小行不是当前行,要进行交换(行元素及行元素之和) {pk=matrix+n*k; //pk指向第k行第1个元素.

pi=matrix+n*i; //pi指向第i行第1个元素.

for(j=0;j<n;j++) //交换两行中对应元素.

{sum=*(pk+j); *(pk+j)=*(pi+j); *(pi+j)=sum;}

sum=p[i]; p[i]=p[k]; p[k]=sum; //交换一维数组中元素之和.

}//if

}//for i

free(p); //释放p数组.

}// Translation

[算法分析] 算法中使用选择法排序,比较次数较多,但数据交换(移动)较少.若用其它排序方法,虽可减少比较次数,但数据移动会增多.算法时间复杂度为O(n2).

11、设从键盘输入一整数的序列:a1, a2, a3, ,an,试编写算法实现:用栈结构存储输入的整数,当ai≠-1时,将ai进栈;当ai=-1时,输出栈顶整数并出栈。算法应对异常情况(入栈满等)给出相应的信息。

设有一个背包可以放入的物品重量为S,现有n件物品,重量分别为W1,W2,...,Wn。问能否从这n件物品中选择若干件放入背包,使得放入的重量之和正好是S。设布尔函数Knap(S,n)表示背包问题的解,Wi(i=1,2,...,n)均为正整数,并已顺序存储地在数组W中。请在下列算法的下划线处填空,使其正确求解背包问题。

Knap(S,n)

若S=0

则Knap←true

否则若(S<0)或(S>0且n<1)

则Knap←false

否则若Knap(1) , _=true

则print(W[n]);Knap ←true

否则 Knap←Knap(2) _ , _

设有一个顺序栈S,元素s1, s2, s3, s4, s5, s6依次进栈,如果6个元素的出栈顺序为s2, s3, s4, s6, s5, s1,则顺序栈的容量至少应为多少?画出具体进栈、出栈过程。

假定采用带头结点的单链表保存单词,当两个单词有相同的后缀时,则可共享相同的后缀存储空间。例如:

设str1和str2是分别指向两个单词的头结点,请设计一个尽可能的高效算法,找出两个单词共同后缀的起始位置,分析算法时间复杂度。

将n(n>1)个整数存放到一维数组R中。设计一个尽可能高效(时间、空间)的算

法,将R中保存的序列循环左移p(0<p<n)个位置,即将R中的数据(x0, x1, x2, , xn-1),变换为(xp, xp+1, , xn-1 ,x0 , x1, , xp-1)。

2014浙江省学习数据库入门

12、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。

29. ①试找出满足下列条件的二叉树

1)先序序列与后序序列相同 2)中序序列与后序序列相同

3)先序序列与中序序列相同 4)中序序列与层次遍历序列相同

13、有一种简单的排序算法,叫做计数排序(count sorting)。这种排序算法对一个待排序的表(用数组表示)进行排序,并将排序结果存放到另一个新的表中。必须注意的是,表中所有待排序的关键码互不相同,计数排序算法针对表中的每个记录,扫描待排序的表一趟,统计表中有多少个记录的关键码比该记录的关键码小,假设针对某一个记录,统计出的计数值为c,那么,这个记录在新的有序表中的合适的存放位置即为c。

(1) (3分)给出适用于计数排序的数据表定义;

(2) (7分)使用Pascal或C语言编写实现计数排序的算法;

(3) (4分)对于有n个记录的表,关键码比较次数是多少?

(4) (3分)与简单选择排序相比较,这种方法是否更好?为什么?

14、在有向图G中,如果r到G中的每个结点都有路径可达,则称结点r为G的根结点。编写一个算法完成下列功能:

(1).建立有向图G的邻接表存储结构;

(2).判断有向图G是否有根,若有,则打印出所有根结点的值。

15、设一棵二叉树的结点结构为 (LLINK,INFO,RLINK),ROOT为指向该二叉树根结点的指针,p和q分别为指向该二叉树中任意两个结点的指针,试编写一算法ANCESTOR(ROOT,p,q,r),该算法找到p和q的最近共同祖先结点r。

本文来源:https://www.bwwdw.com/article/8mi4.html

Top