曲线曲面积分部分难题解答

更新时间:2024-06-04 19:43:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

周世国:曲线曲面积分部分难题解答

曲线、曲面积分部分难题解答

1.(P201,第1题)计算下列标量函数的曲线积分(第一型曲线积分): (ⅰ)?xyds,l为抛物线y?2x上从原点O(0,0)到点A(2,2)的弧OA;

2?l(ⅱ)?l?x2(ⅲ)?l?y22?ds,l为联结点O(0,0)、A(2,0)和B(0,1)的三角形围线;

2x?yds,l为圆周x2?y2?ax?a?0?;

2(ⅳ)?l?x2?y?z2?ds,l为螺线x?acost,y?asint,z?bt?b?0?的 一段弧

?0?t?2??;

?x2?y2?z2,(ⅴ)?lzds,l为曲线?2上从点O(0,0,0)到A(a,a,a2)的一段弧.

??y?axa?0?1??x?y2,解:(ⅰ)l:?y??0,2?,ds?2??y?y,?dx?1???dy??dy???21?ydy.

2所以

?xyds?l?2120y.y.1?ydy1212tan3322(令y?tant) ?2 ? ? ??arctan20arctan2t.sectdt?arctan2120tan2t.sectd?sect?

2?0?sec2t?1.sectd?sect?

?1?1153sect?sec2?3?5?arctant?|?02?1?12??5?5?5??13?5?3?15?1?3??

?1?12?55155?55???. ??2?315?3152(ⅱ)解:?l?x2

?y2?ds??2OA??AB?2?OB

??xOA2?yds?2???x0?0.1?0dx?2??20xdx?283;

,其中:OA:??y?0,?x?x2,0?x?2.

1??xAB2?yds?????2?2y?0102?y.1???2?dy

22? ?5?5y?8y?4dy??2?535.

1

周世国:曲线曲面积分部分难题解答

其中:AB:??y?y,?x?2?2y,2,0?y?1.

??xBO2?yds????0012?y2?.1?0dy?2?20ydy?213.,

?x?0,其中:BO:?,0?y?1.

y?y?所以

I??OA??AB??OB?535?3.

(ⅲ)

aa?x??cost,??22解法一:l:?,0?t?2?.

?y?asint?2?x??t??y??t?dt?22ds?a?a??a???sint???cost?dt?dt.

2?2??2?2?2?a2a2?1?cost??sin?44?222所以,?x?yds?l22?0?at?dt ?2 ?a24a?22?02?1?cost?dt?a24?2?02.2sin2t2dt

?2?2?0sint2dt?a2?2?0sint?t?t?2?2?2d???a??cos?|?2a. 2?2?2?0??解法二:化l为极坐标表示:l:r????acos?,????,?. ?22?则

2?x?r???cos??acos?,??,????. l:?2??acos?.sin?2?y?r???sin??? ds?22r????r????dt?22?acos??22???asin??dt?ad?.

2所以,?x?yds?l????acos2?2?2????acos?sin??ad?

???2? ?a?2??2acos?d??2a222?20cos?d??2asin?|2?2a.

220 2

周世国:曲线曲面积分部分难题解答

(ⅳ) dsl?x??t??y??t??z??t?dt?222??asint?222??acost??bdt?22a?bdt

22 ??x2?y2?z2?ds? ? ?a?b2?322???acost?2?022??asint???bt?.a?bdt

2???a022?2?btdt?22?2?2b3?2?a?b?at?t?|

03??22?3a2?4b?2?a?b.

222.(P201,第2题)设有某种物质分布在椭圆l:求它的总质量.

解:不妨假设a?b.

M?xa22?yb22其密度??x,y??y.?1上,

?lyds?4?ydsl1,其中l1;?2?x?acost,??t??0,?2?y?bsint,??. ?2 ds?所以

x??t??y??t?dt?2??asint?2??bcost?dt?asin22t?bcostdt.

22?M?4?yds?4?2bsintasinl1022t?bcostdt

22 ?4?2bsinta2??a2?b2?cos2tdt

0? ??4b?2a2??a2?b2?cos2td?cost?

0? ??4b?01a?a?budu?4b??222?22?210a?a?budu

2?22?2 ?4ba?b?22a220a?b?udu2(公式)

a222?a2?2222?a?b.arcsin ?4ba?b.?2????2a22?.arcsin ?4ba?b.?2a2?b2??ua222u?a?b2a?b??u?1? |?0??2aa?ba22222???a?b2??1?? ??? 3

周世国:曲线曲面积分部分难题解答

? ?2b.???a22.arcsin2a?ba22a?b??b?. ??3.(P202,第3题)设曲线l的长度为L,而函数f在包含l的某个区域内连续.证明:

?f?P?dsl?L.maxf?P?.

P?l证明:由第一型曲线积分的定义

n?f?P?dsl?limd?0?f?P?.?s

iii?1?f?P?dsln?limd?0?f?P?.?s

iii?1n ?limd?0?f?P?.?s

iii?1 ?limd?0?f?P?.?sii?1ni?limd?0?maxf?P?.?si?1p?lni

?L.maxf?P?.

P?l4.(P202,第4题)从原点O?0,0?到点A?1,2?沿下列不同路径分别计算第二型曲线积分

?xdy?ydx.

?OA(1).OA为直线段;

(2).OA为抛物线y?2x2上的弧;

(3).OA为从点O?0,0?经点B?1,0?到点A?1,2?的折线OBA. 解: (1) OA:?

???????y?2x,?x?x?,x:0~1.

1?OAxdy?ydx???x.2?2x?dx0?0.

?y?2x2,,x:0~1. (2)OA:?x?x?

4

周世国:曲线曲面积分部分难题解答

1212

??OAxdy?ydx???x.4x?2x2?30dx?3x|0?3.

(3)??xdy?ydx?OA???2?2.OB??0BA

其中,OB:?y?0,?,x:0~1.?x?x.

?1OBxdy?ydx??0?x.0?0?dx?0;

其中,BA:?1,??x?y?y.,y:0~2. ?2BAxdy?ydx??0?1?y.0?dy?2.

5.(P202,第5题)计算曲线积分 ?lydx?xdy.

(1).l为从点?a,0?点??a,0?的上半圆周y?a2?x2?a?0?;

(2). l为从点?a,0?点??a,0?的直线段?a?0?; (3). l为逆时针方向的圆周x2?y2?a2. 解: (1)

l:?x?acost,??y?asint,t:0~?.

?lydx?xdy???0??asint??.?asint???acost??.acost??dt ?2 ?a2?0cos2tdt?a2sin2t|?0?0.

(2)l:?y?0,??x?x,x:a~?a.

?lydx?xdy??a?a?0?x.0?dx?0.

(3)l:??x?acost,?y?asint,t:0~2?.

?2?lydx?xdy??0??asint??.?asint???acost??.acost??dt 2?2?a2?0cos2tdt?a2sin2t|2?0?0.

5

周世国:曲线曲面积分部分难题解答

6.(P202,第6题)计算沿逆时针方向的圆周?x2?y2?a2?的曲线积分 ??x?y?dx2??x?y?dy2lx?y.

?x?acost, 解:l:?,t:0~2?y?asint.?,所以,

??x?y?dx22???x?y?dy2lx?y?

dt??acost?asint???asint???acost?asint?.?acost?a20

??2??aa220dt??2?.

7.(P202,第7题)计算下列曲线积分,曲线的方向与参数增加方向: (ⅰ)??x2?2xy?dx??y2?2xy?dy,l为抛物线y?x2??1?x?1?;

l(ⅱ)?l?x2(ⅲ)?l?y2?y2?dx??x?2?ydy,l为折线y?1?x?1?0?x?2?;

2??z2?x?t,?2,2dx?2yzdy?xdz,l的参数方程为?y?t?0?t?1?.;

?z?t3,??x?x,x:?1~1. 解:(ⅰ)l:?2?y?x

??xl2?2xydx?y?2xydy

??2? ? ????x1?12?2x.x2???x4?2x.x.2xdx

2????1?15?x34x?114x?4xdx?2????. ?|05?15?324?(ⅱ)设点A?1,0?.则

??xL2?ydx?x?y2??22?dy???xOA2?ydx?x?y2??22?dy???xAB2?ydx?x?y2??22?dy

其中 OA:??y?x,?x?x,x:0~1.

6

周世国:曲线曲面积分部分难题解答

??xOA2?ydx?x?y2??22?dy????x102?x2???x2?x2??dx ??102xdx?22x33|10?23.;

其中

?y?2?x,AB:??x?x,x:1~2.

??xAB2?ydx?x?y2??22?dy????x212??2?x?2???x2??2?x?.??1?dx

2????212?2?x?dx?22?x?2?33|21?23.

所以

原式?23?23?43.

2(ⅲ)?l?y2 ? ?10?z42?dx?2yzdy6?xdz

322???t10?t??2.t42.t.2t?t.3tdt

???3t6?2t?dt1?3725?1??t?t?|?.

05?35?78.(P202,第8题)设曲线l的长度为L,而函数f?P?在包含l的某个区域内连续.证明:

证明:

设f?P???f1?P?,f2?P??.

由第二型曲线积分的定义及柯西不等式

n?f?P?..drl?L.maxf?P?.

P?l?f?P?.drl?limd?0??f?P?.?x1ii?1i?f2?Pi?.?yi?

?f?P?.drln?limd?0??f?P?.?x1ii?1ni?f2?Pi?.?yi?

?limd?0??f?P?.?x1ii?1i?f2?Pi?.?yi?

7

周世国:曲线曲面积分部分难题解答

?limnd?0?i?1nf12?Pi??f22?Pi?.??xi?2???yi?2???yi?2

?limnd?0?f?P?.??x?iii?12

?limd?0?maxf?P?.??x?ii?1P?l2???yi??maxf?P?.?ds?L.maxf?P?

2l9.(P209,第1题)求下列曲面块的面积:

P?lP?l(ⅰ)球面x2?y2?z2?a2包含在圆柱面x2?y2?b2?0?b?a?内的那部分面积;

(ⅱ)圆锥面z?x?y22被圆柱面x2?y2?2x截下的那一部分;

(ⅲ)圆柱面x2?y2?a2被圆柱面y2?z2?a2截下的那一部分.

解:(ⅰ)画出示意图Dxy:x2?y2?b2. 将曲面方程化为?:z?a2?x2?y2,则

?z?x??xa?x?y2222,?z???y2ya?x?y22,所以,

2 dS?因此

??z???z?1????????x???y?dxd?yaa?x?y222d. xdy S?2S上?2??Dxy极aa?x?yardra?r22222 dxdy?? ?2?0d??02?b?122?2?a??.2a?r?2|?

0b ?4?aa?a2?b2.

(ⅱ)画出示意图Dxy:x2?y2?2x. 由曲面方程?:z?

?z?x?xx?y22??x?y22,得

,

2?z?y?yx?y222,,所以,

dS?因此

??z???z???1???dxdy??????x???y?2dxd,y.

8

周世国:曲线曲面积分部分难题解答

S???Dxy2dxdy?2S?Dxy??2?.

(ⅲ)利用对称性(仅在第一卦限内计算)

S?8S1,曲面?1(?1为?在第一卦限的那部分,其面积设为S1)向yoz面

上的投影区域为Dyz:y2?z2?a2. 将曲面?1方程化为x?a?y22,则

?x?y?y?,

?x,所以,

a2?y2 ?z?0,22 dS?1????x?a?????x??y????dydz????z?a2?y2dydz.

因此

S?8Sa1?8??22dydz Dyza?y22 ?8?adya?ya0?08a2?y2dz??aadz?820a.

10.(P209,第2题)求下列曲面积分:

(ⅰ)??dSS?1?x?y?2,式中S为四面体?x?0,y?0,z?0,x?y?z?1?的表面;(ⅱ)???x2?y2?dS,式中S为圆柱体?x2?y2?a2,0?z?h?的表面;

S(ⅲ)???x?y?z?dS,式中S为球面?x2?y2?z2?a2?的表面.

S解:(ⅰ)S?S1?S2?S3?S4. 其中

S1:z?0, dS1?dxdy,

??dS11?1?x?y?2???2dxdy??10dx?1?x0S1Dxy?1?x?y??1?x?y?2dy

??1??1?1?x10?1?x??|0dx???11??y?0?x?2?dx?1??

??1?11?0???dx?ln?1?x?|1?1?ln2?1;

?1?x2?022 9

周世国:曲线曲面积分部分难题解答

S2:x?0, dS2?dydz,

??dS1?y12???S2?1?x?y?Dyz?1?0?y?2dydz??10dy?10?1?y?2dz

??11?y10?1?y?2dy????20???1?dy

?1?y?21?y??? ??211?y|10?ln?1?y?|0?1?ln2;

S3:y?0,

dS3?dzdx,

??dS1?2?1???12?dx0?1?x10S3x?y?Dzx?dzdx?1?x?0??1?x?2dz

??11?x10?1?x?2dx????21??0???1?x?2?1?x?dx ? ??211?x|10?ln?1?x?|0?1?ln2;

S4:z?1?x?y, dS4?3dxdy,

??dS??111?x1?1?x?y?2?32dxdy?3?0dx?

S4Dxy?1?x?y?0?1?x?y?2dz ?3?1??1?1?x30?1??1?1???1?x?y?|0dx???1?x2?dx0?

?3?1?1?3ln?x111?0?3??1?x?12?dx???1?|0?23??ln2??2?.;

?所以

??dSdSdSdSdS?1?x?y?2???2?2S?1???S1x?y??1?x?y2???S2?3?1?x?y???S4?1?x?y?2

S

???ln2?1?2???1?ln2???1?ln2??3??ln2?1?3?1ln2?3???2???2?2?.

(ⅱ)S?S1?S2?S3.

10

周世国:曲线曲面积分部分难题解答

表示函数u?u?x,y?沿边界曲线l外法线方向的方向导数.

证明:设?为曲线l的正向的切线向量,其方向余弦为cos?,x、cos?,y,则 有

n,x??,y,n,y????,x. 故

cosn,x?cos?,y,cosn,y??cos?,x.

???????????????????????nl?uds???u?u?cos?,y?cos?,x?l??x?y????u?y?????ds(由两型曲线积分之间的联系)

???xl?udy?dx(格林公式)

???D?????x???u????u??????????dxdy

??x??y??y????dxdy??? ???D??2u?2u???x2??y2????udxdyD.

21(P226第7题)在第6题的假设和记号下,证明:

??D???u?2??u?2??????????dxdy????u?udxdy??x????y??D????ul?u?nds.

证明:仿上题 ?ul?u?nds???u?u?ucos?,y?cos?,x?l??x?y???????(由两型曲线积分之间的联系) ?ds

? ??ul?u?xdy?u?u?ydx(格林公式)

???D????u????u?????u?????u??dxdy ?x?x?y?y??????2???u?u?u????x.?x?u.?x2??2???u?u?u??????y.?y?u.?y2?? ???D????dxdy???

???D???u?2??u?2??????????dxdy??x?y??????????D??2u?2uu???x2??y2???dxdy ?? 21

周世国:曲线曲面积分部分难题解答

?移项,即得 ??D??D???u?2??u?2??????????dxdy??x?y??????????u?udxdyD

???u?2??u?2??????????dxdy????u?udxdy??x????y??D????ul?u?nds.

22(P227第8题)格林第二公式 若函数u?u?x,y?和v?v?x,y?都满足第6题中的假设,证明: 证明:我们有 ?vl??D?uu?vv?udxdy??v?ndsv?l?nu

?u?nds???u?u?vcos?,y?cos?,x?l??x?y??????? ?ds (由两型曲线积分之间的联系)

? ??vl?u?xdy?v?u?ydx(格林公式)

???D????u????u?????v?????v??dxdy ?x?x?y?y??????2???v?u?u????x.?x?v.?x2??2???v?u?u??????y.?y?v.?y2?? ???D????dxdy???

???D??u?v?u?v???.?.??dxdy??x?x?y?y????u?v?u?v???.?.??dxdy??x?x?y?y????D???u?2??u?2??v????????dxdy ?x?y???????? ???D ??v?udxdy. (1)

D由轮换对称性,知 ?ul?v?nds ???D??u?v?u?v???.?.??dxdy???x?x?y?y???u?vdxdy. (2)

D于是

?u?v?nds?v?l?nu?v???uv?uds??l??n?n??

??????D

??u?v?u?v???.?.??dxdy??x?x?y?y????D?v?udxdy??

22

周世国:曲线曲面积分部分难题解答

??????D???u?v?u?v???.?.??dxdy??x?x?y?y?????D?u?vdxdy?

????v?u?u?v?dxdyD??D?uu?vvdxdy.

23(P227第9题)计算高斯(Gauss)积分 I?a,b???cosr,nrl??ds

其中l为简单(光滑)闭合曲线,r为不在l上的点?a,b?到l上动点?x,y?的向量,而n为l上动点?x,y?处的法向量.

解:设?为曲线l的正向的切线向量,其方向余弦为cos?,x、cos?,y,则 有

n,x??,y,n,y????,x. 又设n0?cosn,x,cosn,y ,r??x?a,y?b?,则

??????????0?????????x?a?.cosn,x??y?b?.cosn,yr.n0? cosr,n?cos?. ?r,n???22??0?x?a???y?b?r.n??????故

cosr,nr????x?a?.cos?n,x???y?b?.cos?n,y?.

?x?a?2??y?b?2I?a,b????x?a?ll12??y?b?122??x?a?.cos?n,x???y?b?cos?n,y??ds

2 ???x?a? ???y?b???x?a?.cos??,y???y?b?cos??,x??ds

2?x?a?dy?l?x?a?2??y?b?dx??y?b?y?b.

记 P?x,y????x?a?2??y?b?2,Q?x,y??x?a?x?a?2??y?b?2.

23

周世国:曲线曲面积分部分难题解答

?P?y??y?b?2??x?a?2??x?a?2??y?b?2?Q?x?,?Q?x?P?y??y?b?2??x?a?2?.它们在xoy平面内除点 22?x?a???y?b??a,b?外处处连续,且?0.

(一)若点?a,b?在l所包围的区域D外,原式=0;

(二)若点?a,b?在l所包围的区域D内,以点?a,b?为中心作一个充分小的圆

l?:?x?a???y?b???(??0).取逆时针方向,使之完全包含在l为边界的区域

222内.记介于l?和l之间的区域为D?. 则在D?由格林公式可得:

????x?a?lx?a?dy??y?b?dx2??y?b?2??x?a?dy?l?x?a?2???y?b?dx??y?b?2???Q?P??????x??y?dxdy?0.

?D??所以,

I??x?a?dy?l?x?a?21??y?b?dx??y?b?2???x?a?dy??y?b?dxl??2

???2??x?a?dy??y?b?dx(格林公式)

l?1?2??D????x?a???b?y??1?dxdy???2?y???x???D2dxdy?2?2.??2?2?.

24(P227第10题)利用斯托克斯公式重新计算积分(例3) I???z?y?dx??x?z?dy??x?y?dz,其中l是曲线

l?x2?y2?1, ?

?x?y?z?2.方向为从oz轴正方向往负方向看去是顺时针方向. 解一:由斯托克斯公式

dydzdzdxdxdy????xz?y?yx?z?zx?y .取??2dxdy为平面x?y?z?2上由椭圆所围成的那一

小块曲面.(取下侧),因此

24

周世国:曲线曲面积分部分难题解答

0n??1,?1,1?,n???31?,?,?.) 33??33 I???z?y?dx??x?z?dy??x?y?dz????2dxdy??2??l??13dS

??2??Dxy13.3dxdy??2.??dxdy??2?.

Dxy解二:(直接计算)

I???z?y?dx??x?z?dy??x?y?dz?l??2dxdy?其中,Dxy:x2?y2?1.

所以,I????2dxdy??2?..

Dxy25(P238第1题)下面的向量场是否为保守场?若是,并求位势u:

?1?因为

f?2xcosy?ysinx,2ycosx?xsiny;?22?

解:(1)这里P?x,y??2xcosy?y2sinx,Q?x,y??2ycosx?x2siny.

?P?y??2xsiny?2ysinx??Q?x,?x,y??R2

所以f??2xcosy?y2sinx,2ycosx?x2siny?是定义在全平面上的保守场.所以,

?2xcosy?ysinxdx?2ycosx?xsinydy2??2?是某一个函数u?x,y?的全微分.

故可取

?2xcosu?x,y????0,0???x,y?y?ysinxdx?2ycosx?xsinydy2??2???2xcos0?002x2sinxdx?2???2ycosx?x0yy2sinydy2?

?x|?x0?ycosx?xcosy22?|0?x?2??y2cosx?xcosy?x?2?

?ycosx?xcosy.

2则,所求的位势为

u?x,y??c?y2cosx?x2cosy?c.

?2?f?2xe??y,cosz?xe2?y,?ysinz.?

2?y解:这里

P?x,y,z??2xe

?y,Q?x,y,z??cosz?xe,R?x,y,z???ysinz.

25

周世国:曲线曲面积分部分难题解答

因为

?P?y??2xe?y??Q?x;

?y?Q?z??sinz??R?y;

?R?x?0??P?z. ?x,y,z??R.

3所以,

2xe?yf?2xe?,cosz?xe?y2?y,?ysinz为定义在全空间上的保守场.所以,

zdz?dx??cosz?xe2?dy?ysin2xe?y是某一个函数u?x,y,z?的全微分.

(二)现取

u?x,y,z?????x,y,z?0,0,0?dx?cosz?xe?2?y?dy?ysinzdz

取M0M如图所示,从M0?0,0,0?沿x轴到点M1?x,0,0?再沿平行于y轴的直线到点

M2?x,y,0?最后沿平行于z轴的直线到点M?x,y,z?.于是

u?x,y,z???x02xex?0dx???cos0?x0y0y2e?y?dy??z0z0?ysinzdz

?x2|??y?x2e?y?|?ycosz|?x2???y?x2e?y??x2???ycosz?y?

0 ?x2e?y?ycosz. 则,所求的位势为

u?x,y,z??c?x2e?y?ycosz?c.

26(P238第2题)证明式(14-31),并由此求下面的曲线积分:

(1).?

?1,2?ydx?xdyx2?2,1?;(2).??6,1,1??1,2,3?yzdx?zxdy?xydz.

解:(一)要证式(14-31)成立,即要证若平面区域D内保守力场

f??P?x,y?,Q?x,y??

有位势u?x,y?,则对D内的任意两点M1?x1,y1?,M2?x2,y2?,有 事实上,因为

???x2,y2?x1,y1?P?x.y?dx?Q?x,y?dy?u?x2,y2??u?x1,y1?.

f??P?x,y?,Q?x,y??为保守力场,故

?P?x.y?dx?Q?x,y?dy在D内与路径无关,而只取决于路径的起点、

l终点.

令 v?x,y?????x,y?x1,y1?P?x.y?dx?Q?x,y?dy (1)

则可证明v?x,y?也是f在D内的一个势函数.故

26

周世国:曲线曲面积分部分难题解答

u?x,y??v?x,y??C ,对任意?x,y??D成立 (2) (2)式中取?x,y???x1,y1?,并注意到v?x1,y1??0(因为沿闭合曲线的积分为零),得

C?u?x1,y1??v?x1,y1??u?x1,y1? (3) (2)式中再取?x,y???x2,y2?,并注意到v?x1,y1??0,得

u?x2,y2??v?x2,y2??C 即

v?x2,y2??u?x2,y2??C??3?u?x2,y2??u?x1,y1?.

???????????又由(1)式,注意到v?x,y?的记号,得 ??x2,y2??xP?x.y?dx?Q?x,y?dy?u?x2,y2??u?x1,y1?.

1,y1?(二)(1).??1,2?ydx?xdyP?x,y??y?2,1?x2中,x2,Q?x,y???xx2??1x.

因为 ?P?y?1x2??Q?x,?x,y??R2,x?0.

所以,ydx?xdyx2是某一个函数u?x,y?的全微分.

故可取

u?x,y????x,y?ydx?xdyx?1,0?x2??10dx??y???1?y0?x?dy???x.

所以

??1,2?ydx?xdy?2,1?x2?u?1,2??u?2,1???21????1????3. ?2?2(2).??6,1,1??1,2,3?yzdx?zxdy?xydz.中,

P?x,y,z??yz,Q?x,y,z??zx,R?x,y,z??xy.

因为

?PP?y?z??Q?x;

?Q?z?x??R?y;

?R?x?y???z. ?x,y,z??R3.

所以,yzdx?zxdy?xydz是某一个函数u?x,y,z?的全微分.

27

周世国:曲线曲面积分部分难题解答

(二)现取

u?x,y,z?????x,y,z?0,0,0?yzdx?zxdy?xydz

取M0M如图所示,从M0?0,0,0?沿x轴到点M1?x,0,0?再沿平行于y轴的直线到点

M2?x,y,0?最后沿平行于z轴的直线到点M?x,y,z?.于是

u?x,y,z???x00dx??y00.xdy??z0xydz ?xyz.

所以

??6,1,1??1,2,3?yzdx?zxdy?xydz?u?6,1,1??u?1,2,3??0.

27(P238第5题)验证下列方程我全微分方程,并求通解:

(1).?2x?3y?dx??3x?4y?dy?0;(2).?3x2?2xy?y2?dx??x2?2xy?3y2?dy?0.

解:(1).?2x?3y?dx??3x?4y?dy?0; 这里,P?x,y??2x?3y,Q?x,y??3x?4y. 因为,

?PQ?y?3???x,所以方程是全微分方程.

故:u?x,y????x,y??0,0??2x?3y?dx??3x?4y?dy

??x0?2x?0?dx??y0?3x?4y?dy

?x2|x0??3xy?2y2?|y20?x?3xy?2y2.

因此,所求方程的通解为:x2?3xy?2y2?c.

(2).?3x2?2xy?y2?dx??x2?2xy?3y2?dy?0.

这里,P?x,y??3x2?2xy?y2,Q?x,y???x2?2xy?3y2.. 因为,

?P?y??2x?2y??Q?x,所以方程是全微分方程.

故:u?x,y????x,y?2?2xy?y2?0,0??3x?dx??x2?2xy?3y2?dy

??x20?3x?0?dx?y0??x2?2xy?3y2?dy

?x3|x0???x2y?xy2?y3?|y3230?x?xy?xy2?y.

因此,所求方程的通解为:x3?x2y?xy2?y3?c..

28

周世国:曲线曲面积分部分难题解答

28(P238第6题)设函数u?u?x,y?在凸区域(即包含区域内任意两点间的连线)

2??R内连续可微分且gradu?K(常数).证明:对于?内任意两点A,B,都

u?A??u?B??K.d?A,B?. 其中d?A,B?表示点A,B之间的距离.

证明:由于?为凸区域,故线段AB整个属于?.设点B的坐标为?x0,y0,z0?,点A的坐标为?x1,y1,z1?,且令?x?x1?x0,?y?y1?y0,?z?z1?z0. 考虑一元函数

f?t??u?x0?t?x,y0?t?y,z0?t?z? ?0?t?1?. (1) 显然, f?0??u?B?,f?1??u?A?. (2) 且f?t?在?0,1?上可微,并且

f??t??u?x?x0?t?x,y0?t?y,z0?t?z?.?x ?u?y?x0?t?x,y0?t?y,z0?t?z?.?y

?u?z?x0?t?x,y0?t?y,z0?t?z?.?z (3) 于是,由微分学中值定理知

u?A??u?B??f?1??f?0??f???? ???3???u?x?x0???x,y0???y,z0???z?.?x ?u?y?x0???x,y0???y,z0???z?.?y ?u?z?x0???x,y0???y,z0???z?.?z

?gradu?x0???x,y0???y,z0???z?.BA. (4) 由(4)式可知

u?A??u?B??gradu?x0???x,y0???y,z0???z?.BA

?gradu?x0???x,y0???y,z0???z?.BA?K.d?A,B?. 29(P238第7题)求向量场f?grad?arctan?

?y??沿下列曲线lx?的环量:

29

周世国:曲线曲面积分部分难题解答

(ⅰ)l为圆周?x?2?2??y?2?2?1;

l为圆周x2?y2?4(分为左、右半圆周分别计算).

解: f?grad?arctan??y????y???y??????arctan?,?arctan?? x???x?x??y?x?? ???2?y2?x?y,?. 22?x?y?xydxx?y22 (ⅰ)

?lf.dr???l?xdyx?y22(格林公式)

???D?????x????x??y?2??? ?x?y2???y??x2?y2??dxdy??????y?x22 ???D?y2?x2?22??x?y??2?x?2?y2?2??dxdy?0. ??14 (ⅱ)?f.dr?l?xdy?ydxx?y2214l?lxdy?ydx??2.?2??2?.

230(P238第8题)求rotf,其中f??2z?3y,3x?z,y?2x?. 解:rotf??

???y?2x???3x?z???2z?3y???y?2x???3x?z???2z?3y?????,?,????2,4,6?.

?y?z?z?x?x?y????R??y??Q?P?R?Q?P?,?,?? ?z?z?x?x?y?31(P238第9题)证明: rotuf?urotf?gradu?f. 解:设f??P?x,y,z?,Q?x,y,z?,R?x,y,z??,则

uf??uP?x,y,z?,u.Q?x,y,z?,uR?x,y,z??.

?? rotf?????uR???y???uQ???uP???uR???uQ???uP??,?,?? ?z?z?x?x?y??u???R?u???P?P?R?,?u???u?z???x?x???z??, ???R?u???Q?u??{?u?R?u?Q????y???z?z??y 30

周世国:曲线曲面积分部分难题解答

?u???Q?x?Q?u???P?u????u?P???},?x???y?y?

??R?Q?P?R?Q?P??u??,?,???y?z?z?x?x?y?????u?u???u?u?????R?Q,?R?P??????y?z?x?z???????u?u?????P?Q?? ?x?y????urotf?gradu?f.

31(P246第1题)利用奥-高公式计算下列各曲面积分:

(ⅰ)??xdydz?ydzdx?zdxdy,沿球面?x?a?2??y?b?2??z?c?2?R2外侧;

S(ⅱ)??x3dydz?y3dzdx?z3dxdy,沿正方体?0?x?1,0?y?1,0?z?1?的外表

S面;

(ⅲ)??x2cos?n,x??y2cos?n,y??z2cos?n,z?dS,沿锥面SS???x?y22?z?h?的下

侧;

(ⅳ)??z3dxdy,沿上半球面z?Sa?x?y222的上侧.

解:

(ⅰ)??xdydz?ydzdx?zdxdy(奥-高公式)

S ????????x???y???z??????dv??y?z???x????3dv?3.43?R?4?R.

33(ⅱ)??x3dydz?y3dzdx?z3dxdy(奥-高公式)

S33??x3?y?z???z ??????dxdyd ?x?y?z?????2??2????????103x?y?z1122?dxdydz?9???zdxdydz

?2?9?dx?dy?zdz?9?1?1?0013?3.

(ⅲ)若取S1:z?h(上侧).则S与S1一起构成一个封闭曲面.记它们所围成的

空间闭区域为?.在?上利用奥-高公式,便得:

???xS?S12cosn,x?ycosn,y?zcosn,zdS

??2??2???31

周世国:曲线曲面积分部分难题解答

???xS?S12dydz?ydzdx?zdxdy22

(奥-高公式)

22??x2?y?z? ???????z?dxdyd

?x?y?z?????????????2?x??y?z?dxdydz?h????2?02zdxdydz(???xdxdydz??????ydxdydz ?0)

?2?2?0d??rdr0h2?2hrzdz?2?h4d??h0r12?h2?r2?dr

?2??r?h?r?dr?02?.

所以

???xS2cosn,x?ycosn,y?zcosn,zdS2????S12??22???

?h2h2?? xdydz?ydzdx?zdxdy222 ?2????hDxydxdy??h22??h.?h?22h22?.

(ⅳ)??z3dxdy,沿上半球面z?Sa?x?y222的上侧.

若取S1:z?0(下侧).则S与S1一起构成一个封闭曲面.记它们所围成的空间闭

区域为?.在?上利用奥—高公式,便得: 3z??dxdydz

S?S1 (奥-高公式) ?????0?z3?z?dxdydz????3z?a02dxdyd z?3?2?d?d??20sin?d??2??cos??2?2d?

a40?3?2??0?20cos?.sin?d???d?

??1?152?53?6?.??cos?|2?.a?a.

0355??所以

??Szdxdy ?32?5a?5??S1zdxdydz3

32

周世国:曲线曲面积分部分难题解答

? ?a????5?2?5?2?5???0dxdydz??5a. Dxy?332(P246第2题)设S为光滑封闭曲面,c为常向量.证明:

?n,c?dS??cosS?0.

n?n?P?为S上点P处的单位外法向量

证明:设n??cos?,cos?,cos??,c??c1,c2,c3?.

cosn,c???n.cn.c?c1.cos??c2cos??c3cos?c1?c2?c3222

??Scosn,cdS???1c1?c2?c3222??cdydz1S?c2dzdx?c3dxdy

(奥-高公式)?0.

33(P246第3题)证明等式

????dxdydzr?12?r,n?dS. ??cosS其中S为包围空间有界区域??R3的光滑封闭曲面,n为曲面S上动点P?x,y,z?处的单位外法向量,r为连接定点M0?a,b,c?M0?S??与动点P处的向量

M0P,r?r.

证明:设n??cos?,cos?,cos??,r??x?a,y?b,z?c?.

cosr,n???r.nr.n??x?a?.cos???y?b?cos???z?c?cos?2?x?a???y?b???z?c?22

1??2Scosr,ndS???1??2S?x?a?dydz??y?b?dzdx??z?c?dxdy2?x?a???y?b???z?c?22

P?x?a?x?a??x?a?2??y?b???z?c?22,Q?y?b?x?a?2??y?b???z?c?22,

R?z?c2??y?b???z?c?22.

33

周世国:曲线曲面积分部分难题解答

?P?x?R?z??y?b?2??z?c?22??x?a???x?a???Q?y2??y?b???z?c???y?b?222??32;?Q?y??x?a?2??z?c?22??x?a?2??y?b???z?c?2?32;

??x?a?2232.

??y?b???z?c?2 所以

?P?x??R?z?2?x?a???y?b???z?c?22?232?

?2r.

??x?a??2??y?b???z?c?22?2?x?a?2??y?b???z?c?22故由奥—高公式,得

1??2Scosr,ndS?????????P?Q?R???????dxdydz?y?z???x?????dxdydzr.

33(P247第4题)计算高斯积分 I?a,b,c????Scosr,nr2??dS.

其中S为光滑封闭曲面,n为S上动点P?x,y,z?处的外法向量,点?a,b,c??S,r为连接点?a,b,c?与动点?x,y,z?处的向量,r?r. 证明:设n??cos?,cos?,cos??,r??x?a,y?b,z?c?.

cosr,n???r.nr.n??x?a?.cos???y?b?cos???z?c?cos?2?x?a????y?b???z?c?22

??Scosr,nr2??dS??S?x?a?dydz?????y?b?dzdx??z?c?dxdy??y?b???z?c????23

?x?a?2 记

P????x?a3,

?x?a?2??y?b???z?c????22Q????y?b?x?a?2??y?b???z?c????223,

34

周世国:曲线曲面积分部分难题解答

R????z?c?x?a?2??y?b???z?c????223.

?P?x????13????3?x?a?25;

?x?a?222??y?b???z?c?????x?a?222??y?b???z?c?????Q?y????1?x?a?2??y?b???z?c????223????3?y?b?25;

?x?a?222??y?b???z?c????

?R?z????1?x?a?222??y?b???z?c????3????3?z?c?25.

?x?a?222??y?b???z?c????记S所围成的区域为?.

(1)当曲面S不包围定点?a,b,c?时,则

?P?x??Q?y??R?z?0.

故由奥—高公式,有 I?a,b,c??故由奥—高公式,得

??Scosr,nr2??dS???P?Q?R????z0. ?????x?y?z??dxdyd??????Scosr,ndS???????dxdydzr.

(2)当曲面S包围定点?a,b,c?时,则我们以点?a,b,c?为中心,以?为半径作一球??包围在曲面S内,此球面记以S?(取外侧).将奥—高公式用于????上,则有

??Scosr,nr2??dS???S?cosr,nr2??dS??????????P?Q?R???????dxdydz?0. ?x?y?z??故

35

本文来源:https://www.bwwdw.com/article/8kj6.html

Top