Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon
更新时间:2023-08-15 22:01:01 阅读量: 教学研究 文档下载
Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon
www.afm-journal.de
EffectofNitrogen-andOxygen-Containing
GroupsofMicroporousActivatedCarbononElectrochemicalPerformanceinSupercapacitors
DenisaHulicova-Jurcakova,MykolaSeredych,GaoQingLu,andTeresastandingwhethermicroporesonly,[1–5]acombinationofmicroporesandmeso-pores,[6–9]ormesoporesonly[10–13]areopti-malforthemosteffectiveutilizationofthesurfaceareainadouble-layerformation.Chmiolaandco-workers[14–16]presentedadifferentviewofporeaccessibilitytoions.
Theirresultsrevealedthattheporeswithawidthclosetothesizeofelectrosorbedions,i.e.,lessthan1nmfornon-aqueouselectro-lytes,arethemostactiveinadouble-layerformation.Thistheorywassupportedbyotherresearchgroups.[7,17]Inaddition,
Huangetal.recentlyrevealedauniversal
theoreticalmodeltoexplainthechargestoragemechanismapplicabletodifferent
porosity,carbonorigin,poresizedistribu-tionsandelectrolytes.[18,19]Thismodeltakestheporecurvatureintoaccount,incontra-dictionwiththetraditionalparallel-plate
capacitor,anditappearsthatinthemicroporeregimesolvated/desolvatedionslineupalongtheporeaxistoformanelectricwire-in-cylindercapacitor,whileinthemesoporeregimetheyapproachtheporewalltoformanelectricdouble-cylindercapacitor.Theelec-tricdouble-layercapacitormodelbecomesapplicableinthemacroporeregionwherethe
porecurvatureisnolongersigni cant.Itshouldbenotedthatthismodelwassuccessfullyappliedtocarbonswithunimodalpores
1.Introduction
anddominantelectrosorptionofionsanditmaynotbeapplicableincarbonswithpseudocapacitiveenergystoragemechanism.
Carbonelectrodematerialsforelectricdouble-layercapacitorsor
Theseincludecarbonswithnitrogen-andoxygen-containing
so-calledsupercapacitorshavebeenstudiedextensivelyinrecent
surfacegroups,whichhavebeeninvestigatedextensivelyinthelast
years.Oneofthemaininterestshasbeenfocusedonunder-decade.[20–26]Surfacegroupsintroducetheacid-basepropertiestocarbon[27–29]andgiverisetoFaradaicpseudocapacitivereac-[*]Prof.T.J.Bandosz,Dr.M.Seredychtions.[30]Pseudocapacitanceinnitrogen-enrichedcarbonshasTheCityCollegeofNewYork,DepartmentofChemistrybeenproposed,butnotcon rmed,astheoxidation/reductionof160ConventAve,NewYork,NY10031(USA)
negativelychargednitrogengroupslocatedattheperipheryofE-mail:tbandosz@ccny.cuny.edu
graphene-likelayers.[22]Inthecaseofoxygenfunctionalities,theDr.D.Hulicova-Jurcakova,Prof.G.Q.Lu
mostdocumentedcaseisthereversibleoxidation/reductionofTheUniversityofQueensland
ARCCentreofExcellenceforFunctionalNanomaterialshydroquinone/quinonegroups.[21,28,31]AustralianInstituteforBioengineeringandNanotechnologySinceoxygenfunctionalitiesarealwayspresentonthecarbonandSchoolofEngineering
surfaceasaresultofactivationprocessesorasaresiduefromtheCornerCollegeandCooperRoads,StLucia,4072QLD(Australia)
carbonsource,[32]thepseudocapacitivecontributiontothetotalcapacitanceofcarbonshouldbetakenintoaccount.Therefore,inDOI:10.1002/adfm.200801236438
ß2009WILEY-VCHVerlagGmbH&Co.KGaA,WeinheimAdv.Funct.Mater.2009,19,438–447
Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon
www.afm-journal.de
ordertodevelopahigh-performancecarbonelectrodeforsupercapacitors,itiscrucialtounderstandthecombinedeffectofvarioustypesofcarbonsurfacefunctionalitiesandtheporestructureonitscapacitiveperformance.Tothebestofourknowledge,thisimportantissuehasnotbeensystematicallyinvestigatedandnofundamentalunderstandingofpseudocapa-citancefromeitherthenitrogen-oroxygen-functionalgroupshasbeenreportedtodate.
Previouslywehaveinvestigatedaseriesofmicro/mesoporousactivatedcarbonenrichedwithnitrogen.[33]Verystrongdepen-denceofcapacitanceonthechemistryofsurfacegroupsaswellasontheporosityofcarbonswasobserved.Goodcorrelationswerefoundbetweenthenumberofbasicgroupsandthegravimetriccapacitance,andbetweenthenormalizedcapacitanceinmicro-poresandthedistributionofquaternaryandpyridinic-N-oxidenitrogenspeciesonthesurfaceofthemicropores,particularlyatheavyoperationregimes.Theconclusionwasthatthepseudo-capacitiveinteractionstakeplaceonnegativelychargedpyrrolic-Nandpyridinic-N,whilethepositivechargeonquaternary-Nandpyridinic-N-oxidehelpedinelectrontransferthroughthecarbon.Themicroporeswerethemosteffectiveinadouble-layerformationwhilemesoporesappearedtohavenopositiveeffectontheelectrochemicalperformance.
Inthispaperwestudythesynergisticeffectofnitrogen-andoxygen-containingsurfacefunctionalgroupsofsolelymicropor-ousactivatedcarbononitsperformanceina1MH2SO4supercapacitor.Detailedanalyzesofporestructureallowtheinvestigationofmosttheeffectiveporesforadouble-layerformationaswellasporesinwhichthepseudocapacitiveinteractionstakeplace.Accordingly,theresultsarediscussedintermsofnitrogentocarbonratio,nitrogenandoxygencontent,speci cchemicalarrangement,strengthofthesurfacefunctionalgroups,theirbasicityandthelocationofnitrogen-andoxygen-containinggroupsonthecarbonsurface.Theeffectofpore-sizedistributionandporestructureisanalyzedonthebasisofnitrogenandcarbondioxidesorption.
caseofureamodi cationtheintroductionofoxygengroupsincreasedtheamountofnitrogenincorporatedintothecarbonmatrix.Infact,thisisinteresting,since,basedonthecontentofoxygencalculatedfromelementalanalysisasadifferenceto100%,oxidationdidnotaffecttheoverallcompositionofthiscarbon.OnehastobeawarethatthetreatmentwithHNO3certainlydecreasedtheashcontent(2.4%fortheinitialcarboncomparedto1.1%afteroxidizationandthusthecontentofoxygencanbeconsideredasunchanged.Aftermodi cationandheattreatment,thecontentofoxygeninthepreoxidizedandureamodi edsample,S-UO,issmallerthanthatinthemelaminetreatedsample,S-MO.Thismightberelatedtotheinvolvementofoxygengroupsinthechemicalbondswithurea,[40]whichledtothermallyunstablespecies.Ontheotherhand,asigni cantamountofoxygen-containinggroupsstillseemtobestableinthemelamineandureatreatedsamplesonwhichpreoxidationwasnotperformed.Eventhoughtheoxidationdidnotvisiblyaffectthetotalcontentofoxygen,andotherstudieshaveshownthatS208isoxidationresistant,[41]itmusthavechangedthenatureoftheoxygengroupssincetheeffectofoxidationonincorporationofnitrogenintheurea-treatedsamplesisclearlyseeninthedifferencesinNcontent.
OwingtothefactthatX-rayphotoelectronspectroscopy(XPS)determinesthesurfacecompositionincontrarytobulkcompositionrevealedbyelementalanalysis,therelativecontentsofsurfacecarbon,oxygenandnitrogenobtainedfromXPSdifferedfromthosefromelementalanalyzes(Table1).Moresurfacenitrogenwasdetectedinpreoxidizedandmelamine-treatedS-MOthaninitscounterpartS-Mwithoutpreoxidation.Ontheotherhand,thedifferenceinthecontentofsurfacenitrogenofurea-treatedserieswasverysmall.MoresurfaceoxygenwasmeasuredinS-UthaninS-UO,whichisinagreementwiththeresultsofelementalanalysis.
Toseeiftheappliedtreatmentschangedthenatureofsurfacechemistryofthecarbons,protonuptakecurveswerecalculated
FULLPAPER
2.ResultsandDiscussion
S208coconut-shell-basedcarbonisconsideredstableathightemperaturesbut,despitethis,treatmentswithmelamineorurearesultedinanincorporationofasigni cantamountofnitrogen.Table1showsthattotalnitrogencontentreachedmorethan4%inmelamine-treatedsamples.Althoughthecontentofnitrogeninthemelamineseriesdidnotdependonpreoxidation,inthe
Table1.Carbon,hydrogen,oxygen,andnitrogencontents[%]inthestudiedsamplesobtainedfromelementalanalyzesandX-rayphoto-electronspectroscopy(XPS)(hydrogenisnotincluded).
SampleSS-OS-US-UOS-MS-MO
C79.081.984.991.285.188.2
H0.70.940.70.30.90.6
N0.120.802.93.74.04.1
O20.1816.3611.54.8107.1
N/C0.0020.0090.0340.0410.0470.047
CXPS94.3491.3593.2894.6093.2293.21
OXPS5.668.654.683.244.013.54
NXPS002.042.162.773.25
Figure1.Protonbindingcurvesofallinvestigatedcarbonsobtainedfrompotentiometrictitrationmeasurements.
Adv.Funct.Mater.2009,19,438–447ß2009WILEY-VCHVerlagGmbH&Co.KGaA,
Weinheim
439
Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon
www.afm-journal.de
fromthetitrationcurvesandarecollectedinFigure1.Itisclearthattheoxidationincreasedacidityofthecarbonsurface.ForpreoxidizedS-Oonly,protonreleaseisseen,incontrasttotheprotonuptakeoftheinitialsampleS.Treatmentwithnitrogen-containingcom-poundsincreasedsurfacebasicity,especiallyforS-UandS-M.ThelowerbasicityinthecaseofpreoxidizedsamplesS-UOandS-MOmustberelatedtothelesseramountofoxygenandnitrogenfunctionalgroups,asalsorevealedbyelementalanalysis(Table1).
Thequantitativedifferencesbetweensam-plesarereportedinTable2asnumbersofacidicandbasicgroupsevaluatedfromtheBoehmtitrationmethod.TheaveragepHisalsolisted.Inagreementwiththepotentio-metrictitrationdata,oxidationincreasedthenumberofacidicgroupsbyalmostfourtimesandthebasicgroupstotallydisappeared.Aftertreatmentwithnitrogen-containingspecies,thebasicgroupswerepresentinpredominantquantities,especiallyinS-UandS-M.Fortheformersample,thenumberofacidicgroupswasverysmall.BothS-UOandS-MOhavesimilarchemistriesfromthepointofviewofacid/basesurfaceproperties.
Furtherdifferentiationbetweenthetypesofallsurfacegroupsnotrelatedtoacid/basecharacterwasobtainedusingXPSanalysis.AsindicatedbyPelsetal.,[42]aftertreatmentat9508Cthequaternary/pyridiniumandthepyridinicnitrogen,withtheformerbeingthemainnitrogenfunctionality,areexpectedtobepresentincarbonmatrices.
XPSresultsforthenitrogenandoxygen
functionalitiesforS,S-O,S-UO,andS-MOarepresentedinFigure2andtheirchemicalformulaswithincarbonmatricesareschematicallyshowninFigure3.Thetreatmentappliedresultedinchangesinthenumberandthekindofsurfacespecies.Foroxygen,thebindingenergiesaround531eV,532eV,and535eVrepresentC––Oquinonetypegroups(O-I),C–OHphenolgroupsand/orC–O–Cethergroups(O-II),andchemisorbedoxygen(COOHcarboxylicgroups)and/orwater(O-III),respectively.[42,43]Thenitrogenfunctionalitiesarerepresentedbypeaksat398eV,400eV,401eV,and403eV.Theseareassignedtopyridinic(N-6),pyrrolic/pyridone(N-5),quaternary(N-Q)nitrogen,and
pyridine-
FULLPAPER
Table2.ResultsoftheBoehmtitration(numbersofsurfacegroupsinmmolgÀ1)andsurfacepHvalues.
SampleSS-OS-US-UOS-MS-MO
pH10.153.4310.209.159.989.30
Basicgroups
0.464–1.1810.8361.0370.858
Acidicgroups
0.3281.1340.0220.2840.1100.274
Allgroups0.7921.1341.2031.1201.1471.132
Figure3.Schematicmodelofnitrogen-andoxygen-containingsurfacefunctionalgroupsoncarbon.
440
ß2009WILEY-VCHVerlagGmbH&Co.KGaA,WeinheimAdv.Funct.Mater.2009,19,438–447
Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon
www.afm-journal.de
Table3.Relativesurfaceconcentrationsofnitrogenandoxygenspeciesobtainedby ttingtheN1sandO1scorelevelXPSspectra.
SampleSS-OS-US-UOS-MS-MO
N-5––27.019.922.224.5
N-6––48.253.544.746.1
N-Q––20.516.426.122.3
N-X––4.3010.107.047.09
O-I37.042.044.637.851.630.8
O-II59.554.847.954.151.657.9
O-III3.53.27.58.16.111.5
N-oxide(N-X),respectively.[42–45]Thecontributionofeachspeciesobtainedby ttingtheN1sandO1scorelevelspectraforallsamplesstudiedarelistedinTable3asrelativesurfaceconcentrations.ThecontentsofsurfacenitrogeninSandS-Owerebelowthedetectionlimits.
AsseenfromFigure2andTable3,oxidationresultedinanincreaseinthesurfaceaciditymanifestedbyanincreaseinthenumberofC––Ospecies.ThesecorrespondtoC––Oofthecarboxylicgroupsresponsibleforanincreaseinsurfaceacidity,asdemonstratedbywettitrationdata.Aftertreatmentwithureaormelamine,thenitrogen-containinggroupsappearedonthesurfaceandtheirrelativequantitiesdiffered.Itappearsthatureatreatmentfavoredtheformationofpyridinicnitrogen,whereasmelaminehadapositiveeffectontheformationofquaternarynitrogen.Thiscanberelatedtodifferentchemistriesofbothprecursorsandformationoflargepolymersasaresultofmelaminedecompositionbyheattreatment.[46]Whilepreoxida-tionincreasedtherelativeamountsofpyrrole/pyridoneandpyridinicnitrogeninthemelaminederivedsamples,inurea-treatedsamplesasigni cantincreasewasnoticedforpyridinicgroupsandpyridineN-oxideincomparisonwiththenon-preoxidizedsamples.Theamountofquaternarynitrogensigni cantlydecreasedforbothmelamine-andurea-treatedpreoxidizedsamples.
Kelemenetal.suggestedthatthereisacorrelationbetweentheoxygencontentincarbonsandquaternarynitrogen.[47]Thelattercanconsistofpyridinicnitrogenassociatedwithoxygenfromhydroxylorcarbonylgroupslocatedinclosevicinity,whichresultsinapositivechargeonthenitrogen.[42]Inourcase,thecontentofpyridinicnitrogenafteroxidation,especiallyintheurea-treatedsampleS-UO,increasedabout10%.Moreover,melaminetreatmentalsofavorsthiskindofsurfacechemistry.ItisinterestingtonotethatthecontentofN-5nitrogendecreasedbyalmost30%afterpreoxidationandureatreatment,whereasinthemelamine-treatedsampleasmallincreasewasnoticed.This
mightbelinkedtothedifferencesinthechemistriesoftheinteractionsofprecursorswithoxygen-containingsurfacefunctionalgroupsandinthemechanismsoftheirpyrolysis.[46,48]Onecanhypothesizethatless ve-member-ringsnitrogengroupsinS-UOwereduetospeci cinteractionsofsmallmoleculesofureawithoxygengroupsviahydrogenbonding,limitingtheurea–ureainteractionsowingtothespatialdistance.Theseinteractionscouldbealsoresponsibleforhighcontentsofpyridine-N-oxidesandpyridinicnitrogeninthesecarbons.Ifthismechanismindeedexists,thenitrogencontainingcentersshouldbedispersedmoreonthesurfaceofurea-modi edcarbonsthanthoseresultingfrominteractionwithmelamine.Thepatchesofnitrogenfunctionalitiesareexpectedtoexistinmelamine-treatedsamplesowingtothepossibilityofmelaminepolymerization.[46]
Thesurfacechemistry,althoughimportant,canaffecttheperformanceofamaterialinachemistrysensitive/in uencedprocessonlyifthatchemistryisaccessibleforthespeciestakingpartintheprocess.Thisaccessibilityisusuallylinkedtotheporosityofthematerialanditssurfacearea.TheporousstructureofourmaterialswasevaluatedusingbothN2andCO2adsorptionmeasurements.ThecalculatedsurfaceareasandporevolumesaresummarizedinTable4.ThedataderivedfromN2isothermsshowedthatoxidationdecreasedthesurfaceareaandvolumeofthemicroporesby10%.Thisislikelyduetothedestructionofporewallsandblockingofsomeporesbyfunctionalgroups.Fortheas-receivedsamples,adecreaseinstructuralparameterswasalsonoticedafterimpregnationandthermaltreatment;about10%forS-Uand20%forS-M.Thediscrepanciesarerelatedtotheabove-mentioneddifferencesinthemechanismsofnitrogen-precursorcarbonization.Itseemsthatthebulkypolymersformedfrommelamine[46]blockedthemicroporestoagreaterextentthanthoseformedfromurea.Thevariationsbetweentheinitialandthetreatedsamplesarelessobviousforsamplesobtainedfromtheoxidizedcarbon.ForboththemelamineS-MOandureaS-UOtreatedsamples,theporosityparametersincreasedslightlywiththemostsigni canteffectonthevolumeofverysmallporeswithsizes
.Thiscanbeexplainedonthebasisofdecompositionoflessthan5A
oxygen-containingsurfacefunctionalgroupsinlargerporesuponheattreatment.[49,50]InthecaseoftheoxidizedsampleS-O,nitrogencouldnotentertheporesblockedbyfunctionalgroups.Itisinterestingthatwithoutpreoxidationtheparametersoftheporousstructureofthemelaminemodi edsampleS-Mwerethesmallest.Thiscanbeexplainedbythenonspeci cadsorptionofthemelaminelayeronthesurfaceoftheinitialsample,whichcouldleadtolargerpolymersandthustonitrogen-containingcarbondepositsblockingthesmallpores.Ontheotherhand,ontheoxidizedsample,melaminecouldbeadsorbedspeci callyvia
FULLPAPER
Table4.StructuralparameterscalculatedfromnitrogenadsorptionisothermsandCO2adsorptionisotherms(lastthreecolumns).
SBET[m2gS1]898804808844732829
V<5A
[cm3gS1]
V<10A
[cm3gS1]
SampleSS-OS-US-UOS-MS-MO
Vmic[cm3gS1]0.4540.4100.4060.4230.3720.413
Vmeso[cm3gS1]0.0290.0130.0260.0270.0140.024
Vt
[cm3gS1]0.4830.4230.4320.4500.3860.437
DDA ][A15.715.915.815.615.615.6
VCO2[cm3gS1]0.2500.2940.2410.2760.2520.290
SCO2[m2gS1]655770631722660760
L ][A5.86.35.46.25.26.2
0.01800.00240.00460.02620.00730.03040.2770.2510.2480.2580.2390.246
Adv.Funct.Mater.2009,19,438–447ß2009WILEY-VCHVerlagGmbH&Co.KGaA,
Weinheim
441
Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon
www.afm-journal.de
hydrogenbondingandthusthepresenceofoxygengroupscouldhinderitsfavorablelayerformationonthesurface.ThiswouldexplainthehigherdispersionofnitrogenfunctionalitiesinthepreoxidizedsampleS-MO.
Thevolumesofverysmallpores(ultramicropores)calculatedfromCO2adsorption(VCO2)followedthetrendinthevolumeof
)whenmicroporescalculatedfromnitrogenadsorption(V<10A
thehighestvolumesofultramicroporeswerefoundinthepreoxidizedS-MOandS-UO.
Thepore-sizedistributionspresentedinFigure4showsimilaritiesintheporestructureofallcarbons,whichwerepredominantlymicroporous.Treatmentwithureaormelamineshiftedthedistributiontosmallerporeswithavisibledecreasein
.Thisismostlikelythevolumeofporeswithsizesofabout10A
theresultofincorporationofnitrogen-containingfunctionalgroups.Ontheotherhand,inthecaseofthesampleswithout
preoxidation,thevolumesinporesofsizesbetween10–30A
decreased,especiallyforS-M,which,ashypothesizedabove,istheresultofdepositionofcarbonaceousspeciesfromcarboniza-tionofmelaminepolymersonthesurfaceleadingtoadecreaseinthesizesofporesavailabletothenitrogenmolecules.
Thespeci cgravimetriccapacitancesin1MH2SO4perelectrodecalculatedfromthegalvanostaticdischargecurvesasafunctionofappliedcurrentloadsareshowninFigure5.Thecapacitanceretentionratiosbetween1AgÀ1and0.05AgÀ1currentloadsarealsoincluded.ThehighestcapacitancevalueswereobtainedfromS-O,whichwasanunexpectedresulttakingintoaccounttheveryacidicsurfaceandlowpHofthissample.Inourpreviouswork,wefoundthatawood-basedcarbon,preoxidizedunderthesameconditions,showedpoorcapacitivebehaviorandaverylargeelectricalresistance.[33]Itisbelievedthatthisdiscrepancyisduetodifferentlevelofaromatizationofwood-basedcarbonandcoconut-basedcarbon,withtheformerhavinglowerlevelofaromatizationthatcausedthemoreextensiveoxidizationofwood-basedcarbons.[41]XPSrevealedthepresence
FULLPAPER
Figure5.Speci cgravimetriccapacitance(inFgÀ1ofoneelectrode)asafunctionofappliedcurrentload.Capacitanceretentionswerecalculatedbydividingthecapacitancevaluesat1AgÀ1byvaluesat0.05AgÀ1.
Figure4.Poresizedistributioncalculatedfromnitrogenadsorptioniso-thermsusingthedensityfunctionaltheory(DFT)
method.
ofnitricoxidessuchasnitro-typecomplexesNOÀ2andnitrates[33]À
NO3inthewood-basedcarbon,blockingthecarbonsurfaceinachargeprocessandthusresultinginapoorcapacitiveperformance.Thesurfaceoxygencontentwasashighas15%.Ontheotherhand,coconut-basedS-Owasenriched,withonly8.65%ofsurfaceoxygen,approximately3%morecomparedtostartingS.XPSrevealednonitrotypecomplexesinS-O.Incomparisonwiththeurea-andmelamine-treatedsamplesinvestigatedhere,theporosityparametersofS-OsuchasSBETandtotalporevolumesfromnitrogenadsorptionweresimilar(Table4).However,owingtothehighsurfaceoxygencontent(Table1)andthenatureoftreatmentsapplied,pseudocapacitancewasexpectedtobethemostpronouncedinS-O.Thisissuewillbediscussedlaterinthetextindetail.
Regardingthecapacitanceretentionsat1AgÀ1,thenon-preoxidizedS-MandS-UretainedmorecapacitancethantheirpreoxidizedcounterpartsS-MOandS-UO,particularlytheS-M(89.3%retention)comparedwith87.1%forS-MO.GoodcapacitanceretentionofS-McanbeexplainedonthebasisoftheXPSanalysis.TheN1speakanalysisofS-MrevealedthehighestcontributionofquaternarynitrogenN-Qamongthetreatedsamples(26.1%)andrelativelyhigh(7.04%)amountsofpyridinic-N-oxideN-X(Table3).Thesenitrogenentitiesarepositivelycharged[42]andasweunderstoodandpreviouslyreported[33]thispositivechargehelpinanelectrontransferthroughthecarbon,improvingthecapacitiveperformanceathighcurrentloads.Theresultsobtainedhereareconsistentwiththismechanism,asthepre-oxidizedandurea/melaminetreatedcarbonscontainedsmalleramountsofN-Qthanthenon-oxidizedcarbonsand,consequently,maintainedlesscapacitanceat1AgÀ1.S-MwiththehighesttotalcontributionofN-QandN-Xprovidedthebestcapacitanceretention.
Thecombinedeffectoftheporousstructureandthesurfacefunctionalitiesonthecapacitiveperformancearediscussedinthefollowingparagraphs.Firstly,tocarryouttheanalyses,thespeci ccapacitancespersurfaceareacalculatedfromCO2adsorption(CsaCO2inFmÀ2obtainedbydividingthespeci cgravimetriccapacitance(inFgÀ1)bySCO2(inm2gÀ1))wereplottedagainstthe
)calculatedfromCO2adsorptionaverageporediameters(LinA
(Fig.6).Theseplotsallowedustoinvestigatetheeffectofultramicroporesonthedouble-layerformationat
different
442
ß2009WILEY-VCHVerlagGmbH&Co.KGaA,WeinheimAdv.Funct.Mater.2009,19,438–447
Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon
www.afm-journal.de
normalizedcapacitanceinultramicroporeswas
(S-Msample).Thisobtainedataporesizeof5.2A
isaninterestingobservationconsistentwiththe ndingsofChmiolaandcoworkers[14–16]regard-ingthemostef cientionadsorptioninporesmatchingthesizeofsolvated(hydrated)ions.Theelectrolyteusedinourstudyis1MH2SO4andhencethecorrespondingadsorbedionswere
À
bivalentsulphateionSO2andhydroniumion4
þ
H3O.Eventhoughthenegativelychargedionsareadsorbedinabarestateinmostcases,thesulphateanionundergoeshydrationandthemostlikelynumberofhydrateswasestimatedat12.16
À[51]
moleculesofwaterperoneSO2Thecorre-4.
2À
spondingsizesofSO4(H2O)12andH3Oþwere
and4.2A ,respectively.[51,52]reportedtobe5.33A
perfectlymatchestheThus,theporesizeof5.2A
sizeofnegativelychargedsulphateionsandisnottoobigto‘‘waste’’thespaceduringaccommoda-tionofhydroniumions.Lotaetal.recently
À
reportedontheunchangedmobilityofSO24ions
,[53]inconstrainedporeswithadiameterof6A
whichisinagreementwiththisresult.Basedontheseobservations,itcanbeconcludedthatthemostef cientdouble-layerformationinultrami- ).croporesisinS-M(meanporediameterof5.2A
Inaddition,aggravationofcorrelationswithincreaseincurrentloadsupportsourpreviousconclusion[33]aboutthedominantroleofadouble-layercapacitanceatlowercurrentloadsandmaincontributionofpseudocapacitanceathigherloads.Inordertounderstandthecombinedeffectofheteroatomsonthecapacitiveperformance,het-eroatomindiceswerecalculatedasdescribedinourpreviouswork.[33]Owingtothehighercontentofsurfaceoxygencomparedtonitrogen,nitrogen(I-N)aswellasoxygenindices(I-O)werecalculatedbymultiplyingthepercentcontributionofeachnitrogen(oxygen)speciesfromXPSdeconvolutionanalyseswiththetotalcontentofsurfacenitrogen
(CsaCOinFmÀ2)asa(oxygen)anddividedbydifferentialsurfaceareaFigure6.Speci ccapacitancepersurfaceareaofporeslessthan10A2
)atthecurrentloadsof0.05AgÀ1,0.1AgÀ1,0.5AgÀ1DS.DSrepresentsadifferencebetweentheSfunctionofaverageporesize(LinABET
and1AgÀ1.SurfaceareasandmeanporediameterswerecalculatedfromCO2adsorption.andtheSCOanditcorrespondstothesurfacearea
2
Thecorrelationsonthelefthandsideincludeallsampleswhereastherighthandsidedofporesbiggerthan10A ,inwhichthesurfacegraphsincludeallbutS-Osample.
functionalitiesareexpectedtobelocalized.OurargumentforintroducingtheDSisbasedonthefactthatverysimilarporevolumeswereobtained )andCO2(VCO)adsorptions.ThereforetheSCOfromN2(V<10Acurrentloads,assumingthattheelectrochemicallyactivesurface22
inwhichfunctionalitieswerenotlocatedintheseporesduetostericalrepresentedthesurfaceareaofporessmallerthan10A
factors.ThegraphsonthelefthandsideinFigure6includealltheelectrosorption(double-layerformation)ofionstookplaceassamples.WeobservedthateventhoughthedecreasingtrendofexplainedaboveandproveninFigure6.CsaCO2withanincreaseintheporediameterwasclear,theFigure7representstherelationshipbetweentheCDS[inFmÀ2]correlationswerepoor.Itisnoticeablethatonepointliesoutofandthesumofnitrogenandoxygenindices.TheCDSlinearly
increasedwiththeincreaseofNandOindicescon rmingthelinearityinallplotsandthispointcorrespondstotheS-Osample.
WhenS-Owasomitted,thecorrelationsgreatlyimprove,uptopseudocapacitanceduetobothnitrogenandoxygenfunctional-0.97,asshowninthegraphsontherighthandsideinFigure6.ities.Excellentcorrelationssupportourtheoryofthepresenceof
electrochemicallyactivefunctionalgroupsintheporesbiggerTheexplanationcanbefoundintheoxygencontentofS-Oand
.Theseresultsfurthercon rmthatinthemicroporousconsequentsigni cantpseudocapacitivecontributiontothethan10A
overallcapacitance.Thecorrelationsclearlyshowthatthehighestcarbonstheeffectsofnitrogen-andoxygen-containinggroups
FULLPAPER
443
Adv.Funct.Mater.2009,19,438–447ß2009WILEY-VCHVerlagGmbH&Co.KGaA,
Weinheim
Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon
www.afm-journal.de
Asanextstepofouranalyses,theindicesofthepositivelychargedN-QandN-XandtheireffectsonCDSwereinvestigated.ThecorrelationsshowninFigure10areingoodagreementwithourpreviouswork,[33]con- rmingtheirbene cialeffectonthecapaci-tance,particularlyathighercurrentloads.Thecorrelationcoef cientsincreasedwiththeincreasedcurrentloads,furthercorroboratingthatthepositivechargeonN-QandN-Xhelpsinelectrontransportthroughthecarbon,particularlyathighcurrentloads.Therefore,thegoodcapacitanceretentionofS-Mdis-cussedabovecanbeattributedtolargenumbersoftheseindices.Fastelectrontransferisacrucialrequirementforasuper-capacitorasitshoulddeliverthesameenergyatanyoperationalload.Realsupercapacitors (CDSinFmÀ2)asafunctionofthesumFigure7.Speci ccapacitanceinporesbiggerthan10A
constructedfromporouscarbonsoftensuffer
ofnitrogenandoxygenindicesatdifferentcurrent
loads.
fromacapacitancedropcausedbyincreaseintheohmicresistanceofcarbon.Controllable
enrichmentofcarbonswithN-QandN-Xentitiesmayprovideacannotbeseparatedowingtotherelativelysmallsurfaceinlarger
solutiontothisproblem.poreswheretheyco-exist.
Cyclicvoltammetry,recordedina3-electrodecellwiththeInordertoanalyzetheelectrochemicalactivityofindividual
samecarbonmaterialasboththeworkingandthecounternitrogen/oxygenfunctionalities,theCDSwasanalyzedasa
electrodeandAg/AgClasthereferenceelectrode,wasusedinfunctionofthecombinationofpyrrolicI-N5nitrogen,pyridinic
aninvestigationofFaradaicinteractionsontheoxygen/nitrogenI-N6nitrogenandI-OIquinoneoxygen(Fig.8).Thesefunction-groups.CorrespondingcyclicvoltammogramsofS,S-O,alitieswereselectedbasedonthewell-documentedcaseof
[28,31]
andS-MarepresentedinFigure11.Itisclearthatthepseudocapacitanceonquinoneoxygengroupsaswellas
pseudocapacitivepeaksat0.4Vre ectingtoreversiblereduc-proposedFaradaicreactionsonnitrogenlocatedattheedgesof
[33,22–24]
tion/oxidationofquinonetohydroquinonewerethemostgraphenelayers,i.e.,pyridinicandpyrrolicgroups.Itis
pronouncedinS-O.Thisresultisingoodagreementwiththeclearthatallthreefunctionalitiescontributedtothepseudo-surfacechemistryofthissample,asdiscussedabove,andcapacitivebehaviorsinceCDSlinearlyincreasedwithanincrease
supportsthedistinctpropertiesofS-OshowninFigure6.Theinthesumofindices.Ontheotherhand,whentheI-OIIindices
redoxhumpsatthesamepotentialcanbeobservedinthecycliccorrespondingtophenolorethergroupswereincluded(Fig.9),
voltammogramoftheinitialScarbon.ThisalsocoincideswithcorrelationdegreebetweentheCDSandsumofindicesdecreased.
theXPSstudy,whichrevealedasigni cantamountofsurfaceThisresultprovesthatphenolandethergroupsarenot
oxygen(5.66%).Incontrast,thecyclicvoltammogramofelectrochemicallyactiveinanacidicelectrolyte,aspreviously
[31,54,55]
melamine-modi edS-Mwasabsentofredoxpeaksinspiteofsuggestedbyseveralresearchgroups.
unquestionablepseudocapacitivecontributionfromnitrogengroups.Similarresultswereobservedinlow-surface-areacarbonswithlargespeci ccapacitanceduetohighnitrogencontent[25,57]andinpreviouslyreportedwood-basedcarbonstreatedatthesameconditionsasappliedhere.[33]Thisveri putationalchemistrymayprovideanswerstothisphenomenon.
FULLPAPER
3.Conclusions
(CDSinFmÀ2)asafunctionofthesumFigure8.Speci ccapacitanceinporesbiggerthan10A
ofI-N5,I-N6,andI-OI.
Theresultsofournovelapproachleadingtounderstandingthecombinedeffectofpseu-docapacitancefromnitrogenandoxygensur-facefunctionalgroupsonthecapacitance
of
444
ß2009WILEY-VCHVerlagGmbH&Co.KGaA,WeinheimAdv.Funct.Mater.2009,19,438–447
Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon
www.afm-journal.de
microporouscarbonsinacidicelectrolytehavebeenpresented.Coconut-shell-basedcarbonS208wastreatedbyureaormelamineinordertointroducenitrogensurfacefunctionalgroups,anditwasfoundthatthesurfacechemistryoftheresultingcarbonswasaffectedbythetypeofnitrogenprecursorandthespeci cgroupspresentonthesurfacebeforethenitrogen-incorporationtreatment.Theelectrochemicalperformancesoftheureaandmelaminemodi edcarbonsin1MH2SO4wereanalyzed,takingintoconsidera-tiontheporousstructure,surfacechemistry,andlocationofsurfacefunctionalgroups.We
beingtheobservedporesbetween5and6A
mosteffectiveinadouble-layerformation,whichcorrelateswellwiththesizeofhydrated
(CDSinFmÀ2)asafunctionofthesumions.Pyridinicnitrogen,pyrrolicnitrogenandFigure9.Speci ccapacitanceinporesbiggerthan10A
quinoneoxygen,presumablylocatedinporesofI-N5,I-N6,I-OI,and
I-OII.
biggerthan10A,werecon rmedtohavethemostpronouncedin uenceonthecapacitanceduetotheirpseudocapacitivecontributions.Quaternaryandpyridinic-N-oxidesshowedenhancingeffectsonthecapacitanceduetotheirpositivechargeandthusanimprovedelectrontransfer,particularlyathighercurrentloadswhenthedouble-layercapacitanceislesspronouncedthanthepseudocapacitance.
FULLPAPER
4.Experimental
Materials:Coconut-shell-basedactivatedcarbon,S208(Calgoncarbon)wasusedinthisstudy.Themodi cationprocedurewithnitrogen-containingureaandmelaminewasthesameasdescribedpre-viously[33].Beforethemodi cation,subsamplesofcarbonswereoxidizedwith50%HNO3for4handthenwashedwithwatertoremoveexcessacidandwater-solubleproductsofoxidation.Tointroducethe
(CDSinFmÀ2)asafunctionofthesumnitrogengroups,theinitialcarbonsoroxidizedFigure10.Speci ccapacitanceinporesbiggerthan10A
carbons(30g)weretreatedwithureaormelamine
ofI-NQand
I-NX.suspension(20gofureaormelaminein100mLof
ethanol)andstirredatroomtemperaturefor5h.The
mixturewasthenboiledtoevaporatealcoholandthecarbonsamplesweredriedat1208C.Thesamplesimpregnatedwithureaormelaminewereheatedinnitrogenat108CminÀ1to9508C,andmaintainedatthistemperaturefor0.5h.Aftermodi cations,thesampleswerewashedwithboilingwatertoremoveanyexcessureaormelaminedecompositionproducts.TheS208sampleisreferredtoasS.Themodi edcarbonshavetheletterUorMaddedtotheirnames,representingureaormelamine,respectively.ThepreoxidizedsamplesarereferredtowiththeletterO.Thus,forexample,theS-MOisS208preoxidized,treatedwithmelamineandheatedat9508Ccarbon.
BoehmTitration:0.5gofcarbonsamplewasplacedin25mLof0.05Nsolutionofsodiumhydroxideandhydrochloricacid.Thevialsweresealedandshakenfor24h,andthen5mLofeach ltratewaspipettedandtheexcessofbaseoracidwastitratedwithHClorNaOH.Thenumbersofallacidicsites(ofvarioustypes)werecalculatedundertheassumptionthatNaOHneutralizesthecarboxyl,phenolic,andlactonicgroups[34].Thenumberofsurfacebasicsiteswascalculatedfromtheamountof
Figure11.CyclicvoltammogramsofS,S-O,andS-Mrecordedinathree-hydrochloricacidthatreactedwiththecarbon.Sincenitrogen-containing
À1
electrodecellatthescanrateof5mVs.groupscanhaveapKasimilartothosecontainingoxygen,thebasesof
Adv.Funct.Mater.2009,19,438–447ß2009WILEY-VCHVerlagGmbH&Co.KGaA,
Weinheim
445
Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon
www.afm-journal.de
differentstrengthtodistinguishlactonic,carboxylicorphenolicgroupswerenotused.
pHoftheCarbonSurface:Carbonpowder(0.4g)wasplacedin20mLofdistilledwaterandequilibratedduringthenight.ThenthepHofthesuspensionwasmeasuredatambienttemperature.
PotentiometricTitration:PotentiometrictitrationmeasurementswereperformedwithaDMSTitrino716automatictitrator(Metrohm).TheinstrumentwassetatthemodewhentheequilibriumpHwascollected.Subsamplesofthematerialsstudied(0.100gin50mL0.01MNaNO3)wereplacedinacontainerkeptat258Candequilibratedovernightwiththeelectrolytesolution.Toeliminatethein uenceofatmosphericCO2,thesuspensionwascontinuouslysaturatedwithN2.Thesuspensionwasstirredthroughoutthemeasurements.VolumetricstandardNaOH(0.1M)wasusedasthetitrant.TheexperimentswerecarriedoutinthepHrangeof3–10.
Thesurfacepropertieswereevaluatedusingpotentiometrictitrationexperiments[35,36].ItwasassumedthatthepopulationofsitescanbedescribedbyacontinuouspKadistribution,f(pKa).Theexperimentaldatacanbetransformedintoaprotonbindingisotherm,Q,representingthetotalamountofprotonatedsites.ThepositivevaluesofQrepresentaprotonuptakeandthusabasicsurfaceandnegativeprotonrelease,whichrepresentsanacidicsurface.
EvaluationofPorosity:SorptionofnitrogenatitsboilingpointwascarriedoutusingASAP2010(Micromeritics).Beforetheexperiments,sampleswereoutgassedat1208Ctoaconstantvacuum(10À4kPa).Thesurfaceareas(BETmethod),totalporevolumes,Vt,(fromthelastpointofisothermatrelativepressureequalto0.99),volumesofmicropores,Vmic,
,V<5A ,volumesofporessmallerthanvolumesofporessmallerthan5A
,mesoporevolumes,Vmesalongwithporesizedistributions10A,V<10A
werecalculatedfromtheisotherms.Thelastfourquantitieswerecalculatedusingdensityfunctionaltheory(DFT)[37,38].TheaveragesizeofmicroporesfromadsorptionofnitrogenwascalculatedusingtheDubinin–Astakhovapproach(DDA)[39].
Moreover,toensurethattheprobegasenteredthesmallporeswithoutanykineticlimitation,theCO2adsorptionisothermsweremeasuredat08Candusedtocalculatethevolumeofmicropores(VDR)usingtheDubinin–Radushkevichapproach[39]andthesurfaceinmicropores(SCO2).TheDubinin–Astakhov(DA)approachwasusedtocalculatetheaveragesizeofpores,L[39].LandDDAforthespeci ccarbonswereexpectedtodifferduetothefactthatCO2isabletoadsorbonlyinultramicroporesattheexperimentalconditions,whichresultsinsmallercalculatedvaluesofLthanthatofDDA.
CHON:Thebulkcontentofcarbon,hydrogen,andnitrogenwasmeasuredinthecommercialSchwarzkopflaboratory,NewYork,NY.Theanalysiswasbasedonthermalconductivitydetectionformeasuringcarbon,hydrogen,andnitrogen,aftercombustionandreduction.Acetanilidewasusedasastandard.Oxygencontentwascalculatedasadifferencebetween100%andthesumofCþHþN,assumingthatashisnotpresent.Thisassumptionresultsintheapproximatedvaluesoftheoxygencontent.
XPS:TheXPSmeasurementswereperformedonESCALAB220i-XL(VGScienti c,UK)usingmonochromatedAlKaexcitationsource.Thesurveyandhigh-resolutionspectrawerecollectedwith100eVand20eVpassenergy,respectively.ThequantitativeanalysiswasperformedwithCASAXPSsoftwareafterShirleybackgroundsubtraction.Thebestpeak tswereobtainedusingmixed30%Gaussian-LorentzianlineshapesatthesameFWHMforall ttedpeaks.
ElectrochemicalMeasurements:Thecapacitiveperformanceofallcarbonsampleswasinvestigatedin1MH2SO4usingasandwich-typetwo-electrodetestingcell.Theworkingelectrodewaspreparedbymixingthecarbonwithpolyvinylidine uoride(PVDF)andcommercialMitsubishicarbonblack(8:1:1)inN-methyl2-pyrrolidone(NMP)toformahomogeneousslurry.Theslurrywascoatedonatitaniumfoilwithatotalsurfaceareaof1cm2ofactivematerial.Theelectrodesweredriedat1508Cfor1handthenweighted.Thetotalmasswasbetween4and8mgandtwoelectrodeswithidenticalorverycloseweightswereselectedforthemeasurements.Glassy berpaperwasusedtoseparatetheelectrodes.The
electrolytewasaddedtothecellundervacuumtoreduceaircontaminationandimprovewettabilityoftheelectrodes.
TheelectrochemicalinvestigationswerecarriedoutusingSolartron1480Multistatandthecapacitiveperformanceswereevaluatedbythemeansofgalvanostaticcharge-dischargecycleswithcurrentloadsbetween0.05AgÀ1and1AgÀ1atapotentialwindowof1V.Cyclicvoltammetryatascanrateof5mVsÀ1wasalsorecordedinathree-electrodecelllayoutusingthesamecellandAg/AgClasthereferenceelectrode.
Thespeci cgravimetriccapacitancesCg(inFgÀ1)persingleelectrodewerecalculatedfromthedischargecurves.Speci ccapacitancespersurfaceareaCsa(inFmÀ2)wereobtainedbydividingtheCgwiththeSBETsurfaceareasorthesurfaceareasmeasuredbyCO2adsorption.
FULLPAPER
Acknowledgements
D.H.-J.acknowledgestheAustralianResearchCouncilCentreofExcellenceforFunctionalNanomaterialsfor nancialsupport.
Received:August21,2008Revised:October7,2008
Publishedonline:December18,2008
´,D.Cazorla-Amoro´s,A.Linares-Solano,S.Shiraishi,H.[1]D.Lozano-Castello
Kurihara,A.Oya,Carbon2003,41,1759.[2]D.Qu,H.Shi,J.PowerSources1998,74,99.
[3]T.A.Centeno,F.Stoeckli,J.PowerSources2006,154,314.[4]H.S.Teng,Y.J.Chang,C.T.Hsieh,Carbon2001,39,1981.
[5]R.K.Dash,A.Nikitin,Y.Gogotsi,MicroporousMesoporousMater.2004,72,
203.
[6]D.W.Wang,F.Li,M.Liu,G.Q.Lu,H.M.Cheng,Angew.Chem,Int.Ed.
2008,47,373.
´guin,[7]C.Vix-Guterl,E.Frackowiak,K.Jurewicz,M.Friebe,J.Parmentier,F.Be
Carbon2005,43,1293.
[8]T.Bordjiba,M.Mohamedi,L.H.Dao,Adv.Mater.2008,20,815.[9]C.Kim,K.S.Yang,Appl.Phys.Lett.2008,83,1216.
[10]W.Xing,S.Z.Qiao,R.G.Ding,F.Li,G.Q.Lu,Z.F.Yan,H.M.Cheng,
Carbon2006,44,216.
[11]A.B.Fuertes,F.Pico,J.M.Rojo,J.PowerSources2004,133,329.[12]L.X.Li,H.H.Song,X.H.Chen,Electrochim.Acta2006,51,5715.
[13]A.B.Fuertes,G.Lota,T.A.Centeno,E.Frackowiak,Electrochim.Acta2005,
50,2799.
[14]J.Chmiola,G.Yushin,Y.Gogotsi,C.Portet,P.Simon,P.L.Taberna,Science
2006,313,1760.
[15]rgeot,C.Portet,J.Chmiola,P.L.Taberna,Y.Gogotsi,P.Simon,J.Am.
Chem.Soc.2008,130,2730.
[16]J.Chmiola,rgeot,P.L.Taberna,P.Simon,Y.Gogotsi,Angew.Chem,
Int.Ed.2008,47,3392.
´guin,Carbon2006, ero,K.Kierzek,J.Machnikowski,F.Be[17]E.Raymundo-Pin
44,2498.
[18]J.Huang,B.G.Sumpter,V.Meunier,Angew.Chem,Int.Ed.2008,47,520.[19]J.Huang,B.G.Sumpter,V.Meunier,Chem.–Eur.J.2008,14,6614.
´guin,Adv. ero,J.B.Parra,F.Be[20]C.O.Ania,V.Khomenko,E.Raymundo-Pin
Funct.Mater.2007,17,1828.
´guin,Adv.Mater.2006,18,1877. ero,F.Leroux,F.Be[21]E.Raymundo-Pin
´guin,Electro-[22]E.Frackowiak,G.Lota,J.Machnikowski,C.Vix-Guterl,F.Be
chim.Acta2006,51,2209.
[23]Y.J.Kim,Y.Ave,T.Yanagiura,K.C.Park,M.Shimizu,T.Iwazaki,S.
Nakagawa,M.Endo,M.S.Dresselhaus,Carbon2007,45,2116.
[24]G.Lota,B.Grzyb,H.Machnikowska,J.Machnikowski,E.Frackowiak,
Chem.Phys.Lett.2005,44,53.
[25]M.Kodama,J.Yamashita,Y.Soneda,H.Hatori,K.Kamegawa,Carbon
2007,45,1105.
[26]M.Kawaguchi,A.Itoh,S.Yagi,H.Oda,J.PowerSources2007,172,481.[27]H.P.Boehm,Carbon1994,32,
759.
446
ß2009WILEY-VCHVerlagGmbH&Co.KGaA,WeinheimAdv.Funct.Mater.2009,19,438–447
Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon
www.afm-journal.de
´n,D.Sua´rez,J.A.Mene´ndez,E.Fuente,Carbon2004,[28]M.A.Montes-Mora
42,1219.
´,A.Bagreev,V.Strelko,Carbon1999,37,585.[29]haye,G.Nanse
[30]B.E.Conway,ElectrochemicalSupercapacitors,KluwerAcademicPlenum
Publishers,NewYork1999.
[31]H.A.Andreas,B.E.Conway,Electrochim.Acta2006,51,6510.
´guez-Reinoso,ActivatedCarbon,Elsevier,Oxford[32]H.Marsh,F.Rodr
2006.
[33]M.Seredych,D.Hulicova-Jurcakova,G.Q.Lu,T.J.Bandosz,Carbon2008,
46,1475.
[34]H.P.Boehm,inAdvancesinCatalysis,Vol.16,AcademicPress,NewYork
1966,pp.179–274.
[35]J.Jagiello,T.J.Bandosz,J.A.Schwarz,Carbon1994,32,1026.[36]J.Jagiello,Langmuir1994,10,2778.[37]J.P.Olivier,J.PorousMater.1995,2,9.
[38]stoskie,K.E.Gubbins,N.Quirke,J.Phys.Chem.1993,97,4786.[39]M.M.Dubinin,inChemistryandPhysicsofCarbon,Vol.2(Ed:P.L.Walker),
MarcelDekker,NewYork1966,pp.51–120.
[40]Y.El-Sayed,T.J.Bandosz,Langmuir2002,18,3213.
[41]F.Adib,A.Bagreev,T.J.Bandosz,Environ.Sci.Technol.2000,34,686.[42]J.R.Pels,F.Kapteijn,J.A.Moulijn,Q.Zhu,K.M.Thomas,Carbon1995,33,
1641.[43]S.Biniak,G.Szymanski,J.Siedlewski,A.Swiatkowski,Carbon1997,35,
1799.
[44]J.C.Sanchez-Lopez,C.Donnet,F.Lefebvre,C.Fernandez-Ramos,A.
Fernandez,J.Appl.Phys.2001,90,675.
´s,A.Linares-Solano,J.Find,U. ero,D.Cazorla-Amoro[45]E.Raymundo-Pin
¨gl,Carbon2002,40,597.Wild,R.Schlo
[46]C.Devallencourt,J.M.Saiter,A.Fafet,E.Ubrich,Thermochim.Acta1995,
259,143.
[47]S.R.Kelemen,M.L.Gorbaty,P.J.Kwiatek,EnergyFuels1994,8,896.[48]P.M.Schaber,J.Colson,S.Higgins,D.Thielen,B.Anspach,J.Brauer,
Thermochim.Acta2004,424,131.
[49]E.Papirer,J.Dentzer,S.Li,J.B.Donnet,Carbon1991,29,69.[50]H.Muckenhuber,H.Grothe,Carbon2006,44,546.
[51]M.Endo,T.Maeda,T.Takeda,Y.J.Kim,K.Koshiba,H.Hara,M.S.
Dresselhaus,J.Electrochem.Soc.2001,148,A910.
[52]L.Eliad,G.Salitra,A.Soffer,D.Aurbach,J.Phys.Chem.B2001,105,6880.[53]G.Lota,T.A.Centeno,E.Frackowiak,F.Stoeckli,Electrochim.Acta2008,53,
2210.
[54]Y.Nian,H.Teng,J.Electrochem.Soc.2002,149,A1008.
[55]D.W.Wang,F.Li,M.Liu,H.M.Cheng,NewCarbonMater.2007,22,307.[56]D.Hulicova,J.Yamashita,Y.Soneda,H.Hatori,M.Kodama,Chem.Mater.
2005,17,1241.
FULLPAPER
447
Adv.Funct.Mater.2009,19,438–447ß2009WILEY-VCHVerlagGmbH&Co.KGaA,
Weinheim
正在阅读:
Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon08-15
2018版高中语文第二单元跨越时空的美丽自读文本悼念乔治桑学03-13
孝亲敬老的故事【通用9篇】04-03
生活处处中的发现作文500字06-12
中国模具钢冶炼市场发展研究及投资前景报告(目录) - 图文03-08
学校心理咨询室2022年度工作计划范文03-23
林业系统扫黑除恶专项斗争任务分工02-22
副区长任职市表态总结发言模板范文08-05
周德庆微生物学笔记01-17
初二物理液体的压强教案一12-06
- 1Nanostructures and Functional Materials Fabricated by Interf
- 2Carbon Balance and Management
- 3Carbon Balance and Management
- 4translation and functional equivalence
- 5Global Warming and its Effect
- 6The - effect - of - globalization - on - Chinese - culture
- 7书斋画室联(The study combined studio)
- 8Global Warming and its Effect
- 9functional-翻译版
- 10Effect of Annealing Temperature of ZnO on the Energy
- 公务员上岸同学告诉你,怎样走出面试中常见的十大误区
- 作表率,我们怎么办(办公室主任)
- 乘务员安全责任书
- 增员面试流程
- 河南省焦作市规模以上租赁和商务服务业企业应付职工薪酬数据洞察报告2019版
- 最新4社区工作者面试题
- 个人简历表
- 男教工体检必检项目
- 河南省兰考县规模以上租赁和商务服务业企业应付职工薪酬数据洞察报告2019版
- 兼职译员测试稿
- 河南省开封市规模以上租赁和商务服务业企业应付职工薪酬数据洞察报告2019版
- 永州职业技术学院校园总体规划-永州职业学院
- 最新5、培训科长笔试题(答案)
- 2019雅商酒店境外人员登记培训稀有资料,不可错过
- 小学教师求职简历范文
- 红酒知识与礼仪
- 春节给领导拜年的短信拜年词
- 2019年上半年中小学教师资格证结构化面试真题1
- 20XX年县干部培训工作目标
- 硬笔试听课
- Microporous
- Containing
- Functional
- Activated
- Combined
- Nitrogen
- Effect
- Oxygen
- Groups
- Carbon
- 宏微观经济学形成性考核计算题答案
- 饲料用非淀粉多糖酶研究获突破
- 中国人民大学第六版财务管理学课程重点讲义第一章节
- 健康教育活动记录表
- 养猪场一线员工必须要注意的五大问题
- 先简支后连续的预应力溷凝土连续梁设计
- 2021年汽修实习代表生发言稿
- 矿山地质环境的治理措施要点分析
- 最新出纳年底总结自我鉴定
- 乒乓球的比赛规则
- 2013机械控制工程基础1-2
- 坐在家里赚钱
- 维生素B6的临床应用
- 完善代办股份转让系统制度研究
- 48智烧敌舰
- 学校培养学生社会主义核心价值观活动汇报材料培养社会主义核心价值观
- ASP学生信息管理系统
- 2011年“三农”问题__“三农”的重大方针政策、涉农法律法规和时事政治等内容的资料
- XX项目感恩国庆中秋节活动策划方案
- 消防安全知识培训教案